STUDY OF HEAT EXCHANGER EFFECT IN A CAR AIR CONDITIONING SYSTEM

NUR FASIHA BINTI NAZIRMUIDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I/ We have read this thesis and from my/out opinion this thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Thermal-Fluid)

Signature	:
Name of supervisor	:
Date	:

STUDY OF HEAT EXCHANGER EFFECT IN A CAR AIR CONDITIONING SYSTEM

NUR FASIHA BINTI NAZIRMUIDIN

A project report submitted in partial fulfillment of the requirements for the award of Degree of Bachelor Mechanical Engineering (Thermal-Fluid)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

APRIL 2010

"I hereby, declare this thesis is results of

my own research accept as cited in references"

Signature:....Author's Name: NUR FASIHA BINTI NAZIRMUDINDate:....

ACKNOWLEDGEMENT

Firstly, I would to give my greatest gratitude and appreciation to my supervisor of this Projek Sarjana Muda (PSM), Encik Faizil bin Wasbari for his guidance, support and practical advisers throughout the entire project. I would also like to thanks to Encik Razmi bin A. Razak for his assistance and guidance contributed toward the success of the project.

In addition, I could not execute this project smoothly without my partner's help, Chan Hong Keat who encourage me toward the completion this project. I also like to give my appreciation to my family, which support me for completion this project. Lastly, special thanks to each and every individual who help me throughout the efforts of this report be in form of encouragement and advice.

ABSTRACT

This research is about the effect of heat exchanger in terms of Coefficient of Performance car air conditioning system. Suction-liquid heat exchanger are used in this experiment while for the material is used aluminum alloys after the consideration of selection material. In this research, Proton Wira's air conditioning system is used for the experiment. The experimental with different lengths of suction-liquid heat exchanger and without heat exchanger are presented and analyzed. There are three different lengths of suction-liquid heat exchanger include in this report. A comparison of COP that is calculated between different lengths of suction-liquid heat exchanger and without heat exchanger of Suction-liquid heat exchanger and without heat exchanger is enclosed. An increase of COP has been found by using longer length of heat exchanger. The improvement COP of the refrigeration system up to 33.33% between the longer length of heat exchanger and without heat exchanger. Besides that, this research also includes the experiment for fuel consumption in car engine. The fuel that has been used is increase when the rotational speed increase.

ABSTRAK

Kajian ini diadakan adalah untuk mengkaji kesan penukar haba dari segi pekali prestasi dalam sistem penyaman udara kereta. Penukar haba terbina digunakan didalam eksperimen dan aluminium aloi digunakan selepas membuat pertimbangan mengenai pemilihan bahan. Di dalam kajian ini, sistem penyaman udara Proton Wira digunakan untuk menjalani eksperimen. Eksperimen dijalankan menggunakan panjang penukar haba yang berbeza-beza. Terdapat tiga reka panjang penukar haba terbina didalam laporan ini. Perbandingan dari segi pekali prestasi diantara panjang penukar haba terbina yang berlainan dan tanpa penukar haba dimasukkan sekali. Penambahan dari segi pekali prestasi apabila menggunakan lebih panjang penukar haba. Peningkatan pekali prestasi dalam sistem penyejukan mencecah 33.33% diantara panjang yang tertinggi penukar haba dan tanpa penukar haba. Selain itu, kajian ini mengandungi ekesprimen berkaitan dengan penggunaaan minyak dalam enjin kereta. Penggunaan minyak yang digunakan meningkat apabila halaju meningkat.

TABLE OF CONTENTS

VERIFICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi-ix
LIST OF FIGURES	x-xiv
LIST OF TABLES	xv-xvii
CHAPTER 1 : INTRODUCTION	
1.1 Background Study	1
1.2 Problem Statement	1
1.3 Objectives	2
1.4 Scopes	2
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	3
2.2 Flow Arrangement	3
2.3 Types of Heat Exchanger	4-9
2.4 Car Air Conditioning	9-10
2.5 Car Air Conditioning Components	11-17
2.6 The Cooling System	18-20
2.7 Coefficient of Performance	20-21

2.8 Selection of Heat Exchanger	21-22
2.9 Heat Exchanger Comparison	22-25
2.10 A chart for predicting the possible advantag	e of adopting a
suction/liquid heat exchanger in refrigerating sys	stem 25-29
2.11 Refrigeration system performance using liqu	uid-suction
heat exchangers.	29-31
2.12 Evaluation of suction-line/liquid-line heat ex	xchange
in the refrigeration cycle	31-34

CHAPTER 3: METHODOLOGY

3.1 Introduction	35
3.2 Literature Review	35
3.3 Conceptual Design	37
3.4 Selection of Heat Exchanger	37
3.5 Detail design and drawing	37
3.6 Selection of Material	37
3.7 Fabrication	38
3.8 Setup the components	38
3.9 Run the testing	38
3.10 Result	39
3.11 Data Analysis	39-40
3.12 Report Writing	41

CHAPTER 4: SELECTION OF DESIGN AND MATERIAL

4.1 Introduction	42
4.2 Selection of Design	42
4.3 Selection of Material	43-46

CHAPTER 5: DESIGN PROPOSAL AND DETAIL OF DESIGN

5.1 Introduction	48
5.2 Explanations of Design	48
5.3 Detail Drawing	49-54

CHAPTER 6: MODIFICATION AND PROCEDURE

6.1 Modification of Air Conditioning System	55-59
6.2 Procedure for the experiment	60

CHAPTER 7: RESULTS

7.1 Results without heat exchanger	61-65
7.2 Results with heat exchanger 10 cm	66-70
7.3 Results with heat exchanger 20 cm	71-74
7.4 Results with heat exchanger 30 cm	75-78

CHAPTER 8: DATA ANALYSIS

8.1 Heat exchanger effectiveness	79-82
8.2 refrigeration cycles on p-H diagram	82-88
8.3 Effects of heat exchanger on COP	88-89
8.4 Effect of fuel consumption for without heat exchanger	
and different lengths of heat exchanger	89-90
CHAPTER 9: DISCUSSION	
9.1 Effect different size heat exchanger on refrigeration system	91-93
9.2 Effect different sizes of heat exchanger in terms	
of fuel consumption	93
9.3 Limitation during the experiment	93-94
CHAPTER 10: CONCLUSION AND RECOMMMENDATION	

8.1 Conclusion958.2 Recommendation for future works96REFERENCES97-98BIBLIOGRAPHY99APPENDICES100

LIST OF FIGURES

FIGURE	TITLE	PAGES	
Figure 2.1:	Shell and Tube Heat Exchanger		
	(Source: http://www.ra.danfoss.com/TechnicalInfo)	4	
Figure 2.2:	Conceptual diagram of a plate and frame heat exchanger.		
	(Source: http://en.wikipedia.org/wiki/heat_exchanger)	5	
Figure 2.3:	A single plate heat exchanger		
	(Source: http://en.wikipedia.org/wiki/heat_exchanger)	5	
Figure 2.4:	Tubular Heat Exchanger		
	(Source: http://en.wikipedia.org/wiki/heat_exchanger)	7	
Figure 2.5	Car Air Conditioning Systems		
	(Source: http://:www.visteon.com	9	
Figure 2.6:	Compressor		
	(Source: http://images.search.yahoo.com/images/condenser	·) 11	
Figure 2.7:	Condenser		
	(Source: http://images.search.yahoo.com/images/compress	or) 11	

Figure 2.8:	Evaporator	
	(Source: http://images.search.yahoo.com/images/evaporator)	12
Figure 2.9:	Orifice Tube	
	(Source: http://specialtauto.com/air-conditioning-systems)	13
Figure 2.10:	Thermal Expansion Valve	
	(Source: http://specialtauto.com/air-conditioning-systems)	14
Figure 2.11:	Receiver Drier	
	(Source: http://specialtauto.com/air-conditioning-systems)	14
Figure 2.12:	Accumulator	
	(Source: http://specialtauto.com/air-conditioning-systems)	15
Figure 2.13:	Heat Convection	
	(Source: www.vtaide.com/png/heat2_htm)	20
Figure 2.14:	Heat Exchanger Tubular Reactor	
	(Source: www.elsevier.com/locate/cep)	23
Figure 2.15:	Schematic refrigeration cycle adopting suction/liquid	
	heat exchanger.	
	(Source: Mastrullo and Mauro (2007))	26

Figure 2.16:	Thermodynamics transformation of a basic cycle with and without suction-liquid heat exchanger.	
	(Source: Mastrullo and Mauro (2007))	27
Figure 2.17:	The COP'/COP ratio for R-717 and R-134a, for various	
	condensing temperature and evaporating temperature.	
	(Source: Mastrullo and Mauro (2007))	28
Figure 2.18:	Schematic of typical vapor-compression refrigeration cycle	
	with liquid-suction heat exchanger	
	(Source: <i>Klein (2000)</i>)	29
Figure 2.19:	Relative capacity index vs $h_{vap}/(C_{p,L}T_c)$ for various	
	temperature lifts for a liquid-suction heat exchanger	
	with no pressure losses and effectiveness=1.0.	
	(Source: <i>Klein (2000)</i>)	31
Figure 2.20:	Schematic of hardware arrangements for (a) the basic cycle	
	and (b) cycle with liquid-suction line heat exchanger	
	(Source: Domanski and Didion (1994))	32
Figure 2.21:	Key refrigerant state point in basic cycle and LLSL-HX cycle.	
	(Source: Domanski and Didion (1994))	33
Eigung 2.1.	Elow short for methodology	26
Figure 3.1:	Flow chart for methodology	36
Figure 3.2:	Horizontal line for high and low pressure	40

Figure 3.3:	p-H diagram	40
Figure 4.1:	Graph of Thermal Conductivity (BTU.ft/h.ft ² .F) versus Price (USD/lb)	
	(Source: CES Software (2005)	46
Figure 5.1:	Isometric View for length 10 cm	49
Figure 5.2:	Orthographic View for 10 cm	50
Figure 5.3:	Isometric View for length 20 cm	51
Figure 5.4:	Orthographic View for length 20cm	52
Figure 5.5:	Isomeric view for length 30 cm	53
Figure 5.6:	Orthographic view for length 30 cm	54
Figure 6.1:	Suction hose	55
Figure 6.2:	Insulation tape	55
Figure 6.3:	Aluminum pipe	56
Figure 6.4:	Aluminum tube	56
Figure 6.5:	Hacksaw	56
Figure 6.6:	Aluminum wire	56
Figure 6.7:	Hose clip	57
Figure 6.8:	Different length of aluminum pipe.	57
Figure 6.9:	Two different parts of aluminum tube after cutting process	57

Figure 6.10:	Aluminum pipe after brazing process	58
Figure 6.11:	The unwanted part of suction hose	58
Figure 6.12:	Suction hose and liquid line.	58
Figure 6.13:	Tighten of suction hose and liquid line by using aluminum wire	59
Figure 6.14:	Complete modification of heat exchanger	59
Figure 7.1:	Schematic of experimental system without heat exchanger	61
Figure 7.2:	Schematic of experimental system with heat exchanger	66
Figure 8.1:	Effectiveness versus rotational speed for heat exchanger 10 cm	80
Figure 8.2:	Effectiveness versus rotational speed of heat exchanger 20 cm	81
Figure 8.3:	Effectiveness versus rotational speed of heat exchanger 30 cm	82
Figure 8.4:	p-H diagram for refrigeration cycle of 1000 rpm	84
Figure 8.5:	p-H diagram for refrigeration cycle of 1500 rpm	85
Figure 8.6:	p-H diagram for refrigeration cycle of 2000 rpm	86
Figure 8.7:	p-H diagram for refrigeration cycle of 2500 rpm	87
Figure 8.8:	COP versus Rotational speed (rpm)	88
Figure 8.9:	Fuel consumption (ml) versus Rotational speed (rpm)	90
Figure 9.1:	Suction-liquid heat exchanger in air conditioning system	92

LIST OF TABLES

Table 2.1:	Heat exchanger capability with their different reactor.	
	(Source: www.elsevier.com/locate/cep)	25
Table 4.1:	Mechanical Properties for Aluminum alloys	
	(Source: CES Software (2005))	44
Table 4.2:	Thermal Properties for Aluminum alloys	
	(Source: CES Software (2005))	44
Table 4.3:	Mechanical Properties for Copper alloys	
	(Source: CES Software (2005)	45
Table 4.4:	Thermal Properties for Copper alloys	
	(Source: CES Software (2005))	45
Table 4.5:	Selection of material	45
Table 7.1:	Results for 1000 rpm without heat exchanger	62
Table 7.2:	Results for 1500 rpm without heat exchanger	63
Table 7.3:	Results for 2000 rpm without heat exchanger	64

Table 7.4:	Results for 2500 rpm without heat exchanger	65
Table 7.5:	Results for 1000 rpm with heat exchanger 10 cm	67
Table 7.6:	Results for 1500 rpm with heat exchanger 10 cm	68
Table 7.7:	Results for 2000 rpm with heat exchanger 10 cm	69
Table 7.8:	Results for 2500 rpm with heat exchanger 10 cm	70
Table 7.9:	Results for 1000 rpm with heat exchanger 20 cm	71
Table 7.10:	Results for 1500 rpm with heat exchanger 20 cm	72
Table 7.11:	Results for 2000 rpm with heat exchanger 20 cm	73
Table 7.12:	Results for 2500 rpm with heat exchanger 20 cm	74
Table 7.13:	Results for 1000 rpm with heat exchanger 30 cm	75
Table 7.14:	Results for 1500 rpm with heat exchanger 30 cm	76
Table 7.15:	Results for 1500 rpm with heat exchanger 30 cm	77
Table 7.16:	Results for 2500 rpm with heat exchanger 30 cm	78
Table 8.1:	Results for effectiveness of heat exchanger 10 cm	79

Table 8.2:	Results for effectiveness of heat exchanger 20 cm	80
Table 8.3:	Results for effectiveness of heat exchanger of 30 cm	81
Table 8.4:	Comparison enthalpy and COP for 1000 rpm	84
Table 8.5:	Comparison enthalpy and COP for 1500 rpm	85
Table 8.6:	Comparison enthalpy and COP for 2000 rpm	86
Table 8.7:	Comparison enthalpy and COP for 2500 rpm	87
Table 8.8:	Comparison COP with three different heat exchanger	88
Table 8.9:	COP improving using the heat exchanger.	89
Table 8.10:	Comparison of fuel consumption for three sizes heat exchanger	89

CHAPTER 1

INTRODUCTION

1.1 Background Study

Heat exchangers are common components in many everyday devices. Car engines, refrigerators, air conditioners, central heating boilers and radiators all contain heat exchangers. They are devices specifically designed for the efficient transfer of heat from one fluid to another fluid over a solid surface. This transfer of heat can either take the form of absorption or dissipation of heat. As a heat transfer device, it is the function of a heat exchanger to transfer heat as efficiently as possible. This makes it the ultimate device of choice, for instance, when it comes to saving energy by recovering wasted heat and making it useful again. When there is a waste of energy or a heat stream that is not recovered a heat exchanger can covert that heat stream into something that can be used.

1.2 Problem Statement

Heat exchangers are widely used in industry both for cooling and heating large scale processes. Heat exchanger commonly applies in heating, ventilation and air conditioning (HVAC) systems, radiators, boilers and others. Heat exchanger can be added in the car air conditioning systems. With existed of heat exchanger, it will reduce the pressure drops in the air conditioning systems.

1.3 Objectives

- i. To understand basic concept of car air conditioning system.
- ii. To learn effect of different lengths heat exchanger to temperature and pressure in term of Coefficient of Performance (COP).
- iii. To study effect heat exchanger on car fuel consumption.

1.4 Scope

This project is to study the effect of heat exchanger on car air conditioning system. The experiment will be conducted with different lengths of heat exchanger correlate with temperature and pressure. Also, the experiment will be conducted to determine effect of the fuel consumption with adding the heat exchanger into the car airconditioning system. All the experiment will use Proton Wira's car air-conditioning system.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Heat exchanger is a device built for efficient heat transfer from one medium to another, whether the media are separated by solid wall so that they never mix, or the media are in contact. Heat exchanger widely used in refrigeration, air conditioning, power plants, space heating, and natural gas processing. One common example of a heat exchanger is the radiator in car, which the heat source, being a hot engine-cooling fluid, water transfers heat to air flowing through the radiator.

2.2 Flow Arrangement

Heat exchangers may classify according to their flow arrangement. In parallelflow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is most efficient, in that it can transfer the most heat from the heat (transfer) medium. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger. For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.

2.3 Types of Heat Exchanger

2.3.1 Shell and tube heat exchanger

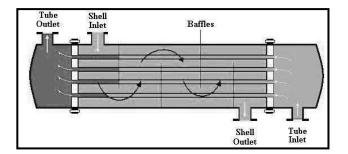


Figure 2.1: Shell and Tube Heat Exchanger (Source: *http://www.ra.danfoss.com/TechnicalInfo*)

From the Figure 2.1, shell and tube heat exchangers consist of a series of tubes. One set of these tubes contains the fluid that must be either heated or cooled. The second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and Tube heat exchangers are typically used for high pressure applications. This is because the shell and tube heat exchangers are robust due to their shape. There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube

heat exchangers. These include tube thickness, tube diameter, tube length, tube pitch and tube layout.

2.3.2 Plate heat exchanger

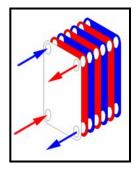


Figure 2.2: Conceptual diagram of a plate and frame heat exchanger. (Source: *http://en.wikipedia.org/wiki/heat_exchanger*)

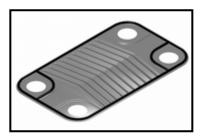


Figure 2.3: A single plate heat exchanger (Source: *http://en.wikipedia.org/wiki/heat_exchanger*)

