

DESIGN AND DEVELOPMENT OF AN EMBEDDED
CONTROL SYSTEM FOR CONTROLLING A DC MOTOR

USING MICROCONTROLLER

MOHAMAD REZDUAN BIN MOHD JAN

B050810149

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF EMBEDDED CONTROL

SYSTEM FOR CONTROLLING A DC MOTOR USING

MICROCONTROLLER

This report submitted in accordance with requirement of the Universiti Teknikal

Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering

(Robotic and Automation) with Honours.

by

MOHAMAD REZDUAN BIN MOHD JAN

B050810149

FACULTY OF MANUFACTURING ENGINEERING

2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design And Development Of An Embedded Control System For Controlling A DC

Motor Using Microcontroller

SESI PENGAJIAN: 2010/2011 Semester 2

Saya MOHAMAD REZDUAN BIN MOHD JAN
mengaku membenarkan laporan PSM ini disimpan di Perpustakaan Universiti Teknikal
Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan
penulis.

2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan
untuk tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan
pertukaran antara institusi pengajian tinggi.

4. *Sila tandakan (√)

 SULIT

 TERHAD

⁄ TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI

1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

Alamat Tetap :

Kampung Sawah Raja

71350 Kota

Negeri Sembilan Darul Khusus

Tarikh: _______________________

Cop Rasmi:

Tarikh: _______________________

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan
dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby declared this report entitled “Design And Development Of An Embedded

Control System For Controlling A DC Motor Using A Microcontroller’’ is the

result of my own research except as cited in the references.

Signature : ………………………………………………..

Author’s Name : MOHAMAD REZDUAN BIN MOHD JAN

Date : 19 MAY 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a

partial fulfillment of the requirements for the degree of Bachelor of Manufacturing

Engineering (Robotic and Automation) with Honours. The members of the

supervisory committee are as follow:

(Signature of Supervisor)

………………………………………

(MOHD NAZRIN BIN MUHAMMAD)

(Official Stamp of Supervisor)

i

ABSTRAK

Dalam era teknologi yang moden ini, sebuah sistem elektrik banyak digunakan dalam

bahagian elektrik dan elektronik untuk melakukan aplikasi-aplikasi tertentu. Ini adalah

sistem yang dibina untuk menyelesaikan dan mengendalikan aplikasi-aplikasi tertentu.

Tujuan utama projek ini adalah untuk merancang dan mengembangkan suatu sistem

kawalan litar tertanam untuk mengendalikan motor dc menggunakan pengawal mikro.

Sebuah sistem tertanam terdiri daripada tiga elemen penting. Salah satu elemen ini ialah

mereka sebuah litar. Seterusnya adalah pembangunan dari bahagian kawalan. Untuk

projek ini, pengawal mikro dipilih kerana arahan berulang boleh digunakan di dalam

pengawal mikro. Untuk mengawal motor arus terus, sebuah elemen dari sistem kawalan

PID digunakan. Sistem kawalan PID terdiri daripada Kp, Ki and Kd. Setiap komponen

mempunyai tugasnya tersendiri. Kp digunakan untuk meningkatkan tindak balas dalam

sesuatu sistem. Nilai untuk Kp boleh diubah untuk mendapat nilai optimum tindak balas

dalam sesuatu sistem. Ki pula digunakan untuk mengatasi masalah keadaan mantap.

Untuk Kd pula, ia digunakan untuk mendapatkan suatu keadaan yang tepat. Dengan

menggunakan PID ini, ubahsuai boleh dilakukan di dalam aturcara untuk mendapatkan

suatu kedudukan yang tepat dan betul. Nilai PID ini digunakan untuk meningkatkan

tindak balas dan mengurangkan kesalahan dalam sesuatu sistem. Semua maklumat yang

berkaitan tentang kaedah untuk mengawal motor arus terus juga telah dibincangkan

dalam projek ini.

ii

ABSTRACT

In this modern era technology, an embedded system is widely used in most electric and

electronic component for specific task. It is simple systems that are built up for

accomplish and control specific task. The main purpose of this project is to design and

developed an embedded an embedded control system for controlling a dc motor using a

microcontroller. An embedded system consist three important elements during the

development. One of the elements is designing a hardware that consist a schematic

diagram. Next is the development of the control part. For this project, microcontroller

was selected because of the repeated instruction can be used inside the microcontroller.

For controlling a dc motor, an element of the control system were added which is PID

algorithm. PID algorithm consist three components which is Kp, Ki and Kd. Each

component has their own capability for controlling a dc motor. Kp can be used for

increase the transient response of dc motor. We can set some values of Kp until get a an

optimum system response. For the Ki, it was used for overcome the steady state error.

Lastly, Kd is used to get a better response in achieving a set point of the controller by

entering a value. By using a PID algorithm, adjusting can be easier by set up in the

programming section and the real position of rotation dc motor will get through this

programming. This PID algorithm will increase the transient response and reduced the

steady state error that exists in the system.

iii

DEDICATION

Firstly, thanks to Allah S.W.T with his blessing, I have done in completing my final year

project with succeed. I would apply my gratitude to my father Hj Mohd Jan Bin Udin and

my mother Hjh Siti Rahmah Binti Ahmad for giving me a supporting to complete this

project. They encourage and inspire me through this project and completing this report.

This report is dedicated to my parents of blessed memory, who raise me to be a

responsible and careful person. Other than that, I would like to thank to everyone for

supporting me in this project.

iv

ACKNOWLEDGEMENT

Assalamualaikum Warahmatullahi Wabarakatuhu. Alhamdulillah, thanks to Allah S.W.T.

because with his blessing I have done this final year project with succeed and without any

obstacles.

First and foremost I would like to take this opportunity to express my highest gratitude

and appreciation to my supervisor, Mr. Mohd Nazrin Bin Muhammad who gives me a

spirit and motivation, an opinion to make me feel comfortable and more confident in

completed this final year project. He also encourages me in knowing the real thing on

how to be a good engineer. The tips that he gives to me, it will not be forgotten and I will

work hard until I get succeed.

Other than that, thanks to all my friends for help and giving some opinion to me in

accomplish this final year project.

v

TABLE OF CONTENTS

Abstrak . I

Abstract ii

Dedication iii

Acknowledgement iv

Table Of Contents v

List Of Tables ix

List Of Figures x

List Of Abbreviations xii

1. INTRODUCTION 1

1.1 Problem Statement 4

1.2 Objective 4

1.3 Scope 5

1.4 Limitation of the project 6

1.5 Project outline 6

1.6 Expected outcome 7

1.7 Conclusion 7

2. LITERATURE REVIEW 10

2.1 Historical of an embedded system 10

2.2 Definition of an embedded system 12

2.3 Characteristic and reliability of embedded systems 13

2.4 Purpose of embedded systems 14

2.4.1 Data collection and storage representation 14

2.4.2 Data communication 15

2.4.3 Data signal processing 15

2.5 Design and development of an embedded system 16

vi

2.5.1 Schematic design 17

2.6 Control system element 19

2.6.1 PID definition and element 21

2.6.2 PID application 23

2.6.3 PI speed controller 27

2.7 Controller in embedded system 28

2.7.1 Microcontroller definition 29

2.7.2 Microcontroller application 30

2.8 Method for controlling a dc motor 32

2.8.1 Controlling using Pulse Width Modulator 34

2.8.2 Controlling using H-Bridge 38

2.9 Conclusion 43

3. METHODOLOGY 44

3.1 Flow chart 45

3.2 Design and development 46

3.2.1 Hardware development 47

3.2.2 Programming section 47

3.2.3 PID for Control System 48

3.2.3.1 Proportional Controller 49

3.2.3.2 Integral Controller 51

3.2.3.3 Derivative Controller 52

 3.2.3.4 PID Controller 53

3.3 Testing 54

3.4 Interfacing using USB UART 55

3.5 Block diagram 56

3.5.1 Computation of error signal and PID compensation algorithm 56

vii

4. DESIGN AND DEVELOPMENT 57

4.1 Flow chart 57

4.2 Schematic design 60

4.2.1 Procedure for schematic design 60

4.3 PCB layout 62

4.3.1 Procedure for PCB layout design 62

4.4 Hardware development 64

4.4.1 Procedure for etching process 64

4.4.2 Procedure for soldering process 65

4.4.3 Finish hardware development 66

4.5 Designing PID controller 67

4.6 Programming section 69

4.6.1 Servo calculation 69

4.6.1.1 Position updates 70

4.6.1.2 Error calculation 70

4.6.1.3 Trajectory updates 71

4.6.1.4 Duty cycle calculation 72

4.6.1.5 Procedure for programming section 73

4.6.1.6 Command interpreter 74

4.6.1.7 Stand alone operation 75

5. RESULT AND DISCUSSION 76

5.1 Result 76

5.2 Completed design of an embedded system 77

5.2.1 Circuit description 77

5.3 PID controller 78

5.3.1 Block diagram for PID controller 78

5.3.2 Uncompensated system 79

viii

5.3.3 PD compensated system 83

5.3.4 PI compensated system 88

5.4 Interface section 92

5.4.1 Procedure during interfacing 92

5.5 Database result 94

5.6 Conclusion and finding 97

6. CONCLUSION AND RECOMMENDATION 98

6.1 Conclusion 98

6.2 Recommendation and future work 99

REFERENCES 101

APPENDICES 103

ix

LIST OF TABLES

1.1 PSM 1 table 8

1.2 PSM 2 table 9

5.1 Theorytical value of distance 94

5.2 Actual value without using PID 94

5.3 Actual value for PID using 100mm/s velocity 96

5.4 Actual value for PID using 200mm/s velocity 96

x

LIST OF FIGURES

1.1 Embedded system 3

2.1 Flow chart for designing a circuit 16

2.2 Schematic circuit 18

2.3 Simplified description of a control system 19

2.4 Closed loop control system 20

2.5 PID controller works 24

2.6 Error speed as a function of reference speed for different

Ki values with Kp 25

2.7 Comparison of transient performance for different control

Algorithm 26

2.8 Microcontroller 31

2.9 Brush Dc Motor 33

2.10 PWM signals of varying duty cycles 36

2.11 ON_PWM 37

2.12 PWM_ON 37

2.13 H_PWM_L_ON 37

2.14 H-Bridge connection 40

2.15 Current through H-Bridge 40

2.16 H-Bridge converter 41

2.17 H-Bridge soft switching 42

3.1 Flow Chart for PSM 45

3.2 Closed Loop Control System 48

3.3 Block diagram of proportional controller 49

3.4 System response for proportional controller with low Kp 49

3.5 System response for proportional controller with high Kp 50

3.6 System response for proportional controller with excessively Kp 50

xi

3.7 System response for PI controller with no steady state error 51

3.8 System response for PD controller 52

3.9 System response for PID controller 53

3.10 RS232 pin diagram 55

3.11 Block diagram of DC motor speed control system 56

4.1 Flow chart for design and development process 59

4.2 Schematic design for controlling a dc motor 61

4.3 PCB layout 63

4.4 Finish hardware setup 66

4.5 PID transfer function 68

4.6 PID controller 68

5.1 Completed design of embedded system 77

5.2 Embedded system block diagram 78

5.3 Block diagram with transfer function 79

5.4 Uncompensated graph with dominant poles 81

5.5 Uncompensated root locus graph with other poles 81

5.6 Uncompensated step response 82

5.7 Uncompensated root locus graph 82

5.8 PD root locus graph 84

5.9 PD root locus graph with dominant poles 86

5.10 PD root locus graph with other poles 86

5.11 Step response graph for uncompensated and PD 87

5.12 PID root locus graph with dominant poles 89

5.13 PID root locus graph for other poles 89

5.14 Step response for uncompensated, PD and PID controller 90

5.15 Transfer function for PID controller 91

5.16 Graph for theoretical value without PID 95

5.17 Graph for theoretical value with PID

xii

LIST OF ABBREVIATIONS

PC – Personal Computer

DSP – Digital Signal Processing

MCU – Machine Control Unit

DC – Direct Current

PID – Proportional Integration Derivative

PCB – Printed Circuit Board

OS – Operating System

AGC – Apollo Guidance Computer

Emf – Electro Magnetic Force

PWM – Pulse Width Modulation

PIC – Programmable Integrated Circuit

ROM – Read Only Memory

PV – Process Variable

SP – Setpoint

CPR – Count per revolution

TF – Transfer function

PCB – Printed circuit board

1

CHAPTER 1
INTRODUCTION

1.0 Overview

According to the Todd D. Morton, 2001, an embedded system is a computer system

designed to perform one or a few dedicated functions often with real-time computing

constraints. It is embedded as part of a complete device often including hardware and

mechanical parts. By contrast, a general-purpose computer, such as a personal computer

(PC), is designed to be flexible and to meet a wide range of end-user needs. Embedded

systems control many devices in common use today.

In general, embedded system is not a strictly definable term, as most systems have some

element of extensibility or programmability. For example, handheld computers share

some elements with embedded systems such as the operating systems and

microprocessors which power them, but they allow different applications to be loaded and

peripherals to be connected. Moreover, even systems which don't expose

programmability as a primary feature generally need to support software updates.

http://en.wikipedia.org/wiki/Computer_system
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Handheld_computer

2

Embedded systems are controlled by one or more main processing cores that are typically

either microcontrollers or digital signal processors (DSP). The key characteristic,

however, is being dedicated to handle a particular task, which may require very powerful

processors. For example, air traffic control systems may usefully be viewed as embedded,

even though they involve mainframe computers and dedicated regional and national

networks between airports and radar sites. Microcontroller design reflects the constantly

changing functional requirements of electronically controlled product. [Greg Osborn,

2010].

Physically, embedded systems range from portable devices such as MP3 players and

digital cameras, to large systems like traffic lights, factory controllers, or the systems

controlling nuclear power plants. Complexity varies from very low, with a single

microcontroller chip, to very high with multiple microcontroller units with peripherals

and networks mounted inside a large chassis or enclosure. In general, embedded system is

not an exactly defined term, as many systems can load and run applications. For example,

mobile devices share some elements with embedded systems such as the operating

systems and microprocessors which runs them but are not truly embedded systems,

because they allow different applications to be loaded and peripherals to be connected

like general-purpose computers.

Embedded systems use embedded operating systems which are often real-time operating

systems. These operating systems are designed to be very compact and efficient. They

leave out many of the functions the embedded computer never uses. Since the embedded

system is dedicated to specific tasks, design engineers can optimize it, reducing the size

and cost of the product, or increasing the reliability and performance.

http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Digital_signal_processor
http://en.wikipedia.org/wiki/Air_traffic_control
http://en.wikipedia.org/wiki/Mainframe_computers
http://simple.wikipedia.org/wiki/MP3_player
http://simple.wikipedia.org/wiki/Digital_camera
http://simple.wikipedia.org/wiki/Traffic_light
http://simple.wikipedia.org/wiki/Nuclear_power_plant
http://simple.wikipedia.org/wiki/Microcontroller
http://simple.wikipedia.org/wiki/Microcontroller
http://simple.wikipedia.org/wiki/Mobile_device
http://simple.wikipedia.org/wiki/Operating_system
http://simple.wikipedia.org/wiki/Operating_system
http://simple.wikipedia.org/wiki/Operating_system
http://simple.wikipedia.org/wiki/Microprocessor
http://simple.wikipedia.org/wiki/Peripheral_equipment
http://simple.wikipedia.org/wiki/Computer
http://simple.wikipedia.org/wiki/Real-time_operating_system
http://simple.wikipedia.org/wiki/Real-time_operating_system

3

An embedded system is a special-purpose computer controlled electro-mechanical system

in which the computer is completely encapsulated by the device it controls. An embedded

system has specific requirements and performs pre-defined tasks, unlike a general-

purpose personal computer. An embedded system is a computer-controlled system. The

core of any embedded system is a microprocessor, programmed to perform a few tasks.

This is to be compared to other computer systems with general-purpose hardware and

externally loaded software. Embedded systems are often designed for mass production.

Embedded systems reside in machines that are expected to run continuously for years

without errors. Therefore the software is usually developed and tested more carefully than

Software for Personal computers. Many embedded systems avoid mechanical moving

parts such as Disk drives, switches or buttons because these are unreliable compared to

solid-state parts such as Flash memory.

 Figure 1.1 : Embedded system (Heath Steve, 2003)

4

 1.1 Problem Statement

Nowadays, most of the controller has their weaknesses in performing tasks. Some of the

problem occurred such as less of efficiency in real time application, didn’t get an exactly

position and acceleration during rotation of DC motor, and less torque while in rotating

position. Due to the problem, an embedded system was develop to increase the efficiency

of controller during perform a specific task.

The designer therefore focuses on the controlled object from the beginning to the end of

the development and the implementation issues as MCU, the programming language, the

scheduling policy and the other nonfunctional aspects.

Through this research, this problem will be overcome with the development of an

embedded system and can be implemented in controlling a DC motor with higher

efficiency.

1.2 Objective

This project aims to produce an efficient, precise and good DC motor operating system

during in embedded system that can be achieved by using a PIC16F877A through a

certain programming.

To fulfill the project aim, there are three objectives have been line up and must be

achieved. The main purpose of this embedded system is :

1. To design and develop of an embedded control system.

2. To design a PID controller for an embedded system.

3. To get an exact position during rotation of DC motor.

5

1.3 Scope

This project will mainly focus on development of an embedded system for controlling a

DC motor. The following are the guidelines that listed to ensure that the project is

conducted within its boundary of hardware modification and development, electronics

and programming.

The scope started with hardware modification and development will covered the design

of the circuit for an embedded system. This circuit will create in one software. After the

development of the circuit was done, all components must be arranged in appropriate

position for development of PCB layout. This PCB layout will be used in PCB board for

getting a circuit through an etching process.

Next, electronic components must be considered and should attach on the PCB board.

After development of circuit was done, programming for the PIC16F877A should be

developing using C language. This programming will be downloaded to the PIC16F877A

for circuit operations. Through a programming, a torque, position and acceleration of the

DC motor can be set up. A DC motor consist an encoder that can be used as a feedback

element for controlling a DC motor. Control system element which is PID has been used

for adjusting a gain for the encoder while rotating the DC motor.

For scope of testing the project, the circuit must be confirming on their conductivity. This

test can be done using a conductive test by using a multimeter. This test can check the

conductivity for each component for whole circuit. The circuit must also be tested for its

purpose it builds which is for controlling a torque, position and acceleration of the DC

motor through a program that has been build in programming section. This test can be

done by interfacing the circuit to the computer using USB UART. Several values can be

set up in the programming to look on the performance of the torque, acceleration and

position of the DC motor.

6

1.4 Limitation of Project

All projects have their limitation due to its performances and the way it operates for

specific task. The limitation for this project is :

a) This embedded system will mainly focus for controlling the position of DC

motor.

b) A control system element PID will be attached in this embedded system by

adjusting their gain.

1.5 Project Outline

This project consists of six chapters. Chapter one explains the introduction of the project

including the objective, scope, problem statement and expected outcomes.

Chapter two describes literature review more about previous study on topics that related

to the project. It will cover both, other project research and implementations or

organizations that suitable to relate on embedded system.

Chapter three will cover the methodology of the project. The main topic of this chapter

will describe the method that is used in development an embedded control system and

also the flow chart for the process.

Chapter four illustrates the design and the development. In this chapter, all related

designing the project are mentioned such as hardware designing, electronic circuit

designing and programming using suitable software.

Chapter five will mainly focus on the result and discussion on the project after the project

complete and finally chapter six summarized the project in all field.

7

1.6 Expected Outcomes

Through this preliminary research, the expected outcome is:

a) Achieve the objective for this project which is design an embedded system for

controlling a DC motor.

b) Get an exacted position while rotating a DC motor.

c) Reach a certain value of distances when several values were inserted in a

programming.

1.7 Conclusion

From this chapter, all related information has been introduced in development of an

embedded system for controlling a DC motor. A general purpose computing system is a

combination of generic hardware and general purpose operating system for executing a

variety of applications, where an embedded system is a combination of special purpose

hardware an embedded OS for executing specific applications. This embedded system

was design due to its operation in controlling a DC motor. In designing an embedded

system, all related information has been considered such as the hardware, electric and

electronic part, programming an element of control system. Embedded systems are

designed to serve the purpose of any one or a combination of data collection, storage,

representation data communication, data signal processing (DSP), monitoring, control or

application specific user interface. The boundary of the development of embedded

systems will be discussing more in the next chapter.

10

CHAPTER 2
LITERATURE REVIEW

2.0 Introduction

This chapter will discuss and review available literature on Embedded System using DC

motor. The review begins with the introduction and historical about an embedded system.

This section also will discuss the designing of an embedded system for controlling DC

motor with including the use of PIC in controlling the embedded system such as the

speed, acceleration, position, motion, and torque of DC motor. Then, other related

software and program also will be discussed in this chapter.

2.1 History of An Embedded System

Embedded systems exist even before the IT revolution. In the older days embedded

systems were built around the old vacuum tube and transistor technologies and the

embedded algorithm was developed in low level language. Advances in semiconductor

and nano-technology and IT revolution gave way to the development of miniature

embedded systems. The first recognized modern embedded system is the Apollo

Guidance Computer (AGC) developed by the MIT Instrumentation Laboratory for the

lunar expedition. The Command Module was designed to encircle the moon while the

Lunar Module and its crew were designed to go down to the moon surface and there

safely. [Shibu K V, 2009]

11

Shibu KV (2009) also said that the Lunar Module featured in total 18 engines. There were

16 reaction control thrusters, a descent engine and an ascent engine. The descent engine

was „designed‟ to provide thrust to the lunar module out of the lunar orbit and land it

safely on the moon. MIT‟s original design was based on 4K words of fixed memory

(Read Only Memory) and 256 words of erasable memory (Random Access Memory). By

June 1963, the figures reached 10K of fixed and 1K of erasable memory. The final

configuration was 36K words of fixed memory and 2K words of erasable memory. The

clock frequency of the first microchip proto model used in AGC was 1.024 MHz and it

was derived from a 2.048 MHz crystal clock.

The computing unit of AGC consisted of approximately 11 instruction and 16 bit word

logic. Around 5000 ICs (3-input NOR gates, RTL logic) supplied by Fairchild

Semiconductor were used in this design. The user interface unit of AGC is known as

DSKY (display/keyboard). DSKY looked like a calculator type keypad with an array of

numerals. It was used for inputting the commands to the module numerically. The first

mass-produced embedded system was the guidance computer for the Minuteman-I

missile in 1961. It was the „Autonetics D-17‟ guidance computer, built using discrete

transistor logic and a hard disk for main memory.

Embedded systems encompass a wide range of applications, technologies, and

disciplines, necessitating a broad approach to education. Embedded application include a

small and single-microcontroller applications, control systems, distributed embedded

control, system-on-chip, networking, embedded PCs, critical systems, robotics, computer

peripherals, wireless data systems, signal processing, and command and control.

12

2.2 Definition of An Embedded System

An embedded system is an electronic or electro mechanical system designed to perform a

specific function and is a combination of both hardware and software.[Todd D. Morton,

2001]. Every embedded system is unique, and the hardware as well as the software is

highly specialized to the application domain. Embedded system are becoming an

inevitable part of any product or equipment in all fields including household appliances,

telecommunications, medical equipment, industrial control and consumer product.

Additional cross-cutting skills that are important to embedded system designers include

security, dependability, energy computing, software or systems engineering, real-time

computing, and human computer interaction.

According to the Shibu K V (2009), the first integrated circuit was produced in

September 1958 but computers using them didn‟t begin to appear until 1963. Some of

their early uses were in embedded systems, notably used by NASA for the Apollo

Guidance Computer and by the US military in the Minuteman-II intercontinental ballistic

missile. Embedded systems are designed for a specific application from the characteristic

of the embedded systems. The software of the embedded systems is unalterable by the

end user.

Embedded software systems typically run on dedicated hardware, and are systems in

which a primary objective is typically to control external devices. Embedded software

systems are found in a number of applications, such as in aircraft flight control, reactor

protection systems, medical electronic devices, washing machines, and mobile phones. A

lack of direct user involvement or supervision requires highly reliable and efficient

software, which must typically work in real-time, as embedded systems respond to and

control real-world events.

13

2.3 Characteristic and Reliability of Embedded Systems.

In do some operation, embedded system has their own characteristic. This characteristic

shows the ability of the embedded system while performing an operation. Embedded

systems are designed to do a specific task, unlike general-purpose computers. Some

embedded systems have real-time "performance constraints" that must be meet, for

reasons such as safety and usability without constraints the systems are simplified at low

price. [Greg Osborn, 2010].

Embedded systems are not always standalone devices. Many embedded systems consist

of small, computerized parts within a larger device that serves a more general purpose.

Similarly, an embedded system in a car provides a specific function as a subsystem of the

car itself.

The program instructions written for embedded systems are referred to as software, and

are stored in read-only memory or flash memory chips. They run with limited computer

hardware resources: little memory, small or non-existent keyboard or screen.

Greg Osborn (2010) also said that embedded systems often in machines that are expected

to run continuously for years without errors and in some cases recover by themselves if

an error occurs. Therefore the software is usually developed and tested more carefully

than that for personal computers, and unreliable mechanical moving parts such as disk

drives, switches or buttons are avoided.

http://simple.wikipedia.org/wiki/Computer
http://simple.wikipedia.org/wiki/Real-time_computing
http://simple.wikipedia.org/wiki/Safety
http://simple.wikipedia.org/wiki/Usability
http://simple.wikipedia.org/wiki/Computer
http://simple.wikipedia.org/wiki/Car
http://simple.wikipedia.org/wiki/Firmware
http://simple.wikipedia.org/wiki/Flash_memory
http://simple.wikipedia.org/wiki/Floppy_disk
http://simple.wikipedia.org/wiki/Floppy_disk
http://simple.wikipedia.org/wiki/Floppy_disk

14

2.4 Purpose of Embedded Systems.

As mentioned in the previous section, embedded systems are used in various domains like

consumer electronics, home automation, telecommunications, automotive industry,

healthcare, control and instrumentation, retail and banking applications. Within the

domain itself, according to the application usage context, they may have different

functionalities. Each embedded system is designed to serve the purpose of any task.

2.4.1 Data Collection and Storage Representation

Embedded systems are designed for the purpose of data collection performed from the

real world. Data collection is usually done for storage, analysis, manipulation and

transmission. The term "data" refers all kinds of information, text, voice, image, video,

electrical signals and any other measurable quantities. Data can be either analog

(continuous) or digital (discrete).

Embedded systems with analog data capturing techniques collect data directly in the form

of analog signals whereas embedded systems with digital data collection mechanism

converts the analog signal to corresponding digital signal using analog to digital (A/D)

converters and then collects the binary equivalent of the analog data. If the data is digital,

it can be directly captured without any additional interface by digital embedded systems.

[Shibu K V, 2009]

The collected data may be stored directly in the system or may be transmitted to some

other systems or it may be processed by the system or it may be deleted instantly after

giving a meaningful representation. These actions are purely dependent on the purpose

for which the embedded system is designed. Embedded systems designed for pure

measurement applications without storage, used in control and instrumentation domain

collects data and gives a meaningful representation of the collected data.

15

 2.4.2 Data Communication.

Todd D. Morton, (2001) said that an embedded data communication systems are

developed in applications ranging from complex satellite communication systems to

simple home networking systems As mentioned earlier in this chapter, the data collected

by an embedded terminal may require transferring of the same to some other system

located remotely. The transmission is achieved either by a wire line medium or by a

wireless medium Wire-line medium was the most common choice in all olden days

embedded systems. As technology is changing, wireless medium is becoming the DC-

facto standard for data communication in embedded systems. A wireless medium offers

cheaper connectivity solutions and make the communication link free from the hassle of

wire bundles. Data can either be transmitted by analog means or by digital means.

Modern industry trends are settling towards digital communication.

2.4.3 Data Signal Processing (DSP)

As mentioned earlier, the data (voice, image, video, electrical signals and other

measurable quantities) collected by embedded systems may be used for various kinds of

data processing. Embedded systems with signal processing functionalities are employed

in applications demanding signal processing like speech coding, synthesis, audio video

codec, transmission applications and others. A digital hearing aid is a typical example of

an embedded system employing data processing. Digital hearing aid improves the hearing

capacity of hearing impaired persons. [Bennett, Stuart ,1993].

16

2.5 Design and Development of An Embedded System.

In designing an embedded system, several aspect must be considered such as the purpose

for it designing, the controller, how to interface that system and programming. Normally,

the purpose for building an embedded system is to control some element such as motor,

temperature, movement and to locate a memory. With the application of an embedded

system, several task and purpose can be completed.

In this project, some information are needed in related journal to identify an element in

designing an embedded control system. All inform that are gathered and related are

discussed here for further perusal in achieving the objective of this project.

An Embedded system has been built to solve only a few very specific problems. Very

often, such systems must give an answer in a specified time. This is called real-time

computing. These computers are usually embedded and offer different devices. In

contrast, a general-purpose computer can do many different tasks depending on

programming. Embedded systems control many of the common devices in use today.

[Shibu K V ,2009].

 Figure 2.1 : Flow chart for designing a circuit [Henry ford, 1997]

http://simple.wikipedia.org/wiki/Real-time_computing
http://simple.wikipedia.org/wiki/Real-time_computing

17

There are several techniques that must be taken in designing an embedded system. This

technique played an important role and give a bad impact to the designing an embedded

systems. The techniques in designing an embedded system usually started with build a

schematic diagram, identify the controller, how to interface the controller and developed

a suitable programming to give an instruction in handling the embedded system. Even

though, this technique is related in designing a system that have a controller within it

boundaries.

2.5.1 Schematic Design.

A circuit diagram is a strict document, and cannot be "mostly correct". A circuit diagram

must reflect the actual construction of the printed circuit board which is made from it,

exactly. A good circuit diagram will include extra information required to understand the

circuit operation, have descriptive net and connector labels, and include all of the parts on

the printed circuit board. [Vladimir Gurevich, 2008]

Naveed Sherwani , (2001) said that the design process involves moving from the

specification at the start, to a plan that contains all the information needed to be

physically constructed at the end, this normally happens by passing through a number of

stages, although in very simple circuit it may be done in a single step. The process

normally begins with the conversion of the specification into a block diagram of the

various functions that the circuit must perform, at this stage the contents of each block are

not considered, only what each block must do, this is sometimes referred to a design. This

approach allows the possibly very complicated task to be broken into smaller tasks.

Dr Steve C. Hsiung, (2007) said in his journal that each block must considered in more

detail, but with a lot more focus on the details of the electrical functions to be provided.

At this or later stages it is common to require a large amount of research or mathematical

modeling into what is and is not feasible to achieve.

http://en.wikipedia.org/wiki/Mathematical_modeling
http://en.wikipedia.org/wiki/Mathematical_modeling
http://en.wikipedia.org/wiki/Mathematical_modeling

18

The results of this research may be fed back into earlier stages of the design process, for

example if it turns out one of the blocks cannot be designed within the parameters set for

it, it may be necessary to alter other blocks instead. At this point it is also common to start

considering both how to demonstrate that the design does meet the specifications, and

how it is to be tested.

Finally the individual circuit components are chosen to carry out each function in the

overall design. At this stage the physical layout and electrical connections of each

component are also decided and this layout commonly for the production of a printed

circuit board or Integrated circuit. This stage is typically extremely time consuming

because of the developing a circuit. A practical constraint on the design at this stage is

that of standardization, while a certain value of component may be calculated for use in

some location in a circuit. If that value cannot be purchased from a supplier, then the

problem has still not been solved.

 Figure 2.2 : Schematic circuit [www.labcenter.com]

http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board

19

2.6 Control System Element.

According to Wilson (1998), a control system is a device or set of devices to manage,

command, direct or regulate the behavior of other devices or systems. A control system

consists of subsystem and processes assembled for the purpose of controlling the outputs

of the processes. [Norman, 2003]. The control system will provide an appropriate output

or response for the given input or stimulus.

 Input; Stimulus Output; response

 Desired response Actual response

 Figure 2.3 : Simplified description of a control system (Norman,2003)

The input transducer converts the form of the input to the form used by the controller.

Output transducer or sensor measures the output response and convert it into the form

used by the controller. For example, if the controller uses electrical signals to operate the

valves of a temperature control system, the input position and the output temperature are

converted to electrical signals. The input position can be converted to a voltage by a

potentiometer, a variable resistor, and the output temperature can be converted to a

voltage by a thermistor, a device whose electrical resistance changes with temperature.

The first summing junction algebrically adds the signal from the input to the signal from

the output, which arrives via the feedback path, the return path from the output to the

summing junction. The output signal is substrate from the input signal. The result is

generally called the actuating signal. However, in system where both the input and output

transducer have unity gain, the actuating signal's value is equal to the actual difference

between the input and the output. Under this condition, the actuating signal is called the

error. [Norman,2003].

Control

System

20

The closed-loop system compensates for the disturbance by measuring the output

response, feeding that measurement back through a feedback path, and comparing that

response to the input at the summing junction. If there is any difference between the two

responses, the system drives the plant, via the actuating signal, to make correction. If

there is no difference, the system does not drive the plant, since the plant's response is

already the desired response. [Wilson, 1998].

As known, closed-loop system has the advantage of greater accuracy compare to open-

loop system. Transient response and steady-state error can be controlled more

conveniently and with greater flexibility in closed-loop system, often by a simple

adjustment of gain in the loop and sometimes by redesigning the controller. Based on

Norman (2003), the redesign means compensating the system and to the resulting

hardware as a compensator. However, closed-loop systems are more complex and

expensive than open-loop system.

 Figure 2.4 : Closed loop control system (Norman,2003)

21

2.6.1 PID Definition and Element.

A PID controller has been used in order to regulate particular closed loop systems. A

proportional–integral–derivative controller (PID controller) is a generic control loop

feedback mechanism (controller) widely used in industrial control systems. A PID is the

most commonly used feedback controller. A PID controller calculates an "error" value as

the difference between a measured process variable and a desired set point. The controller

attempts to minimize the error by adjusting the process control inputs. In the absence of

knowledge of the underlying process, a PID controller is the best controller. [Bennett,

Stuart 1993].

The PID controller calculation (algorithm) involves three separate parameters, and is

accordingly sometimes called three-term control: the proportional, the integral and

derivative values, denoted P, I, and D. The proportional value determines the reaction to

the current error, the integral value determines the reaction based on the sum of recent

errors, and the derivative value determines the reaction based on the rate at which the

error has been changing. [Ang, K.H, 2005]

Antonio Visioli (2006), said that a controller can be used to control any measurable

variable which can be affected by manipulating some other process variable. For

example, it can be used to control temperature, pressure, flow rate, chemical cornposition,

speed, or other variables. The PID control scheme is named after its three correcting

terms, whose sum constitutes the output.

1. Proportional - To handle the immediate error, the error is multiplied by a constant

Kp. Note that when the error is zero, a proportional controller's output is zero.

However, the proportional controller will not reach the set point if a non-zero

output is required to maintain the set point. For example, consider a controller that

is attempting to maintain the temperature in a room by controlling a heating

element with varying heat loss due to a changing outside temperature.

http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Controller_%28control_theory%29
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Process_variable
http://en.wikipedia.org/wiki/Setpoint_%28control_system%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative

22

The output to the heating element that will maintain the set point perfectly where

the outside temperature 20 degrees less than the room set point will cause the

room to be too warm if the outside temperature is warmer (and the room will be

too cold if the outside temperature is colder). This is called a "steady state error”.

To fix this an Integral component must be added to the controller.

2. Integral - To learn from the past, the error is integrated and multiplied by a

constant Kt. The integral term allows a controller to eliminate a steady state error

if the process requires a non-zero input to produce the desired set point. An

integral controller will react to the error by accumulating a value that is added to

the output value. While this will force the controller to approach the setpoint

quicker than a proportional controller alone and eliminate steady state error, it also

guarantees that the process will overshoot the set point since the integral value

will continue to be added to the output value.

3. Derivative - To anticipate the future, the first derivative of the error is multiplied

by a constant Kd. This can be used to reduce the magnitude of the overshoot,

produced by the integral component, but the controller will be a bit slower to

reach the set point initially.

The terms of controller as: P -Proportional, I - Integral, D - Derivative. These terms

describe three basic mathematical functions applied to the error signal , Verror =Vset -

Vsensor. This error represents the difference between where you want to go (Vset), and

where you're actually at (Vsensor). The controller performs the PID mathematic functions

and the error and applies the their sum to a process. Tuning a system means adjusting

three multipliers Kp, Ki and Kd adding in various amounts of these functions to get the

system that suitable for process requirement.

23

2.6.2 PID Application

Most controller today has their own element for accomplish specific task. For getting a

higher transient response in several task, a control system element is likely to be used. On

top of that in reaching a higher transient response, a PID controller has been used. Below

is several related task that used a PID controller in their project.

Suppose a water tank is used to supply water for use in several parts of a plant, and it is

necessary to keep the water level constant. A sensor would measure the height of water in

the tank, producing the measurement, and continuously feed this data to the controller.

The controller would have a set point of (for example) half full. The controller would

have its output (the action) connected to a valve controlling the water feed. The controller

would use the measurement of the level to calculate how to manipulate the control valve

to maintain the desired level.[M H Moradi, 2003]

Abu Bakar (2007) said in his experiments for controlling the heating of a tank. For simple

control, there are two temperature limit sensors (one low and one high) and then switch

the heater ON when the low temperature limit sensor turns on and then turn the heater off

when the temperature rises to the high temperature limit sensor. This is similar to most

home air conditioning and heating thermostats.

In contrast, the PID controller would receive as input the actual temperature and control a

valve that regulates the flow of gas to the heater. The PID controller automatically finds

the correct (constant) flow of gas to the heater that keeps the temperature steady at the set

point. Instead of the temperature bouncing back and forth between two points, the

temperature is held steady. If the set point is lowered, then the PID controller

automatically reduces the amount of gas flowing to the heater. If the set point is raised,

then the PID controller automatically increases the amount of gas following to the heater.

Likewise the PID controller would automatically compensate for hot, sunny days (when it

is hotter outside the heater) and for cold, cloudy days.[Michail Petrov, 2002].

24

According to the Aidan O‟ Dwyer (2009), in this diagram the valve could be controlling

the gas going to a heater, the chilling of a cooler, the pressure in a pipe, the flow through

a pipe, the level in a tank, or any other process control system. What the PID controller is

looking at is the difference (or "error") between the PV and the SP. It looks at the

absolute error and the rate of change of error. Absolute error means, is there a big

difference in the PV and SP or a little difference. Rate of change of error means, is the

difference between the PV or SP getting smaller or larger as time goes on.

 Figure 2.5 : The diagram of how is the PID controller works[Aidan O‟Dwyer, 2009]

When there is a "process upset", meaning, when the process variable OR the set point

quickly changes the PID controller has to quickly change the output to get the process

variable back equal to the set point. Once the PID controller has the process variable

equal to the set point, a good PID controller will not vary the output. If the valve (motor,

or other control element) are constantly changing, instead of maintaining a constant

value, this could cause more wear on the control element. So there are these two

contradictory goals. Fast response (fast change in output) when there is a "process upset",

but slow response (steady output) when the PV is close to the set point.

25

Note that the output often goes past (overshoots) the steady-state output to get the process

back to the set point. For example, a cobbler may normally have it's cooling valve open

34% to maintain zero degrees (after the cooler has been closed up and the temperature

settled down). If someone opens the cooler, walks in, walks around to find something,

then walks back out, and then closes the cooler door, the PID controller is freaking out

because the temperature may have raised 20 degrees. So it may crank the cooling valve

open to 50%,75% or even 100 percent. To quickly cool the cooler back down, slowly

closing the cooling valve back down to 34 percent by using this PID controller.

Figure 2.6 : Error speed as a function of reference speed for
 different Ki values with Kp = 0.5[Gourab Sen Gupta, 2005]

Gourab Sen Gupta, (2005) said that when keeping the value of Kp and Ki constant, and

for different values of Kd, it will increase the speed of the motor. From this project, it

showed that by adjusting the value of Kd, it will increased the speed of the motor.

26

 Figure 2.7 : Comparison of transient performance for
 different control algorithm[Gourab Sen Gupta, 2005]

Where Ki and Kd are integral and derivative constants. As stated earlier proportional part

Kp provides transient response. To remove steady state error integral controller were

introduced. Integral system slows down response of the system. So derivative part come

into play speed up response of system. Output from optical encoder is used to feed states

back and compared with reference signal to pass through the PID control.

[G.S. Hyalij, 2009].

It is the most widely used control algorithm. Generally PID controller gives satisfactory

response. The main function of the proportional, integral and derivative is to provide

adequate transient response, zero steady state error and improve closed loop stability and

speed of response.

From the past project, we can see the way the author used a PID in some application. This

can be done by set the value of Kp, Ki and Kd at certain value. This information will be

used in design the controller using PID in this project.

27

2.6.3 Proportional-Integral (PI) Speed Controller

Although the relevant literatures as discussed have more advanced controllers method,

the proportional-integral, PI control scheme is commonly regarded as one of the strongest

contender to succeed in industrial applications. In fact, this scheme is most popular in

implementation of driving the SRM (Switch Reluctance Motor) due to its simplest

controller strategy and it provides good performance. PI controllers are comprehensively

applied in various drives, where the speed control is desired. The reasons for this include

lower cost, good speed response, simplicity and easy of implementation, and ability to

achieve steady state error. Therefore, in this thesis, a speed controller based on the PI

control strategy is designed as a tool to implement a variable speed drive mechanism

which is essentially needed in speed performance analysis.

According to the Asri bin Din, (2008), the 60 kW SRM model is tested, which is

considered as in a medium power capacity. The rated external load is about 96 Nm and

the maximum speed can reached up to 6000 rpm. In practice, an oversize of the machine

and rated operating level are taken into consideration. Therefore, the analysis in this

thesis is analyzed at rated speed of 3600 rpm and below. In addition, the maximum load

to be tested is at its rated external load torque, which is 96 Nm.

In static and dynamic load simulation, the external load torque is divided into four types

of load which are according to the percentage of several rated external load torque. They

are divided into 25% (24 Nm), 50% (48 Nm), 75% (86 Nm) and 100% (96Nm). For static

external load torque testing, the fixed load is applied to the rotor shaft starting from the

motor at a stand still condition. Then, the applied load is still maintained throughout the

motor operation, up to the steady state level. The importance of this type of simulation is

easier to be understood if the particular condition relates to the application of the motor

presented.

28

Sharma (1996), in a study, briefly discussed the choosing of the optimum combination of

switching angels. The switching states are based on a set of fuzzy variables, which are

characterized by expressions and it is used to generate torque reference for optimum

performance. As an important element that potentially affects the speed response, the

effect under variations of switching angles is proposed to be analyzed in this thesis. The

evaluation is done in order to compare the three types of the switch-on and the switch-off

combination. The comparisons were observed in terms of the three phase-current

switching, the average of torque production shape and the speed response.

2.7 Controller in Embedded System

Embedded systems with control functionalities impose control over some variables

according to the changes in input variables. For an example, a one system with control

functionality contains both sensors and actuators. Sensors are connected to the input port

for capturing the changes in environmental variable or measuring variable. The actuators

connected to the output port are controlled to the changes in input variable to put an

impact on the controlling variable to bring the controlled variable to the specified range.

Y. S. E. Ali, (2003) said that the use of power electronics for the control of electric

machines offers not only better performance caused by precise control and fast response,

but also maintenance, and ease of implementation. In power electronic there have been

great advances in controller based control systems due to the flexibility and versatility.

This is because the entire control algorithm is implemented in the software.

For this project, a microcontroller has been used for controlling a DC motor. With the

variety of the microcontroller, it can be programmed due to the specific task that is need

by the user.

29

2.7.1 Microcontroller Definition.

Microcontrollers are found in almost all "smart" electronic devices. From microwaves to

automotive braking systems, they are around us doing jobs that make our lives more

convenient and safer. Microcontrollers are essentially small computers. Unlike your

desktop computer, microcontrollers interact with other machines rather than humans. A

microcontroller might be used to measure the temperature of your toast at breakfast and

when the temperature reaches a predetermined measure, the toaster could be turned off. A

microcontroller could also be used to count the number of customers entering the ball

park through a turnstile thereby keeping track of ticket sales. The uses for these small

versatile devices are diverse. Perhaps you can imagine a microcontroller application that

will improve a product or decrease the time required to complete a process.

A microcontroller is a small computer on a single integrated circuit containing a

processor core, memory, and programmable input/output peripherals. Microcontrollers

provide low-cost computing and automated decision-making capabilities to numerous

machines, products, and processes. Commonly, microcontrollers are embedded directly

into automated machines/products and neither require nor permit user interaction.[I. Scott

Mackenzie, 2007]

According to the Giovino Bill (2003), a microcontroller can be considered a self-

contained system with a processor, memory and peripherals and can be used as an

embedded system. The majority of microcontrollers in use today are embedded in other

machinery, such as automobiles, telephones, appliances, and peripherals for computer

systems.

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Embedded_system

30

2.7.2 Microcontroller Application.

Some microcontrollers may use four-bit words and operate at clock rate frequencies as

low as 4 kHz, for low power consumption (milliwatts or microwatts). They will generally

have the ability to retain functionality while waiting for an event such as a button press or

other interrupt; power consumption while sleeping may be just nano watts, making many

of them well suited for long lasting battery applications. Other microcontrollers may

serve performance-critical roles, where they may need to act more like a digital signal

processor (DSP), with higher clock speeds and power consumption.[Shibu KV,2009]

Dr. Steve C. Hsiung, (2007) said in his article that the selected design is to have multiple

slave processors that everyone is in the same format. This design is to modularize the

processor environment that has a single master which takes the control commands from a

user and passes the necessary control functions to an appropriate slave to perform the

operations. With this design concept, there will be virtually no limit on the number of

slaves in the system.

From the Dr Steve C. Hsiung project, we can see that the processor will control

commands from a user and passes that command to the controller. This will help in make

the communication become an easier.

The limitations in the previous design on a single CPU approach are automatically

resolved. Certainly, this approach requires a well planned software protocol design, and

the hardware requirement becomes a fixed module that is less complex (Philips, 1997),

and thus the following section on hardware, software designs, and their implementation

as a proof of concept of multiple processors in multiple DC motors control applications in

an applied research on the use of multiple PIC 16F84As in a system design is convinced,

low cost, and efficient.

http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Digital_signal_processor
http://en.wikipedia.org/wiki/Digital_signal_processor
http://en.wikipedia.org/wiki/Digital_signal_processor

31

The 68HClIE9 microcontroller implements the control algorithm by conditioning the

speed and current signals and performs the speed regulation according to speed reference.

The software includes a routine to read the motor current and sends emergency shutdown

signal to protect the DC motor from over current, also this signal can be activated

manually by inserting a designated character by the keypad, which causes a software

interrupt and executes the emergency shutdown routine.[Y. S. E. Ali, 2003].

Nicolai and Castagnet (1993), have shown in their paper how a microcontroller can be

used for speed control. The operation of the system can be summarized as the drive form

a rectified voltage, it consists of chopper driven by a PWM signal generated from a

microcontroller unit (MCU). The motor voltage control is achieved by measuring the

rectified mains voltage with the analog to digital converter present on the microcontroller

and adjusting the PWM signal duty cycle accordingly.

 Figure 2.8 : microcontroller [www.microchip.com]

Another system that uses a microcontroller is reported in the work of Khoel and Hadidi

(1996) said that a brief description of the system is as follows. The microprocessor

computes the actual speed of the motor by sensing the terminal voltage and the current,

and then compares the actual speed of the motor with the reference speed and generates a

suitable control signal which is fed into the triggering unit. This unit drives a H-bridge

Power MOSFET amplifier, which in turn supplies a PWM voltage to the DC motor.

32

2.8 Method for Controlling DC Motor

Electric motors are frequently used as the final control element in positional or speed

control system. Motors can be classified into two main categories which is DC motor and

ac motor. Most motors used in modern control systems is a DC motor. In the

conventional DC motor, coils of wire are mounted in the slots on a cylinder of magnetic

material called the armature. The armature is mounted on bearings and is free to rotate. It

is mounted in the magnetic field produced by field poles. The direction of rotation of the

DC motor can be reversed by reversing either the armature current or the field current.

[W Bolton, 2003]

The basic principles involved in the action of a motor are :

1. A force is exerted on a conductor in a magnetic field when a current passes

through it. For a conductor of length, it is carrying a current I in a magnetic field

of flux density at right angles to the conductor.

2. When a conductor moves in a magnetic field then an e.m.f is induced across it.

The induced e.m.f is equal to the rate at which the magnetic flux swept through by

the conductor changes. The minus sign is because the e.m.f is in such a direction

as to oppose the change producing it. The direction of the induced e.m.f is in such

a direction as to produce a current which sets up magnetic fields which tend to

neutralize the change in magnetic flux linked by the coil.

DC brush motors are increasingly required for a broad range of applications including

robotics, portable electronics, sporting equipment, appliances, medical devices,

automotive applications, power tools and many others. The motor itself is a preferred

alternative because it is simple, reliable and low cost. Equally important, advanced, fully-

integrated "H-bridge" driver ICs are available to control the motor's direction, speed and

braking. H-bridge drivers has been used and discuss the advancement of the technology

from discrete solutions to highly-integrated ICs. It will compare linear motor speed

33

control with more advanced, higher-efficiency pulse-width modulation (PWM)

techniques.[Tony D. Givargis, 2001]

A parameter based representation of DC motor driving an inertial load, shows the angular

rate of the load, ώ(t), as the output and applied voltage, V(t), as the input. The magnetic

field is assumed to be constant. The nomenclature used are R is the resistance of the

circuit, L is the self-inductance of the armature, I is the current through the coil, J is the

moment of inertia of the load, Km is the armature constant, Kb is the back-emf constant,

Kf (ώ) is a linear approximation for viscous friction, τ is the torque seen at the shaft of the

motor, the differential equations that describe the behavior of this electromechanical

system. [Tanmay Pal, 2009].

DC motor design generates an oscillating current in a wound rotor, or armature, with a

split ring commutator, and either a wound or permanent magnet stator. A rotor consists of

one or more coils of wire wound around a core on a shaft. An electrical power source is

connected to the rotor coil through the commutator and its brushes, causing current to

flow in it, producing electromagnetism. The commutator causes the current in the coils to

be switched as the rotor turns, keeping the magnetic poles of the rotor from ever fully

aligning with the magnetic poles of the stator field, so that the rotor never stops but rather

keeps rotating indefinitely.[John Catsoulis, O'Reilly, May 2005]

The universal motor is a low-cost solution with limited performance. It is used widely in

the consumer-products industry, especially for power tools and home appliances such as

washers, mixers, vacuum cleaners, etc. This type of motor is called a “universal” motor

because it can run on either AC or DC power. [Huangsheng Xu , 2007]

http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Tony%20D.%20Givargis
http://en.wikipedia.org/wiki/Armature_%28electrical_engineering%29
http://en.wikipedia.org/wiki/Commutator_%28electric%29

34

 Figure 2.9 : Brush DC Motor (www.cytron.com.my)

Alexander G. Mikerov , 2009 said that the torque motors are assumed to be incorporated in

any controlled plant or machine without any gear or other mechanical transmission. It

delete backlashes, resiliencies, kinematics errors and other mechanical problems which

reduce a drive mechanical resonance frequencies, aggravate the problem of stability and

as a result reduce the control drive accuracy and bandwidth.

2.8.1 Controlling Using Pulse Width Modulator

According to the Michael Barr, (2001), pulse width modulation (PWM) is a powerful

technique for controlling analog circuits with a processor's digital outputs. PWM is

employed in a wide variety of applications, ranging from measurement and

communications to power control and conversion. A constant PWM signal varying from

50% to 90% is applied from the microcontroller, amplified by Interfacing circuit and

driving the motor to speeds 30 Hz to 100 Hz. [Tanmay Pal, 2009]

The frequency of the PWM signal that drives the motor should be high enough so that a

minimal amount of current ripple is induced in the windings of the DC motor. The

amount of current ripple can be derived from the PWM frequency, motor winding

resistance, and motor inductance. More importantly, the PWM frequency is chosen to be

just outside the audible frequency range. Depending on how much hearing loss you've

suffered, a PWM frequency in the 15 kHz - 20 kHz range will be fine. There's no need to

set the PWM frequency any higher; this will only increase the switching losses in the

motor driver IC. [Stephen Bowling, 2000]

When designing a PWM unit using the MCU two factors should be considered PWM

duty cycle, and PWM frequency. The PWM frequency, in this work, is kept constant

factor. It directly affects the DC motor stability and sensibility to changes in its input

voltage. However the frequency can be changed manually within ripper and lower limits

to make the system flexible and able 10 operate motors with different ratings and speeds.

35

According to the Y. S. E. Ali, (2003), the conventional digital proportion MCU technique

and the pulse width modulation (PWM) technique are adopted in DC motor control

system. An optical encoder was used to measure the speed of the motor. The output of the

encoder is a stream of pulses with variable' frequency according to the speed of the

motor.

In a nutshell, PWM is a way of digitally encoding analog signal levels. Through the use

of high-resolution counters, the duty cycle of a square wave is modulated to encode a

specific analog signal level. The PWM signal is still digital because, at any given instant

of time, the full DC supply is either fully on or fully off. The voltage or current source is

supplied to the analog load by means of a repeating series of on and off pulses. The on-

time is the time during which the DC supply is applied to the load, and the off-time is the

period during which that supplies is switched off. Given a sufficient bandwidth, any

analog value can be encoded with PWM. [Micheal Barr, 2001]

To start PWM operation, the suggests software should:

 Set the period in the on-chip timer/counter that provides the modulating square wave

 Set the on-time in the PWM control register

 Set the direction of the PWM output, which is one of the general-purpose I/O pins

 Start the timer and enable the PWM controller

S3C2410 PWM Timers have a double buffering function, enabling the reload value

changed for the next timer operation without stopping the current timer operation. So,

although the new timer value is set, a current timer operation is completed successfully.

[Helei Wu, 2008].The output is based on movement in a series of discrete steps, but it

stimulates true modulation quite well. The output of the controller is a series of pulses of

varying length that drive the controlled device. The output signal of the control loop

defines the length of the pulses rather than the position of the controlled device with true

modulating control.

http://www.netrino.com/Embedded-Systems/How-To/Counters.php

36

Robert Mcdowall ,(2004) state four types of pulse-width modulation (PWM) are possible:

1. The pulse center may be fixed in the center of the time window and both edges of the

pulse moved to compress or expand the width.

2. The lead edge can be held at the lead edge of the window and the tail edge modulated.

3. The tail edge can be fixed and the lead edge modulated.

4. The pulse repetition frequency can be varied by the signal, and the pulse width can be

constant. However, this method has a more-restricted range of average output than the

other three.

One of the advantages of PWM is that the signal remains digital all the way from the

processor to the controlled system, no digital-to-analog conversion is necessary. By

keeping the signal digital, noise effects are minimized. Noise can only affect a digital

signal if it is strong enough to change a logic-1 to a logic-0, or vice versa.

Increased noise immunity is yet another benefit of choosing PWM over analog control,

and is the principal reason PWM is sometimes used for communication. Switching from

an analog signal to PWM can increase the length of a communications channel

dramatically. At the receiving end, a suitable RC (resistor-capacitor) or LC (inductor-

capacitor) network can remove the modulating high frequency square wave and return the

signal to analog form.[Robert Mcdowall, 2004].

 Figure 2.10 : PWM signals of varying duty cycles [Michael Barr, 2001]

37

Qiang Li, (2004) said that the other five PWM methods, H_PWM_L_PWM is that the

both devices in conduction are chopped at switching frequency, it has almost twice

switching loss than the other five PWM methods. The inverter output voltage varies

between d U and d −U in H_PWM_L_PWM， therefore H_PWM_L_PWM is the

bipolar control. However the inverter output voltage varies between d U and zero in the

other five PWM methods, therefore the other five PWM methods are the unipolar control.

The switching frequency current pulsation in H_PWM_L_PWM is almost twice than in

the other five PWM methods, the permanent motor in H_PWM_L_PWM has more

harmonic loss. So H_PWM_L_PWM is the lowest in efficiency.

 Fig 2.11 The logic trigger signal of each Fig 2.12 The logic trigger signal of each
 device in ON_PWM[Qiang Li, 2004] device in PWM_ ON [Qiang Li, 2004]

 Fig 2.13 The logic trigger signal of each Fig 2.14 The logic trigger signal of each
 device in H_PWM_L_ON device in H_ON_L_ PWM
 [Qiang Li, 2004] [Qiang Li, 2004]

 Fig 2.15 The logic trigger signal of each Fig 2.16 The logic trigger signal of each
 device in H_PWM_L_PWM device in PWM_ON_PWM
 [Qiang Li, 2004] [Qiang Li, 2004]

38

Because H_PWM_L_PWM has more switching loss, the demand to the inverter heat

dissipation performance is very high. The switching loss of each device is different in

H_PWM_L_ON and H_ON_L_PWM and temperature is not uniform in the heat sink

surface. According to the inverter heat dissipation performance, PWM_ON, ON_PWM

and PWM_ON_PWM have higher reliability than H_PWM_L_ON. It will cause the

H_ON_L_PWM has the same device logic trigger signal with ON_PWM from zero to

600 and with the PWM_ON from 600 to 1200 in the 1200 conduction mode. Therefore

the torque pulsation in H_PWM_L_ON and H_ON_L_PWM is larger than in PWM_ON

and ON_PWM.

2.8.2 Controlling Using H-Bridge

The motor control circuit that is most commonly used to control the direction of a DC

motor is called the "H-Bridge". By closing the switches from each other, the motor

direction can be controlled. The H-Bridge allows a single power supply to be used to

control the direction a DC motor turn in. It's called that because it looks like the capital

letter 'H' when viewed on a discrete schematic. The great ability of an H-bridge circuit is

that the motor can be driven forward or backward at any speed, optionally using a

completely independent power source. [Jim brown, 1998]

Austin Hughes (1997) said that a H-bridge design can be really simple for prototyping or

really extravagant for added protection and isolation. An H-bridge can be implemented

with various kinds of components (common bipolar transistors, FET transistors,

MOSFET transistors, power MOSFETs,) The H-Bridge has two main concerns that

should is to be aware. The first is the motor current must always pass through two

switches. When physical switches are used, this is not a problem as there will be

situations when electronics switches are used with low voltage batteries where there may

be a sufficient amount of voltage for the motors to run properly.

http://www.robotroom.com/BipolarHBridge.html
http://www.robotroom.com/Jet.html#MOTORDRIVER

39

The second concern is quite suitable and is one that one must be aware at all the time. The

motors will turn when one switch on either side of the H-Bridge is closed. If both

switches on the same side of the H-Bridge are closed, it will be a problem, by closing the

two switches on the same side of the H-Bridge the short circuit will happened. This DC

motors up to about 100 watts or 5 amps or 40 volts, whichever comes first. Using bigger

parts could make it more powerful. Using a real H-bridge IC makes sense for this size of

motor. Operation is simple. Motor power is required, 6 to 40 volts DC. There are two

logic level compatible inputs, A and B, and two outputs, A and B. If input A is brought

high, output A goes high and output B goes low. [Tim A. Haskew, 1999].

The motor goes in one direction. If input B is driven, the opposite happens and the motor

runs in the opposite direction. If both inputs are low, the motor is not driven and can

freely "coast", and the circuit consumes no power. If both inputs are brought high, the

motor is shorted and braking occurs. This is a special feature of H-bridge designs.[Bob

Jordan, 2002]

Jim brown, 1998 also state in his journal, to power the motor, turn on two switches that

are diagonally opposed. In the picture below, imagine that the high side left and low side

right switches are turned on. The current flow is shown in green. The current flows and

the motor begins to turn in a "positive" direction, while the the vice versa of switches turn

ON, current flows the other direction through the motor and the motor turns in the

opposite direction.

40

 Figure 2.17 : H- bridge connection Figure 2.18 : Current through H-Bridge

 [www.mcmanis.com] [www.mcmanis.com]

One of the applications of the H-bridge also apply in design a single phased multilevel of

two cell multilevel. The DC-Link voltages control problem is not a trivial issue in the

cascaded multilevel topology. As in other multilevel converters, the voltages control task

can be approached through modulation or as a part of the system controller. When the

modulation is used to control the output voltages, the redundant output states of the

converter are used. This fact is used to regulate the outputs voltages to the same reference

value. When the control approach is used, a specific control has to be designed to carry

out the voltages control task. [S. Vazquez, 2008]

To analyze the controller design stages, the power exchange between the cells of a

cascade converter and the grid. The cells have been replaced by voltage sources with

values equal to the instantaneous voltages modulated by the cells, Vm1 and Vm2

respectively. The active and reactive power consumed or injected by each cell depend on

the shift angle between the current is, and the modulated voltage in the cell (Vm1). This

can be analyzed using the diagram of the cascade power converter

41

 Fig. 2.19 Single-phase two cell multilevel cascade H-Bridge converter[.[S. Vazquez, 2008]

H-bridge also are widely used in boost converter. From this journal, we can see the

application of the H-bridge in boost the current. This digital controller is designed to

ensure load voltage regulation as well as to give robust performance with step loads and

source rejection. This compensator is designed in the direct digital domain according to a

pole placement approach that uses sensitivity function shaping in order to ensure closed-

loop converter system stability as well as robust performance against converter parameter

uncertainties.

According to the Veerachary Mummadi (2010), a generalized state-space averaging

(GSSA) is one of the well established techniques employed for modeling soft-switching

PWM DC converters. However, this model formulation methodology assumes variables

associated with the resonant tank (Lr, Cr) as input control variables, rather than as state

variables. In view of this, the resulting model accuracy is low. To improve the model

accuracy, a larger number of harmonics needs to be included in the GSSA model.

42

The advantages of these techniques are the internal structure of the converter need not be

known in advance as long as one can obtain a satisfactory statistical distribution of the

data. Secondly, in some cases this approach is very effective at generating a reduced

order model to represent a complex subsystem of the distributed power electronic system,

and finally this method is particularly useful where there are many modes of operation

and difficulty in finding the duty ratio of each mode operation.

 Fig 2.20. Circuit diagram of H-bridge soft-switching boost converter.[Veerachary Mummadi 2010]

43

2.9 Conclusion

Through this chapter, three important elements were separated in order to achieve the

objective for this project. An element is design an embedded system, control system

element and method for controlling a DC motor with application of microcontroller. For

designing an embedded system, information from previous project and journal has been

noted to look on how to develop an embedded system. From that journal, all design and

the way it designs has been noted in order to get some idea for design the embedded

system in chapter 4.

For control system element and method for controlling a DC motor, an experiment

conducted by the author in their journal has been noted. From the experiment,

information on handling the project and how to take a result has been discussed. The

information helps in identifying an appropriate method and design and handling the

project.

Finally, all information from this chapter has bringing it on to the next chapter which is

chapter 3 that can discussed the methodology for development of this project.

44

CHAPTER 3
METHODOLOGY

3.0 Introduction

The methodology will discuss the method for design and development of this project.

This method includes the flow chart process of the project and the flow chart of

embedded system for controlling a DC motor using microcontroller. Base on the

understanding research about embedded system implementation, the flow chart of the

process will be created. How to make the embedded system is the main of the flow chart

designated. Where the method to be done for the embedded system functionality with the

criteria based on the objective and scopes of the project. The flow chart will cover the

element in designing an embedded system for controlling a DC motor.

For the controller of DC motor, a microcontroller is used with addition of a control

system element which is PID. This PID algorithm will compensate the DC motor to

running at higher accuracy and less error. This PID is build from three term which is

P(Proportional), I(Integral) and D(Derivatives). Each component has their own capability

for controlling a DC motor. Kp can be used for increase the transient response of DC

motor. We can set some values of Kp until get a an optimum system response. For the Ki,

it were used for overcome the steady state error. Lastly, Kd is used to get a better

response in achieving a set point of the controller by entering a several value. This

chapter also will described

45

3.1 Flow Chart For PSM

 Figure 3.1 Flow Chart for PSM

Selection of title
for PSM 1

Get Title “Design And Development Of An
Embedded Control System For Controlling A DC

Motor Using Microcontroller”

Proposal Creation

Satisfy
No

Collecting Information

Related JournalReference Book Internet

Make Summary
On Related

Journal

1) DC Servo motor
application

Author : Stephen
Bowling

3) Design And
Development of An

embedded DC motor
controller using PID

algorithm
Author : Omar Jones

2) DC Servo motor
PID Control in Mobile

Robot With
Embedded DSP

Author : Hongfu Zhou

4) Integrated
Environment For

Embedded Control
System Design
Author : Roman

Bartosinski

5) The Use Of PIC
Microcontrollers In
Multiple DC Motor

Control Applications
Author : Dr. Steve C.

Hsiung

Literature Review

Satisfy

NO

Yes

Methodology

Design And
Development

Circuit Design Using
Proteus Software

Programming Design
Using C++ and MPLAB

Satisfy

Design a PCB Layout
Using ARES

Satisfy

Fabricate

Etching Process Drilling ProcessAttach the PCB Layout to
the PCB board

Soldering Process Testing

Satisfy

No

No

No

Finish

Yes

Yes

Yes

Yes

46

3.2 Design and Development

For design and development of this project, it consist two stages which is the design of

the hardware and programming section. All stages have been discussed below.

3.2.1 Hardware Development

 Figure 3.2 Flow Chart for Hardware Development

For designing a circuit, one software has been used. This software consist a component

for designing a circuit and to convert the circuit into PCB layout. For converting a

schematic diagram into PCB layout, an element from the software was used. This element

will convert the schematic diagram into PCB layout by route it due to the power and

signal. We can set the value of Trace style, Neck style and Via style due to the design that

we want.

Design And
Development

Circuit Design Using
Proteus Software

Satisfy

Design a PCB Layout
Using ARES

Satisfy

Fabricate

Etching Process Drilling ProcessAttach the PCB Layout to
the PCB board

Soldering Process

No

No

Yes

Yes

47

After this PCB layout was finished, hardware for an embedded system can be developed

by attach the PCB layout into the PCB board. Consequently, we will do an etching

process to remove the cuprum that we didn’t want for that circuit. Next, do a drilling

process on that circuit due to leg of the component. After that, soldering process were

implemented for each leg of the component. When hardware was finished, this project

was continued developing by a programming design.

3.2.2 Programming Section

 Figure 3.3 Flow Chart for Programming section

In programming design, assembly language were used such as C language. To create this

language, software called MPLAB were used. A MPLAB consist a compiler, and

debugging for the program created. All programming language, the value, control system

element and the controller also subjected through this programming. We can set the value

of number distance, velocity, acceleration and torque through this programming.

Design And
Development

Programming Design
Using C and MPLAB

48

3.2.3 PID for Control system

For a PID control system, elements of PID such as kp, ki and kd has been adjusted

through this programming. The PID gain constants, kp, ki, and kd, are stored as 16-bit

values. The proportional term of the PID algorithm provides a system response that is a

function of the immediate position error. The integral term of the PID algorithm

accumulates successive position errors, calculated during each servo loop iteration and

improves the low frequency open-loop gain of the servo system. The effect of the integral

term is to reduce small steady state position errors. The differential term of the PID

algorithm is a function of the measured motor velocity and improves the high frequency

closed-loop response of the system.

For this project, a closed loop system has been used. A closed loop system consist an

input, actuator, feedback and output. This feedback element will compensate the error and

giving back to the controller by adjusting some value to make the system become stable.

 Input Output

 Figure 3.4 Closed loop control system

Transfer
Function

Feedback

+

49

3.2.3.1 Proportional Controller

Proportional controller is used for increase the transient response of the system. This

proportional will make the system reach some value faster. Look, if one motor want to

travel at some distance, the system will react faster if we apply the proportional

controller. When the current position of the motor is still far away from the target

position, the more power will be applied to drive the motor towards the target position to

quickly reach the position. When the motor is getting nearer to the target position, the

power must be reduced to slow it down and the motor will stop. If the motor position is

overshoot, the negative power must be applied to bring the motor back to the target

position. This is called proportional controller because the power apply is proportional to

the error of the system.

 Figure 3.5 Block diagram of proportional controller.[Kong Wai Weng, 2010]

From the block diagram above, the PWM duty cycle (output) is the result of multiplying

the error with a constant, Kp. The value of Kp needs to be chosen carefully in order to get

the optimum system response. Lower values for Kp will tends to give smoother but

slower responses.

 Figure 3.6 System response for proportional controller with low Kp.[Kong Wai Weng, 2010]

50

Higher values of Kp will yield much quicker response but may cause overshoot, where

the output oscillates before settling time.

 Figure 3.7 System response for proportional controller with high Kp.[Kong Wai Weng, 2010]

Excessively high values of Kp may even throw the control loop into an unstable state

where the output oscillates without ever settling at the set point.

 Figure 3.8 System response for proportional controller with excessively high Kp.[Kong Wai Weng, 2010]

51

3.2.3.2 Integral Controller

From the graph of the P controller, the actual position of the motor while rotating will not

reach the target position. This is because, when the current position is near to the target

position, the error becomes very small and the computed PWM duty cycle is too small for

the motor to overcome the friction and gravity. The small error that exists when the

system has settled down is called the steady state error.

To overcome this problem of steady state error for the P controller, I controller is being

introduced. Due to the name, the integral is merely an accumulated error signals

encountered since startup. This total is multiplied by a constant, Ki and is added into the

loop output. Unlike the P controller, the I controller is rarely used alone, but mostly in

combination with the P or PD controller. When the system has already settled down with

a small steady state error, the integral still continues to accumulate until the CV(cycle for

PWM) is large enough to bring the PV(Initial Position) in line with SP (Target Position).

Just like the P controller, the value of Ki needs to be chosen carefully. Too low the value,

the steady state error is corrected very slowly while too high the value, the system

becomes unstable and oscillates. Because of the integral can grow quite large when the

set point cannot be reached, some application is needed to stop accumulating the error

when the CV (cycle for PWM) is saturated.

Figure 3.9 System response for PI controller with no steady state error.[Kong Wai Weng, 2010]

52

3.2.3.3 Derivative Controller

The derivative of any variable describes how that variable changes over time. In a PID

controller, the derivatives is the rate of change of the error. Error is the current error value

and Last Error is the error value for the previous iteration. Negative values of derivative

indicate an improvement (reduction) in the error signal. For example, if the last error was

20 and the current error was 10, the derivative will be -10. When these negative values

are multiplied with a constant, Kd, and are added to the output of the loop, it can slow

down the system when approaching the target. The equations for the PD controller are as

follow :

Last Error = Error

Error = Set Point - Process Variable

Derivative = Error – Last Error

Control variable = (Kp * Error) + (Kd * Derivative)

The effect of D controller allows the system to have a higher value of Kp and Ki without

overshooting and give a better response time to set point changes. However, too high the

value of Kd will also have a negative effect which is the noise exist in the feedback loop.

 Figure 3.10 System response for PD controller.[Kong Wai Weng, 2010

53

3.2.3.4 PID Controller

By joining the P, I, and D controller, it will giving an advantages to the system. The P

controller is used for fast system response, I controller to correct steady state error and D

controller to dampen the system and reduce overshoot.

 Figure 3.11 System response for PID controller.[Kong Wai Weng, 2010]

From the block diagram of PID controller, the output of the loop is merely the sum of

output from P, I and D controller. The equation for the PID loop are illustrated below :

 Last Error = Error

 Error = Set Point – Process Variable

 Integral = Integral + Error

 Derivative = Error – Last Error

 Control Variable = (Kp * Error) + (Ki * Integral) + (Kd * Derivative)

PID controller is a simple yet effective control system widely used in industrial.

However, to implement the PID controller is simple but not the tuning. The process of

tuning the PID parameter (Kp, Ki and Kd) is a continuous trial and error process. There is

no exact way to calculate the value of parameters unless the whole system is

mathematically modeled and simulated.

54

3.3 Testing

 Figure 3.12 Flow Chart for testing

When hardware component was accomplish, we can inspect the circuit by doing a bypass

method to see the connection for each component by using a Multimeter. This called

conductive test. A multimeter used to measure voltage, current and resistant. In digital

multimeter, thus to measure DC voltage, the proper voltage range is set. The black probe

is connected to the circuit's negative connection (Vss= because it related to the ground

where is 0 voltage). Then the voltage at two different points in the circuit is measured.

When measuring the current through the system, the connection has to be broken and set

the DMM to 0 to 20 miliamperes.

 Other than that, we can used hyper terminal for checking the condition of the circuit by

set at different value. After all related component are done for checking, a program

developed by MPLAB were download into PIC16F877A. A programming that was

developed consist a value of speed and position for controlling a DC motor. If the

compiler works successfully, then the testing will proceed. Otherwise, the program should

be reprogrammed for further reference.

For testing a position, a measurement distance must be done through a rotation of DC

motor. A set of gear was mounted to the DC motor and the diameter of gear was noted.

Amount of rotating a gear was set in the program. To get an accurate position of DC

motor, amount of rotating gear must be times to the diameter of gear to a distance of

rotation of DC motor.

Methodology

Design And
Development

Testing

55

3.4 Interface using USB UART

Serial communication is most popular interface between device and this applies to

microcontroller and computer. UART is one of those serial interfaces. Classically, most

serial interface from microcontroller to computer is done through serial port (DB9).

However, since computer serial port used RS232 protocol and microcontroller used TTL

UART, a level shifter is needed between these interfaces. Recently, serial port of

computer have been phase out, it have been replaced with USB. Most developer chooses

USB to serial converter to obtain virtual serial port. The level shifter is still necessary for

UART interface. This USB UART offer direct interface with microcontroller and it

provide low current 5V supply from USB port.

This development offer low cost, easy to use USB to UART converter to user.

It has been designed with capabilities and features of:

 Develop low cost USB to UART converter.

 Easy to use USB to UART converter.

 USB powered, no external source is required to use this converter.

 5V from USB port is available for user.

 Configurable for 5V UART interface.

 Easy to use 4 pin interface: Tx, Rx, Gnd and 5V.

 Easy to Plug and Play.

Figure 3.13 USB UART devices

56

3.5 Block Diagram

In this project, microcontroller will be used as the controller to control DC motor speed at

desired speed. The block diagram of the system is shown in Figure 3.1. It is a closed-loop

with real time control system.

3.5.1 Computation of error signal and PID compensation algorithm

Command

 Actual speed

 Feedback speed

 Figure 3.14 Block diagram of DC motor speed control system

The actual speed of DC motor will be measured by encoder and feedback to

microcontroller. In microcontroller, it will calculate the error between the desired speed

with the actual speed. The error will determine duty cycle of pulse-width- modulation

(PWM) in microcontroller. Then, the duty cycle will send to DC motor driver either

accelerate or decelerate DC motor to maintain it at desired speed.

 Microcontroller
16F877A

DC Motor
driver

IC

DC Motor
(Brush Motor)

Encoder

57

CHAPTER 4
DESIGN AND DEVELOPMENT

4.0 Background

This chapter focuses on the design and development of this project. This chapter also

will show and discuss the method on how to control a DC motor using a

microcontroller with some added value through a PID algorithm.

4.1 Flowchart

The flowchart in figure 4.1 showed that on how the design and development of an

embedded system for controlling a DC motor using a PID can be done. The flowchart

is continues from the previous chapter. On this chapter, the design was started with the

design of the schematic first. The schematic was designed using software called

Proteus. When schematic was completed, the design goes through to the programming

section.

In programming section, the program was build using software called MPLAB.

Through this software, all instruction and coding to controlled a motor was specified

together with a PID algorithm. Build this program on MPLAB to get the Hex file.

Attach the hex file to the PIC in schematic design and try simulating. If successful, the

DC motor will rotate due to the value that is inserted by the user.

58

To create a PCB layout, the schematic design in Proteus must be converted. This can

be done by using an Ares element in proteus. All components must be specified and

the path along component will automatically created by software. Get a PCB layout by

saving the work into bitmap image and do a hardware development. In the hardware

development, there are three stages that must be completed which is etching, drilling

and soldering process. After this process was done, the completed circuit can be

verified and testing.

Through a testing section, there several stage that must be done in completing this

project. First stage of testing is conductive test. This test allows the user to identify the

current path that is connected or vice versa. Secondly, testing should be done in

interface section. This project used a UART serial communication in order to interface

the project with the laptop. This UART contain a transmit (TX) and receive (RX) port

to make it able to send a signal between laptop and project. This serial communication

can be done using software called X-CTU. Through this software, it will display a

command and all value can be entered and will send to the project via UART. The

encoder of the motor will be triggered and the DC motor wills rotated due to the value

that are entered by the user.

59

The design and
development of an
embedded control

system for controlling a
dc motor using a
microcontroller

Schematic design Programming
section

PCB layout

Etching process Soldering
process Drillling process

Testing

MPLAB PICKIT 2

Conductive Test Interface test Program Build

Solve the
problem

Finish

 Figure 4.1 : Flow chart for design and development process

60

4.2 Schematic Design.

Schematic circuit is the combination of electronic component to perform a task. It is

widely used in electric and electronic field. For this project, the schematic circuit was

designed for controlling a DC motor. Some element must be added to make it able for

controlling a DC motor such as microcontroller, motor driver and interface element

such as UART and RS 232. Below is a step for design a schematic circuit:-

4.2.1 Procedure for Schematic Design

1. Open the Proteus Software.

2. A workspace will appear as follow.

1. Insert the library center.

2. Search component that are needed.

3. Pick that component and click OK.

1. Connect the component with a single

line as shown as the figure.

2. Make sure that line is connected by

look at colour of the line.

3. If the line showed a green colour, it is

connected, or vice versa.

Proteus
Workspace

Component
search toolbar

Connected line

61

After all components were attached, the schematic design was successfully completed.

The schematic design as shown below:-

 Figure 4.2 : schematic design for controlling a DC motor

1. Some component needs a supply to

activate.

2. Click right panel of the mouse, and

find for a terminal.

3. All related input, output and ground

available here.

Place terminal

62

4.3 PCB Layout.

Proteus PCB design combines the ISIS schematic capture and ARES PCB layout

programs to provide a powerful, integrated and easy to use suite of tools for

professional PCB Design. All Proteus PCB design products include an integrated

shape based auto router and a basic SPICE simulation capability as standard. For this

project, the schematic circuit that already done in Proteus were converted into a PCB

layout using an element in Proteus which is ARES. This element will create a layout

and path between the electronic components.

4.3.1 Procedure for PCB Layout Design

1. Click ARES icon on the right top

of the Proteus software.

1. A wokspace ARES will appear as

shown when it is ready to be used.

2. Define a component that can be

used in PCB layout due to the

schematic design.

1. Place a component that is existing

in library.

2. Rearrange that component due to

style that we want.

3. Make sure all components were

placed in the workspace.

ARES icon

ARES
workspace

Place component

Component
define

http://www.labcenter.com/products/schematic.cfm
http://www.labcenter.com/products/pcblayout.cfm
http://www.labcenter.com/products/router.cfm
http://www.labcenter.com/products/router.cfm
http://www.labcenter.com/products/router.cfm
http://www.labcenter.com/products/basicsim.cfm

63

 Figure 4.3 : PCB layout for controlling a DC motor

1. First, set the Power style.

2. Change the value of power style

due to the trace, neck and via

style to 40.

3. Repeat with Signal Style and

same value with trace, neck and

via style.

1. After all value in design rule

manager was entered, click

“Begin Routing” to start route.

2. The component will automate

Routing.

Power and Signal
Style

Value of Trace, Neck And Via Style

Begin Routing

64

4.4 Hardware Development.

Hardware development is a process in which make the real part from the design

process. For this project, there are 2 stages in hardware development which is etching,

and soldering process. In making hardware, a design of PCB layout must be printed

first. Then, it will proceed to the next step. Below is a step in hardware development:-

4.4.1 Procedure for Etching Process

1. Print the PCB layout design using

glossy paper.

2. Make sure use a laser jet printer for

printing the PCB layout.

1. Attach the PCB layout to the PCB

board.

2. Iron the PCB layout paper until the

white paper change to the yellow

colour.

3. Remove the paper and black line will

appear on the PCB board.

1. When black lines appear, check each

of single black line if any line breaks.

2. If break line exist, reconnect the

break line using permanent maker.

3. PCB board ready for etching.

Printed
design of

PCB Layout

PCB layout was
attached to the

PCB board.

Black line

65

4.4.2 Procedure for Soldering Process

1. Place the PCB board in appropriate

container.

2. Use a ferric chloride acid to remove

the unwanted cuprum.

3. Let it immerse with ferric chloride

acid about half an hour.

1. When the unwanted cuprum was

successfully removed, take the PCB

board and let it dry.

2. Remove the black line with a little bit

sand paper.

3. The PCB board is ready for the next

process.

1. Place the entire component to the

PCB board.

2. Rematch the component due to the

PCB layout.

3. This action must be done to prevent

the misplace of the component pole.

PCB board in a
ferric chloride

acid

Finished PCB
board.

Place a
component to
the PCB board

66

4.4.3 Finished Hardware Setup.

 Figure 4.4 : Finished hardware setup

1. Soldering a component.

2. Check the continuity of the circuit

using a multimeter.

3. Circuit was successfully developed.

Soldering the
component.

5V circuit

Circuit for
controlling
DC motor

Main processor.
SK 40C.

USART
USB

67

4.5 Designing PID Controller.

PID controller is one of the most popular controllers in control system application that

has been used to increase the transient response and reduce or eliminate the steady

state error that exist on the system. This project need a PID controller because when a

DC motor rotate and want to reach some position, with proportional gain, it will

increase the transient response and make the DC motor reach some position faster.

While, integral gain will reduce the steady state error that exists on the system.

Derivative is rate of the error that must be adjusting to make the system more stable

and can perform any task with minimum or no error exists.

There several consideration must be taken is designing a PID controller. One of that is

root locus graphic that showed the value of the gain, dominant poles, poles, and zeros.

The root locus typically allows us to choose the proper loop gain to meet a transient

response specification. As the gain is varied, we move through different regions of

response. Setting the gain at a particular value yields the transient response dictated by

the poles at that point on the root locus. Thus, we are limited to those responses that

exist along the root locus.

Flexibility in the design of a desired transient response can be increased if we can

design for transient response that is not on the root locus. In designing a PID

controller, we must create a compensator to increase the transient response.

Compensators are not only used to improve the transient response of a system, but it

also used independently to improve the steady state error characteristic. When the

system gain was adjusted to meet the transient response specification, steady state

error performance deteriorated, since both the transient response and the static error

constant were related to the gain. The higher the gain, the smaller the steady state

error, but the larger percent overshoot.

68

A PID controller has their its transfer function. Its transfer function has two zeros plus

a pole at the origin. One zero and the pole at the origin can be designed as the ideal

integral compensator; the other zero can be designed as the ideal derivative

compensator.

 Figure 4.5 : The transfer function for a PID controller [Nise : 2004]

The design technique consists of the following steps:

1. Evaluate the performance of the uncompensated system to determine how much

improvement in transient response is required.

2. Design the PD controller to meet the transient response specifications. The design

includes the zero location and the loop gain.

 Figure 4.6 : PID controller [Nise : 2004]

3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Design the PI controller to yield the required steady-state error.

6. Determine the gains, K1, K2, and K3.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if simulation shows that requirements have not been met.

69

4.6 Programming Section

The main for this project is the way to control the DC motor using a microcontroller.

When say it about microcontroller, it is all about the programming. Programming will

let the user plan and specify some instruction to make the flow of the process going

smoothly and meet the requirement. Programming is a set of instruction in order to

define and do a related task due to the user. This project required a PID instruction to

control the rotation of the DC motor. We should define the value of Kp, Ki, and Kd in

order to control the DC motor and make it reach some position faster. Below is some

consideration should be taken in design a PID controller for a program and the way the

value of Kp, Ki, and Kd can control the rotation of DC motor. For this project, all

related programming was design and build up in software called MPLAB. This

software will let the user plan and specify the programming and will download the

programmed directly to the microcontroller.

4.6.1 Servo Calculation.

The entire servomotor function is implemented in the Interrupt Service Routine (ISR),

which must perform the following tasks:

• Get current motor position

• Get desired motor position

• Find the position error

• Determine new PWM duty cycle

Timer2, the time base for the CCP1 module, is used to generate interrupts that time the

servo calculations. This ensures that the PWM duty cycle changes are synchronous

with the PWM period. The frequency of the PWM signal that drives the motor should

be high enough so that a minimal amount of current ripple is induced in the windings

of the DC motor. The amount of current ripple can be derived from the PWM

frequency, motor winding resistance, and motor inductance. For this application, the

MCU is operated at 20 MHz and the PWM frequency is 19.53 kHz. At this PWM

frequency, a Timer2 interrupt would occur every 51 μs.

70

4.6.1.1 Position Updates

The first task to be done in the servo calculations is to determine exactly where the

motor is at the present moment. The function UpdPos () is called to get the new motor

position. As mentioned earlier, Timer0 and Timer1 are used to accumulate the up and

down pulses that are derived from the encoder output signals. The counters are never

cleared to avoid the possibility of losing count information. Instead, the values of the

Timer0 and Timer1 registers saved during the previous sample period are subtracted

from the present timer values, using two's complement signed arithmetic.

The use of two's-complement arithmetic, also accounts for a timer overflow that may

have occurred since the last read. The down pulse count, DnCount, is then subtracted

from UpCount, the up pulse count, which provides a signed result indicating the total

distance traveled during the sample period. This value also represents the measured

velocity of the motor in encoder counts per servo update period and is stored in the

variable mvelocity.

The measured position of the motor is stored in the variable mposition. The upper 24

bits of mposition holds the position of the motor in encoder counts. The lower 8 bits

of mposition represent fractional encoder counts. The value of mvelocity is added to

mposition to find the new position of the motor. With 24 bits, the absolute position of

the motor may be tracked through 33,554 shaft revolutions using a 500 CPR encoder.

4.6.1.2 Error Calculation

The CalcError() function subtracts the measured motor position, mposition, from the

commanded motor position in the variable position, to find the amount of position

error. The position error result is shifted to the right and the lower 8 bits that hold

fractional data are discarded. This leaves the 24-bit position error result, which is then

truncated to a 16-bit signed value for subsequent calculations.

71

4.6.1.3 Trajectory Updates.

The commanded motor position is stored in the variable position. When the value of

position is constant, the motor shaft will be held in a fixed position. The fractional bits

in position allow the motor to be operated at very low velocities. In order for the

servomotor to produce smooth motion, a motion profile algorithm was needed to

controls the speed and acceleration of the motor. The UpdTraj() function does this

job and its purpose is to determine the next required value for position, based on the

current motion profile parameters. For this application, a movement distance, velocity

limit, and acceleration value are required to execute the profile.

The motion profile is executed in two phases. The first half of the movement distance

is traveled in the first phase and the remaining distance in the second phase. The

stat.phase flag indicates the current phase of the motion segment. Half of the total

distance to be traveled is stored in the variable phase1dist. The final destination

position for the motor is stored in fposition. The velocity limit for the motion profile is

stored in the variable vlim. The present commanded velocity of the motor is stored in

velact. The acceleration value for the profile is stored in accel. A delay time for the

motion profile is stored in the variable dtime. This variable tells the motion profile

how many servo update periods to wait before executing the next motion segment.

Finally, the direction of motion is set by the stat.neg_move flag.

The motor can be run at any desired speed by adding a value to position at each servo

update is stored in the variable velact. Furthermore, the motor will accelerate (or

decelerate) at a constant rate, if we add or subtract a value to velact at each servo

update. The acceleration value for the profile is stored in the variable accel. The value

of accel is added to velact at each servo update. The value of velact is then added or

subtracted from the commanded motor position, position, depending on the state of the

stat.neg_move flag. The value of velact is also subtracted from phase1dist to keep

track of the distance traveled in the first half of the move. The motor stops accelerating

when velact is greater than vlim. After the velocity limit has been reached, flatcount is

incremented at each servo update period to maintain the number of servo updates for

which no acceleration occurred.

72

4.6.1.4 Duty Cycle Calculations.

The CalcPID() function implements a proportional – integral - derivative (PID)

compensator algorithm and uses the 16-bit error result to determine the next required

PWM duty cycle value. The PID gain constants kp, ki, and kd, are stored as 16-bit

values.

The proportional term of the PID algorithm provides a system response that is a

function of the immediate position error. The integral term of the PID algorithm

accumulates successive position errors, calculated during each servo loop iteration and

improves the low frequency open-loop gain of the servo system. The effect of the

integral term is to reduce small steady state position errors. The differential term of the

PID algorithm is a function of the measured motor velocity, mvelocity, and improves

the high frequency closed-loop response of the servo system.

After the three terms of the PID algorithm are summed, the 32-bit result stored in ypid

is saturated to 24 bits. The upper 16 bits of ypid are used to set the duty cycle, which

effectively divides the output of the PID algorithm by 256. Since the PWM module

has a 10-bit resolution, the value in the upper 16 bits of ypid is checked to see if it

exceeds +511 or -512. When this condition occurs, the PWM duty cycle is set to the

maximum positive or negative limit and the stat.saturated flag is set.

The integral accumulation in the PID algorithm is bypassed. This allows the

servomotor to smoothly resume motion when the saturation condition ends. If the

integral error and the motion profile continued to update, the servomotor would

produce sudden and erratic motions when recovering from a mechanical overload.

73

4.6.1.5 Procedure for Programming Section.

1. Create a new project.

2. Choose a device (PIC16F877A).

3. Choose a tool suite compiler

(HI TECH ANSI C COMPILER).

4. Finish create a new project.

1. Create a new editor.

2. Type a program to the new editor.

3. Save the program as file header .C

1. Compile the program.

2. See at the output where the program

was succesfull or not.

3. If successful, it will display as a

picture mentioned.

Create a
new project

Type a program to
the new editor.

Build
successfull

74

4.6.1.6 Command Interpreter.

The servomotor software has a command interpreter that allows you to enter motion

profile segment data, run motion profiles, and change the PID gain constants. After all

peripherals and data memory have been initialized, the main program loop polls the

USART interrupt flag to detect incoming ASCII data. Each incoming byte of data is

stored in inpbuf () as it is received. A comma or a is used to delimit each command

sequence and the DoCommand() function is called each time either of these characters

are received to determine the correct response. The DoCommand() function can tell

which portion of the command is in inpbuf () by comcount, which holds the number

of commas received since the last .

Table 4.1 : Command interpreter

Command Definition Range

1. X,seg#,data Sets the distance to be
travelled for the specified
motion profile segment.
Data is provided in
encoder counts relative to
the present position.

 0 ≤ seg# ≤ 23
-32768 ≤ data ≤ 32767

2. A,seg#,data

Sets the acceleration for
the specified motion
profile segment. Data is
provided in encoder
counts.
TSERVO2/65536.

0 ≤ seg# ≤ 23
1 ≤ data ≤ 32767

3. V,seg#,data

Sets the velocity limit for
the specified motion
profile
segment. Data is provided
in encoder counts.
TSERVO/256.

0 ≤ seg# ≤ 23
1 ≤ data ≤ 32767

4. T,seg#,data

Specifies the amount of
time to wait before
executing the next motion
profile segment. Data is
provided in
TSERVO multiples.

0 ≤ seg# ≤ 23
0 ≤ data ≤ 32767

5. G,startseg,stopseg Executes a range of motion
profile segments.

0 ≤ startseg ≤ 23
0 ≤ stopseg ≤ 23

6. S

Stops execution of a
motion profile.

75

7. P,data

Changes the proportional
gain for the PID algorithm.

-32768 ≤ data ≤ 32767

8. I,data

Changes the integral gain
for the PID algorithm.

-32768 ≤ data ≤ 32767

9. D,data

Changes the differential
gain for the PID algorithm.

-32768 ≤ data ≤ 32767

10. W

Enables or disables the
PWM driver stage.

4.6.1.7 Stand Alone Operation.

The provided application firmware allows the servomotor to perform a few basic

motions without a PC connected. Specifically, data for three different motion profiles

are stored in the MCU program memory and are loaded into data memory at start-up.

Each profile is selected by turning on DIP switch #2, #3, or #4, connected to PORTB

and pressing the MCLR button. The software polls the DIP switches once, at start-up,

to see if a profile should be executed. The selected profile will begin to execute

immediately. If DIP switch #1 is turned on in combination with one of the other

switches, the selected profile will execute repeatedly.

76

CHAPTER 5
RESULT AND DISCUSSION

5.0 Background

This chapter will focus on the result of the design and development of an embedded

control system for controlling a DC motor using microcontroller. A microcontroller

has chosen for this project because of its wide variety in performing task. In general,

this microcontroller will received a command signal from the user through interface

section using USART. Then, this microcontroller will interpret that data to perform a

task based to the given value entered by the user.

5.1 Result.

For this project, the result will mainly focus on several expectations through the

objective of this project.

Below are some expectations or results for this project:-

1. Successfully in design and development an embedded control system.

2. Study a control system element which is (PID) in controlling a DC motor.

3. Design a PID controller

4. Get an exact position during rotating of DC motor.

5. Make a comparison with real time application and simulation application based on

the time, and distance.

77

5.2 Completed Design of An Embedded System.

 Figure 5.1 : Completed design of embedded system

5.2.1 Circuit Description

1. Main Board (SK 40)

 Consist of PIC16F877A as the main memory.

 Have an ICSP programmer for program download section.

 Have a USART terminal for serial port communication.

2. Embedded circuit

 L6203 H-bridge motor driver (support up to 50 V).

 DS 275 (transceiver IC)

 74HC74 (to filtered the output and decode them into up and down pulse train)

3. Power regulate circuit (5V)

 Generated 5V supply to activate the embedded circuit.

4. Pittman DC Servomotor

 Operate with 24 V DC.

 Has two phase encoder.

 Has 500 CPR (counter per revolution)

5V circuit

Main Processor
(SK 40)

Embedded
circuit

Pittman Dc
servomotor

Battery

78

5.3 PID Controller.

PID controller is the combination of PD controller with PI controller. This controller

needs some compensator to make it verified and able to increase transient response or

reduce steady state error. In other cases, the improvement in transient response yields

further improvement in steady-state errors. Thus, a system can be overdesigned with

respect to steady-state errors. Overdesign is usually not a problem unless it affects cost

or produces other design problems. Design for transient response first followed by

design for steady-state error. The design can use either active or passive compensators,

as previously described. An active PD controller should be design followed by an

active PI controller, will resulting the compensator is called a proportional-plus-

integral-plus-derivative (PID) controller.

5.3.1 Block Diagram for PID Controller.

 Input: R (s) Actual speed
 C (s)

Unity feedback

 Figure 5.2 : Block diagram with transfer function

From the figure above, the first block represent the gain for this system. This gain

must be adjusting in order to meet the process requirement which is increase the

transient response and reduce the steady state error. For the second block, it showed

the transfer function for a DC motor. This transfer represents the DC motor in some

application such as measuring the speed, acceleration or torque. The value for transfer

function is a standard for DC motor from control system book. Then, the final block

represent the plant for this process which is embedded system. Through this block, the

value of velocity, acceleration and distance can be entered to meet the process plant.

K

(s + 8)

(S + 3) s + 6

1

(s + 10)

79

5.3.2 Uncompensated System.

Uncompensated system is a system in which no adjusting gain to increase transient

response or reduce steady state error. In general, uncompensated system must be

identified to find the value of poles, zeros, dominant poles, settling time, peak time

and error. This value will need to be adjusted for the next controller in order to

increase transient response and reduce steady state error. Below is several step in

identified the uncompensated system using a MATLAB software.

 Input: R (s) Actual speed
 C (s)

 Unity feedback

 Figure 5.3: Block diagram with transfer function combined

These systems operate with a peak time that is two-third that of the uncompensated

system at 20% overshoot and with zero steady state error for a step input.

Step 1: Find the damping ratio for this system.

ζ =
− ln(

%𝑂𝑠
100

)

 𝜋2 + ln
%𝑂𝑠
100

 ²

ζ =
− ln(

20
100

)

 𝜋2 + ln
20

100
 ²

 ζ = 0.456

K(s + 8)

(S + 3) s + 6 (s + 10)

80

Step 2: Entered the value of transfer function for the block diagram in MATLAB

software, and create a root locus.

Step 3 : Used the value of root locus for gain to create a new transfer function with

unity feedback. Create a step response graph.

 𝑇𝑎𝑛 Ө =
10.6

5.42
 𝐾𝑝 =

121 (8)

3 𝑥 6 𝑥 10

 Ө = tan-1 1.9557 Kp = 5.4

 Ө = 180 - 62.85 𝐸𝑟𝑟𝑜𝑟 =
1

1+5.4

 Ө = 117.15 Error = 0.15625

%Uncompensated transfer function
%TF Motor
num=[1 8]
den=poly([-3 -6])
M=tf(num,den)

%TF Plant
num=1
den=[1 10]
P= tf (num,den)

TF=P*M
rlocus (TF)
%Figure 1 (Root Locus)
%zeta=0.456
%error=0.156
%Kp=5.4

K1=121
TF1=TF*K1
Uncompensated = feedback (TF1,1)
step (Uncompensated)

%Figure 2 (Step response)
Tp=0.296
Ts=0.702
%Other poles=-8.17
%Zeros=-8

81

 Figure 5.4 : Uncompensated Root locus graph with dominant poles

Step 4 : Searching along the 20% overshoot line (ζ = 0.456) , the dominant poles to

be -5.42 ± j10.6 with a gain of 121.

 Figure 5.5 : Uncompensated Root locus graph with other poles

Step 5 : A third pole, which exist at -8.17, is found by searching the region between -8

and -10 for a gain equivalent to that at the dominant poles.

82

 Figure 5.6 : Uncompensated Step response.

Step 6 : From the step response, the value of settling time become 0.702 second and

the value of peak time is 0.296 second with 20% overshoot.

 jω
 ζ = 0.456

 -5.42 ± j10.6
 K=121
 S plane

 117.15 σ

 -10 -8 -6 -5.42 -3

 Figure 5.7 : Root locus for the uncompensated system

x
Uncompensated
dominant pole J10.6

83

5.3.3 PD Compensated System.

The transient response of a system can be selected by choosing an appropriate closed-

loop pole location on the s-plane. If this point is on the root locus, then a simple gain

adjustment is all that is required in order to meet the transient response specification.

If the closed-loop pole location is not on the root locus, then the root locus must be

reshaped so that the compensated (new) root locus goes through the selected closed-

loop pole location. One way to speed up the original system that generally works is to

add a single zero to the forward path.

This zero can be represented by a compensator whose transfer function is:

 Gc (s) = s + Zc

Step 1 : To compensate the system in order to reduce the peak time to two-thirds of

that uncompensated system, the compensated dominant pole location must be

find first. The imaginary part of the compensated dominant pole is :

 ώd=
π

𝑇𝑝
 = π

2

3
 (0.296)

 = 15.9

Thus, the real part of the compensated dominant pole is

 σ =
ώd

tan 117.15

 = -8.14

84

 jω
 ζ = 0.456

 -8.14 ± j15.9
 K=5.33
 S plane

 -Zc 117.15 σ

 -10 -8.14 -8 -6 -3

 Figure 5.8 : Root locus for the PD controller system

Step 2: Using the root locus graph, the sum of angles from the uncompensated

systems poles and zeros must be calculated to the desired compensated

dominant poles.

 𝑇𝑎𝑛 Ө1 =
15.87

1.87
 𝑇𝑎𝑛 Ө2 =

15.87

0.13

 Ө1 = tan-1 8.4866 Ө2 = tan-1 122.0770

 Ө1 = 83.28 Ө2 = 180 - 89.53

 Ө2 = 90.46

 𝑇𝑎𝑛 Ө3 =
15.87

2.13
 𝑇𝑎𝑛 Ө4 =

15.87

5.13

 Ө3 = tan-1 7.4507 Ө4 = tan-1 3.0935

 Ө3 = 180 – 82.36 Ө4 = 180 – 72.08

 Ө3 = 97.64 Ө4 = 107.91

 Total angle = Ө1 – Ө2 + Ө3 + Ө4

 = 83.280 – 90.460 + 97.640 + 107.910

 = 198.370 – 1800

 = 18.370

x
PD compensated
dominant pole J15.87

85

Step 3: Assume that the compensator zero is located at –Zc

 𝑇𝑎𝑛 18.37 =
15.87

𝑍𝑐 − 8.13

 Zc = 55.92

Step 4: Thus, the PD controller is

 GPD (s) = (s + 55.92)

Step 5: Entered the value of PD compensated in the MATLAB software to create a

root locus.

%Design PD controller
Tp=0.296
imaginary=([pi/[[2/3]*Tp]])
%zeta=180+(tan^-1(10.57/-5.42))=117.15
real=(imaginary/ tan(117.15*pi/180))
%imaginary part Wd=15.87
%real part=-8.13
PoleT1=83.28
PoleT2=97.64
PoleT3=107.91
ZeroT4=90.46
T5=-PoleT1+PoleT2+PoleT3-ZeroT4
TT=-T5-180
TT=18.37

%find compensator PD zero
Zc=([imaginary/ tan(TT*pi/180)]-real)
%Zc=55.92

%find TF for Gpd(s)
numd=[1 Zc]
dend=1
Gpd=tf(numd,dend)
TFpd=Gpd*TF

%Figure(3)
rlocus(TFpd)

86

 Figure 5.9 : Root locus graph PD controller with dominant poles

Step 6 : From the root locus graph, used the same damping ratio to identify new gain

and dominant poles. For PD controller, the gain is (5.33) and the dominant

poles are -8.14 ± j15.9.

 Figure 5.10 : Root locus graph PD controller with other poles

87

Step 7 : When designing a PD controller, other poles must also be considered. This is

to identify the rate of change of poles and to design a new pole location.

Other poles for this controller are located at -8.08.

Step 8: Used the value of root locus for gain to create a new transfer function with

unity feedback. Create a step response graph.

 Figure 5.11 : Step response for PD and Uncompensated controller

Step 9: From the step response graph, the transient response of PD compensator is

higher than the uncompensated. The Tp for PD compensator is shorter from

0.179 sec compared to the uncompensated at 0.296 sec. For Ts, PD

successfully reduce it from uncompensated (0.702 sec) to (0.449 sec).

%from Figure 3- gain,k
k2=5.33
TF2=k2*TFpd

%G(s) PD tf
PD=feedback(TF2,1)

%Figure(4)
step(PD,Uncompensated)

88

5.3.4 PI Compensated System.

Steady-state error can be improved by placing an open-loop pole at the origin, because

this increases the system type by one. Active circuits can be used to place poles at the

origin. To solve this problem, a zero must be added close to the pole at the origin. A

compensator with a pole at the origin and a zero close to the pole is called an ideal

integral compensator. An open-loop zero will be placed very close to the open-loop

pole at the origin so that the original closed-loop poles on the original root locus still

remain at approximately the same points on the compensated root locus.

Step 1: In designing a PI controller, an ideal integral compensator must to be

considered in order to integrate and reduce the steady state error to zero for a

step input.. Choosing the ideal integral compensator to be:

 GPI (s)= S+0.5

𝑠

Any ideal integral compensator zero will work, as long as the zero is placed

close to the origin

Step 2: Entered the value of PI compensated in the MATLAB software to create a root

locus.

%Design PI controller
nump=[1 0.5]
denp=[1 0]
Gpi=tf(nump,denp)
TFpid=TFpd*Gpi

%Figure(5)
rlocus(TFpid)

89

Figure 5.12 : PID root locus graph for dominant poles

Step 3: Searching along root locus graph with 0.456 damping ratio and 20%

overshoot, the dominant poles that exist is -7.75 ± j15.1 with an associated

gain of 4.88.

Figure 5.13 : PID root locus graph for other poles

90

Step 4: Searching along root locus graph with 0.456 damping ratio and 20%

overshoot, the other poles is -8.09 and -0.469 with gain 4.88.

Step 5: Used the value of root locus for gain to create a new transfer function with

unity feedback. Create a step response graph.

Figure 5.14 : PID step response for Uncompensated, PD and PID controller

%from Figure 5- gain,k
k3=4.88
TF3=k3*TFpid

%G(s) PID tf
PID=feedback(TF3,1)

%Figure(6)
step(PID)

%from figure 6- Ts,Tp
Tp=0.175

step(Uncompensated,PD,PID)

91

Step 6: From the step response graph, the transient response of PID compensator is

higher than the uncompensated and PD. The peak time for PID compensator

is 0.175 sec shorter compared to the uncompensated and PD controller.

Step 7: Then, the value of K1, K2, and K3 can be determine using the PID equation.

 Figure 5.15 : The transfer function for a PID controller [Nise : 2004]

 Create PID equation using the PD controller and PI controller

 GPID (s)= K S+55.92 (s+0.5)

𝑠

 GPID (s)= 4.88 s+55.92 (s+0.5)

𝑠

 GPID (s)= 4.88 s2+56.42s+27.96

𝑠

 Compare the PID equation with the PID transfer function to find the value of

K1, K2, and K3.

 From the equation :
 K3 = 4.88

 K2

𝐾3
= 27.96

 K2 = 27.96 X 4.88
 K2 = 136.45

 K1

𝐾3
= 56.42 Figure 5.16 : PID controller[Nise : 2004]

 K1 = 56.42 X 4.88
 K1 = 275.33

92

 Use the value of K1, K2, and K3 and substitute it to the PID controller for

increasing the transient response and reduce the steady state error that exists

on the system.

5.4 Interface Section.

An interface can be the physical boundary between two subsystems or devices, a part

or circuit in some subsystem that sends or receives signals to or from other systems or

subsystems. Interfacing is a communication between the computer and related

hardware. For this project, the hardware will interface with the PC by using a UART

USB. This communication is going through a software called X-CTU. Below is a step

in interfacing the hardware with a PC :-

5.4.1 Procedure During Interfacing.

1. Open the X-CTU software.

2. Select an appropriate COM.

3. Set the Baud Rate to 19200.

4. Test and query the COM.

1. Press the reset button on SK40C.

2. An Instruction will display

“ PIC16F877A DC Servomotor"

READY>.

3. Enter the value of X(distance in mm),

A(Acceleration) and V (Velocity).

Select an
appropriate

COM

Insert the value

Set the
Baud Rate

Test and
query

93

 During rotating of DC motor, we can change the value of distance, acceleration,

velocity and gain of PID through this software. In order to change the value of PID,

we must stop the process and reset the program in SK40. Then, enter the new value

that we want through this software. Data from real application and simulation must be

compared in order to see the use of PID for controlling a DC motor.

1. Enter the value of PID.

2. P (Proportional), I (Integral),

D (Differential).

3. Next, enter the value in which

segment that will used G (segment).

1. On the PWM by entering a W.

2. It will show either PWM is On or

Off.

3. A DC motor will start rotate.

PID value

PWM setting

94

5.5 Database Result.

This project will mainly focus about the rotating of DC motor in term of distance,

acceleration, velocity and PID controller. This PID controller will give a big impact to

the rotating of DC motor. In general, with higher value of proportional gain, it will

make the motor reach some position faster. Then, the value of integral gain will reduce

the steady state error that exists in the system. For the value of derivative gain, it will

change the rate of error and will make the system reach position in well manner. Due

to the terms, a related data must be provided to show the relationship between these

terms. For this project, the value of KP, KI, and KD was set up in the programming.

The value of that gain is :

KP = 275.33

KI = 136.45

KD = 4.88

 Table 5.1 : Theoretical value

Actual Distance

(mm)

Velocity

(mm/s)

Time (s)

1. 1000 100 10

2. 2000 100 20

3. 3000 100 30

4. 4000 100 40

5. 5000 100 50

 Table 5.2 : Actual value without using PID

Actual Distance

(mm)

Desired distance

(mm)

Velocity

(mm/s)

Time (s)

1. 1000 1250 100 12.5

2. 2000 2320 100 23.2

3. 3000 3650 100 36.5

4. 4000 4360 100 43.6

5. 5000 5470 100 54.7

95

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50

D
is

ta
n

ce
 (

 m
m

)

Time (s)

Graph Distance (m) versus Time (s

Theorytical value

Actual value without
PID

 Figure 5.17 : Graph for Theorytical value and Actual value without PID

From the graph, the actual value without PID from rotation of DC motor is too far

away from theoretical value. This is could be happen when the motor difficult to

achieved exact distance entered by the user. When motor travel along a path of

distance, speed, distance and time is the important element has to be considered.

Without having an accurate value of that item, the DC motor will not give an accurate

and reliable value. To prevent from this thing happen, a PID controller was

introduced. Then, the flow of the process continued with PID configuration. This is

done by entering the value of P, I , and D in X-CTU software. The command for

entering this value as shown as follow:

X,0,1000 // Entering the distance value in (mm)

V,0,100 // Entering the velocity value in (mm/s)

P,1 // Entering the Proportional value

D,1 // Entering the Differential value

G,0,0 // Entering the Segment value

W // PWM ON

96

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50

D
is

ta
n

ce
 (

m
m

)

Time (s)

Graph Distance (m) versus Time (s)

Actual value with PID
at speed 100 mm/s

Actual value with PID
at speed 200 mm/s

 Table 5.3 : Actual value with using PID with speed 100mm/s

Actual Distance

(mm)

Desired distance

(mm)

Velocity

(mm/s)

Time (s)

1. 1000 1050 100 10.5

2. 2000 2070 100 20.7

3. 3000 3050 100 30.5

4. 4000 4030 100 40.3

5. 5000 5080 100 50.8

 Table 5.4 : Actual value with using PID with speed 200mm/s

Actual Distance

(mm)

Desired distance

(mm)

Velocity

(mm/s)

Time (s)

6. 1000 1040 200 5.2

7. 2000 2070 200 10.1

8. 3000 3060 200 15.3

9. 4000 4080 200 20.4

10. 5000 5060 200 25.3

 Figure 5.18 : PID Graph for Actual Value with speed 100 mm/s and 200 mm/s

97

From this project, several experiments were conducted to get a data. From the graph,

we can see that a PID controller gives a good impact to the response of the DC motor.

The response for graph actual value with speed of 100 mm/s is almost nearest to the

response graph actual value with speed of 200 mm/s. These things happen as the PID

controller execute its role to increase the transient response and reduce steady state

errors that exist in this system. By increasing the transient response of the system, the

rotation of DC motor achieved the distance in well manner and reliable. For steady

state error, this PID controller will integrate the error by reducing the range of error

and make it zero through differential section.

5.6 Conclusion and Finding.

Based on the finding for this project, several objectives were not achieved for this

project. The problem is the real application does not give the exact value compared to

the simulation using proteus software. This problem occurres because of the several

elements such as the value of PID controller and programming section. For designing

a PID controller, a transfer function represent the DC motor is a standard from the

references book. This project used a Pittman DC servomotor that having an encoder

that can be able performs of wide variety of operation. Another problem exist is

communication between hardware and computer using serial port. A computer not

received an accurate signal from the hardware to perform a given task.

In the programming section, it is hard to define the related command that being used to

communicate between hardware and computer. Other command like register, timer,

interrupt and others should be match with the hardware to make it easier while

communicate process. Other related problem exist in this project is the embedded

circuit is quite difficult to design and developed. The complex of the circuit will

trigger a lack of transmission signal to the other component to perform an operation. It

too hard to find if any line break along of PCB layout during transmission signal.

Some improvement should be made and will discuss more in the next chapter.

98

CHAPTER 6
CONCLUSION AND RECOMMENDATION

6.0 Background

In this chapter, the conclusion from the entire project will be include with the

recommendation and also the suggestion for future or nowadays.

6.1 Conclusion

This project explored the way for controlling a DC motor using a control system

element which is PID. Nowadays, most of the system have their weaknesses due to

some disturbances such as noise, lack of transient response and large of steady state

error. To overcome this problem, a PID controller was introduced. This PID controller

increase the transient response of the system instead of reducing of steady state error

that exist on that system. Beside that, the project is study the method for controlling a

DC motor either use a PWM or H- Bridge technique. In general, this project will

mainly focus on the method for controlling a DC motor, the element should be added

to make the system operate in less error and the communication between the hardware

and computer. Overall, this project succesfully fulfill all the objectives requirement

which is to design and develop the embedded system, to study the PID controller, to

design a PID controller and lastly to get an exact position during the rotation of the

DC motor.The system mainly provides an efficient method for surveillance purpose

and is aimed to be highly beneficial.

99

6.2 Recommendation and Future Work.

The performance for this embedded system is not meet the full requirement in

objective. For future work, some recommendation has been listed in order to improve

the performance of this embedded system for controlling a DC motor.

1. Find an exact transfer function for PID controller.

To get an accurate value of the gain for Kp, Ki, and KD, an exact transfer function

are needed in order to generate a smooth and accurate step response for PID

controller. For this project, there two transfer function are highly needed which is

for the DC motor and for the plant. Then, the unity feedback transfer function for

this project should be identify also which is the encoder.

2. Serial port communication.

During communication between hardware and computer, several problem occured

such as loss in receiving the data and difficult to transmit the data. Formerly, this

project use a RS 232 cable during interface section. By using this RS 232 cable, no

data was successfully sent to the hardware. Then, from RS 232 cable, the interface

section changed to use bluetooh serial communication. Bluetooth serial

communication has their weaknesses such as can transmit or receive data on

certain distance only. To overcome this problem, USB USART was introduced

that consist a TX (transmit) and RX (receive) terminal in order to transmit or

received the data.

3. Software improvement

For interface testing, hyper terminal was used to communicate between computer

and software, but small problem exist during communication such as didn’t able to

sent the data to the hardware. To overcome this problem, one software has been

introduced which is X-CTU that consit a comm port, baud, flow control, data bits

and parity for specific task. By using this X-CTU software, communication was

succesfully done between hardware and computer.

100

4. Vary the speed with PID controller.

This project will mainly focus on the desired distance only. To get an accurate

distance during rotation of DC motor with same speed, a PID controller was

introduced. For future work, this system need to redesign with adding an element

that can control the speed of DC motor rotation.

5. Mathematical modeling of motor response

Mathematical model can be obtained from the graph of motor speed response.

Then, from the mathematical model, it can be simulated using software such as

MATLAB to improved motor speed response by using controller packages such as

PID controller, Fuzzy Logic Controller and others. Besides, it will reduce the total

hardware complexity and cost at the same time.

101

REFERENCES

Aidan O’Dwyer (2009). “ Handbook of PI and PID controllers Tuning Rules”. London :

Imperial College Press, pp. 80-93

Ang, K.H., Chong, G.C.Y., and Li, Y. (2005). “PID control system analysis, design, and

technology”,IEEE Trans Control Systems Tech.pp.559-576. http://eprints.gla.ac.uk/3817/

(Accessed: 19 August 2010).

Antonio Visioli (2006). “ Practical PID control”. London : Springer, pp 1-15

Austin Hughes (1997). “ Electric motor and drives”. England : Newness, pp 84-90

Bennett, Stuart (1993). “A history of control engineering”. London : IET. pp 48

Bennett, Stuart (June 1986). “A history of control engineering”.IET. pp. 142–148

Dr. Steve C. Hsiung, (2007). “ The Use of PIC Microcontrollers in Multiple DC Motors

Control Applications”. Pp. 6-8

Gourab Sen Gupta,(2005). “A Project Based Approach to Teach Mixed-Signal Embedded

Microcontroller for DC Motor Control”.pp. 5-6

Greg Osborn. “Embedded microcontrollers and processor design”. New Jersey: Prentice

Hall pp. 4-20

Hongfu Zhou, (2008). “DC Servo Motor PID Control in Mobile Robots with Embedded

DSP”. pp. 1-4

http://eprints.gla.ac.uk/3817/

102

Omar Jones (2010). “Design And Development Of An Embedded Dc Motor Controller

Using A Pid Algorithm”. pp. 5-7

Paul Horowitz and Winfield Hil (1989). ”The Art of Electronics Second Edition”.

Cambridge University Press, Cambridge M: pp 723-726

Shibu KV (2009). “Intoduction To Embedded Systems.” New York: McGraw Hill, pp.4-

15

Stephen Bowling, (2000). “DC Servomotor Application”. pp. 1-7

S. Vazquez, (2008). “Controller Design for a Single-Phase Two-Cell Multilevel Cascade

H-Bridge Converter”. Pp 2342

Tanmay Pal, Chandra Shekhar and Himanshu Dutt Sharma, (2009). “Design and

Development of Embedded System on ARM for On-line Characterization of DC

Motor”.pp. 502-503

Todd D. Morton. “Embedded Microcontrollers.” New Jersey: Prentice Hall, pp. 1-34

Vladimir Gurevich (2008). “ Electronic Devices on Discrete Components for Industrial

and Power Engineering”. London - New York : CRC Press, pp.418

W Bolton (1992). “ Control Engineering”. England : Longman, pp 233-237

Y. S. E. Ali, S. B. M. Noor, S. M. Uashi and M. K Hassan, (2003). “Microcontroller

Performance for DC Motor Speed Control System”. Pp. 2-5

103

APPENDICES

A Character command define

#include <pic.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

__CONFIG (0x3F32);

#define DIST 0 // Array index for segment distance
#define VEL 1 // Array index for segment vel. limit
#define ACCEL 2 // Array index for segment accel.
#define TIME 3 // Array index for segment delay time
#define INDEX RB0 // Input for encoder index pulse
#define NLIM RB1 // Input for negative limit switch
#define PLIM RB2 // Input for positive limit switch
#define GPI RB3 // General purpose input
#define MODE1 !RB4 // DIP switch #1
#define MODE2 !RB5 // DIP switch #2
#define MODE3 !RB6 // DIP switch #3
#define MODE4 !RB7 // DIP switch #4
#define SPULSE RC5 // Software timing pulse output
#define ADRES ADRESH // Redefine for 10-bit A/D converter
#define KP 275
#define KI 136
#define KD 5

B Function prototype

interrupt void servo_isr(void);
void putrsUSART(const char *data);
void DoCommand(void);
void Setup(void);
void UpdPos(void);
void UpdTraj(void);
void CalcError(void);
void CalcPID(void);
void SetupMove(void);
void EEDatWrite(unsigned char address, int data);
int EEDatRead(unsigned char address);

104

C Servo calculation

interrupt void servo_isr(void)
{
SPULSE = 1; // Toggle output pin for ISR code
UpdTraj(); // Get new commanded position
UpdPos(); // Get new measured position
CalcError(); // Calculate new position error
CalcPID();

TMR2IF = 0; // Clear Timer2 Interrupt Flag.
SPULSE = 0; // Toggle output pin for ISR code
} // timing

D Motion calculation

void UpdTraj(void)
{
if(stat.motion && !stat.saturated)
 {
 if(!stat.phase) // If in the first half of the move.
 {
 if(velact.ui[1] < vlim) // If still below the velocity limit
 velact.ul += accel.ul; // Accelerate
 else // If velocity limit has been reached,
 flatcount++; // increment flatcount.
 temp.ul = velact.ul; // Put velocity value into temp
 if(velact.ui[0] == 0x8000)
 {
 if(!(velact.ub[2] & 0x01))
 temp.ui[1]++;
 else;
 }
 else

 if(velact.ui[0] > 0x8000) temp.ui[1]++;
 else;

 phase1dist.ul -= (unsigned long)temp.ui[1];

 if(stat.neg_move)
 position -= (unsigned long)temp.ui[1];
 else
 position += (unsigned long)temp.ui[1];
 }

105

E Position setup

void UpdPos(void)
{
mvelocity = DnCount; // Get old DnCount value
temp.b[0] = TMR1L; // Read Timer1
temp.b[1] = TMR1H;
if(TMR1L < temp.b[0]) // If a rollover occurred, read
 {
 // Timer1 again.
 temp.b[0] = TMR1L;
 temp.b[1] = TMR1H;
 }
DnCount = temp.i[0]; // Store timer value in DnCount
mvelocity -= DnCount; // Subtract new value from
tempch = -UpCount; // Put old UpCount value in
UpCount = TMR0; // Read Timer0
tempch += UpCount;
if(tempch > 0)
 mvelocity += (int)tempch;
else
 mvelocity -= (int)(tempch);
mposition += (long)(mvelocity << 8); // Update measured position
}

F Error calculation

void CalcError(void)
{
u0.l = mposition - position; // Get error
u0.b[0] = u0.b[1];
u0.b[1] = u0.b[2]; // shift to the right to discard
u0.b[2] = u0.b[3]; // lower 8 bits.
if (u0.b[2] & 0x80) // If error is negative.
 {
 u0.b[3] = 0xff; // Sign-extend to 32 bits.

 if((u0.i[1] != 0xffff) || !(u0.b[1] & 0x80))
 {
 u0.ui[1] = 0xffff; // Limit error to 16-bits.
 u0.ui[0] = 0x8000;
 }
 else;
 }
else // If error is positive.
 {
 u0.b[3] = 0x00;
 if((u0.i[1] != 0x0000) || (u0.b[1] & 0x80))

106

 {
 u0.ui[1] = 0x0000; // Limit error to 16-bits.
 u0.ui[0] = 0x7fff;
 }
 else;
 }
}

G PID calculation

void CalcPID(void)
{
ypid.l = (long)u0.i[0]*(long)kp; // If proportional gain is not 0,
 // calculate proportional term.
if(!stat.saturated) // If output is not saturated,
 integral += u0.i[0]; // add present error to integral
 // value.
if(ki) // If integral value is not 0,
ypid.l += (long)integral*(long)ki; // calculate integral term.

if(kd) // If differential term is not 0,
ypid.l += (long)mvelocity*(long)kd; // calculate differential term.

if(ypid.b[3] & 0x80) // If PID result is negative
 {
 if((ypid.b[3] < 0xff) || !(ypid.b[2] & 0x80))
 {
 ypid.ui[1] = 0xff80; // Limit result to 24-bit value
 ypid.ui[0] = 0x0000;
 }
 else;
 }

else // If PID result is positive
 {
 if(ypid.b[3] || (ypid.b[2] > 0x7f))
 {
 ypid.ui[1] = 0x007f; // Limit result to 24-bit value
 ypid.ui[0] = 0xffff;
 }
 else;
 }
ypid.b[0] = ypid.b[1]; // Shift PID result right to
ypid.b[1] = ypid.b[2]; // get upper 16 bits.
stat.saturated = 0; // Clear saturation flag and see
if(ypid.i[0] > 500) // if present duty cycle output
 { // exceeds limits.

107

 ypid.i[0] = 500;
 stat.saturated = 1;
 }
if(ypid.i[0] < -500)
 {
 ypid.i[0] = -500;
 stat.saturated = 1;
 }

H Register define

void Setup(void)
{
firstseg = 0; // Initialize motion segment
lastseg = 0; // variables
segnum = 0;
parameter = 0; // Motion segment parameter#
i = 0; // Receive buffer index
comcount = 0; // Input command index
udata = 0; // Holds USART received data
stat.phase = 0; // Initialize flags and variables
stat.saturated = 0; // used for servo calculations.
stat.motion = 0;
stat.run = 0;
stat.loop = 0;
stat.neg_move = 0;
dtime = 0;
integral = 0;
vlim = 0;
velcom = 0;
mvelocity = 0;
DnCount = 0;
UpCount = 0;
temp.l = 0;
accel.l = 0;
u0.l = 0;
ypid.l = 0;
velact.l = 0;
phase1dist.l = 0;
position = 0;
mposition = position;
fposition = position;
flatcount = 0;
memset(inpbuf,0,8); // clear the input buffer
udata = RCREG;
udata = RCREG;
RCREG = 0;
udata = 0;

108

SPBRG = 15; // 19200 baud @ 20MHz
BRGH = 1;
//TXEN = 1;
//CREN = 1;
//SPEN = 1;
TXSTA = 0x20; // setup USART transmit
RCSTA = 0x90; // setup USART receive
SSPADD = 49; // Setup MSSP for master I2C
SSPSTAT = 0; // 100Khz @ 20MHz
SSPCON2 = 0;
SSPCON = 0x28;
PR2 = 0xff; // Setup Timer2 and CCP1 for
T2CON = 0x4c; // 19.53 Khz PWM @ 20MHz
CCPR1L = 0x7f; // 50% initial duty cycle
CCP1CON = 0x0f;
TMR2IF = 0;
TMR2IE = 1; // Enable Timer2 interrupts
TMR1H = 0;
TMR1L = 0;
T1CON = 0x07; // Enable Timer1, ext. sync. clock
TMR0 = 0;
OPTION = 0x6f; // Enable Timer0
ADCON1 = 0x04; // Setup A/D converter
ADCON0 = 0x81;
PORTC = 0; // Clear PORTC
PORTD = 0; // Clear PORTD
PORTE = 0x00; // Clear PORTE
TRISC = 0xdb;
TRISD = 0; // PORTD all outputs
TRISE = 0; // PORTE all outputs

I Main program

main()
{
Setup();
 putrsUSART("\r\nPIC16F877 DC Servomotor");
 putrsUSART(ready);
for(segnum=0;segnum < 12;segnum++) // Reads profile data into RAM for
 {
 for(parameter=0;parameter < 4;parameter++)
 {
 eeadr = (segnum << 3) + (parameter << 1);
 segment1[segnum][parameter] = EEDatRead(eeadr);
 }
 }

109

J USART data

void DoCommand(void)
{
if(comcount == 0) // If this is the first parameter of the input
 { // command...
 switch(inpbuf[0])
 {
 case 'X': parameter = DIST; // Segment distance change
 break;
 case 'V': parameter = VEL; // Segment velocity change
 break;
 case 'A': parameter = ACCEL; // Segment acceleration change
 break;
 case 'T': parameter = TIME; // Segment delay time change
 break;
 case 'P': parameter = 'P'; // Change proportional gain
 break;
 case 'I': parameter = 'I'; // Change integral gain
 break;
 case 'D': parameter = 'D'; // Change differential gain
 break;
 case 'L': parameter = 'L'; // Loop a range of segments
 break;
 case 'S': stat.run = 0; // Stop execution of segments
 break;
 case 'G': parameter = 'G'; // Execute a range of segments
 break;

 case 'W': if(RE2) // Enable or disable motor
 {
 putrsUSART("\r\nPWM On");
 RE2 = 0;
 }
 else
 {
 putrsUSART("\r\nPWM Off");
 RE2 = 1;
 }
 break;
 default: if(inpbuf[0] != '\0')
 {
 putrsUSART(error);
 }
 break;
 }
 }

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

