MULTIMODE UNIVERSAL CONTROLLER USING BLUETOOTH TECHNOLOGY

SURESTARAN S/O KAWANDER PILLAI

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honors

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

May 2011

FAK	UNIVERSTI TEKNIKAL MALAYSIA MELAKA KULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II	
Soci	timode Universal Controller Using Bluetooth Technology)/ 2011	
 Saya SURESTARAN A/L KAWANDER PILLAI mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institu pengajian tinggi. 4. Sila tandakan (√): 		
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)	
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)	
TIDAK TERHAD		
	Disahkan oleh:	
(TANDATANGAN PE		
	versiti Teknikal Malaysia Melaka	

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	: Surestaran S/O Kawander Pillai
Date	:

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honors."

Signature	:
Supervisor's Name	: Engr. Siva Kumar Subramaniam
Date	:

To my beloved father, mother, and all my siblings and friends.

ACKNOWLEDGEMENT

First and foremost, I would like to praise God for HIS blessing. He gave me physical and mental to carry on my final year project from the beginning up to completion. I would like to express gratitude and thanks to my supervisor, Engr. Siva Kumar Subramaniam for his support and unfailing patience throughout the duration of the project. His encouragement and guidance are truly appreciated. Otherwise, this project has not been possible. Apart from that I would like to thank to my Industrial Supervisor Mr. Uthaya Kumar from AI Automation. He also helps me to complete y project on time. I have learnt a lot under his guidance, be it practically or theoretically. Rather than that I would thanks to Mr. Kumarareshan (Equipment Engineer from TECH Semiconductor, Singapore, Mr. Maran (Equipment Engineer from TECH Semiconductor, Singapore and Mr. Devaraj (Software Engineer from TECH Semiconductor, Singapore. They are helping me a lot to complete my final year project. I am also grateful to my all friends who help me and giving me opinion along implementation of this project. I would like to thanks my parent, my sisters, my brothers and my girlfriend on their moral support as I can count on them whenever I am upset or down. Finally, I would like to offer thanks and deepest gratitude from the bottom of my heart for all the support, encouragement and inspirations I obtained throughout the duration of this project. The help rendered to me priceless, be it from the smallest of its kind to the largest.

ABSTRACT

The Bluetooth specification was developed in 1994 by Jaap Haartsen and Sven Mattisson, who were working for Ericsson Mobile Platforms in Lund, Sweden. The specification is based on frequency-hopping spread spectrum technology. The specifications were formalized by the Bluetooth Special Interest Group (SIG). The SIG was formally announced on May 20, 1998. Today it has a membership of over 7000 companies worldwide. It was established by Ericsson, IBM, Intel, Toshiba, and Nokia, and later joined by many other companies. Wireless communication is currently becoming popular and evolving to support communication needs for wide range of applications. It gives opportunity to wireless data transfer technologies such as Infrared, Home radio frequency (RF), Wi-Fi and Bluetooth to be improved for future benefit. With the advancement of radio frequency (RF) and semiconductor technologies, researchers are now concentrating effort in developing Pico-networks where electronic devices can communicate within 100 meters without requiring any fixed infrastructure. The best & cost efficient future is Bluetooth, a technology named after a 10th century king who brought warring Viking tribes under a common rule. The choice of operating in the license-exempt band that is ISM (Industrial Scientific Medical) band which ranges from 2.4 GHz to 2.4835 GHz enable the goals of global applicability, low power and high aggregate capacity to be meet. To be more specific, this project demonstrates the development of the household and office devices that can be controlled using wireless Bluetooth technology, which is suitable for a wireless home or office environments. This system can be adapted to the needs of the customer, for an example this system used as long as the device is able to read the Visual Basic Program.

ABSTRAK

Bluetooth adalah suatu sumber yang digunakan untuk menghantar data tanpa menggunakan bantuan dari sambungan wayar. Pada tahun 1994, bluetooth diperkenalkan oleh En. Jaap Haartsen dan En. Sven Mattission. Mereka merupakan pekerja dari 'Ericsson Mobile Platforms' yang ditapakkkan di Luad, Sweden. Pada masa itu juga, Bluetooth Special Interest Group (SIG) diperkenalkan. Mereka mempunyai pelanggan lebih daripada 7000 industri. Kumpulan tersebut telah membuat kajian terhadap bluetooth dan pada masa itulah pengunaan bluetooth telah menjadi lebih meluas. Seorang pengguna bletooth, boleh menggunakan sistem bluetooth sebagai alt penghantar maklumat dan kadang-kadang ia juga boleh digunakan sebagai alat pengawal untuk sesuatu sistem. Dari terbit idea untuk membuat projek menggunak sistem bluetooth. Projek ini lebih menfokuskan kepada sistem penghantaran maklumat dan sistem pengawalan sesuatu bahan. Projek dinamakan sebagai alat pengawal dengan bantuan bluetooth sistem diamana project ini mengadungi lapan keluaran yang terdiri dari lampu dan ia akan dikawal dengan menggunakan 'Visual Basic Program'. Project ini lebih sesuai untuk digunakan terhadap kediaman seseorang ataupun boleh degukan terhadap pejabat seseorang juga.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	TITLE	i
	DECLARATION	ii
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENTS	ix
	LIST OF FIGURES	xiii
	LIST OF TABLES	XV
	LIST OF ABBREVIATION	xvi
	LIST OF APPENDIX	xvii

1.	Introduction	
	1.1. Introduction	1
	1.2. Problem Statements	2
	1.3. Objective	2
	1.4. Scope	3
	1.5. Expected outcome of the project	4
	1.6. Methodology	5

2.	Literature Review	N	6
	2.1. Introduction		6
	2.1.1. Wirel	ess communication involves	7
	2.2. Radio Frequ	ency	7
	2.3. Infrared		9
	2.4. Introduction	to Bluetooth	9
	2.4.1. Bluete	ooth History	10
	2.4.2. Bluete	ooth Technology Overview	10
	2.4.3. Person	nal Area Networks	11
	2.4.4. Scatte	er nets	12
	2.4.5. Softw	vare Framework	13
	2.4.6. Bluet	ooth uses	15
	2.4.7. Bluete	ooth Profile	16
	2.4.7.1.	Advanced Audio Distribution Profile (A2DP)	17
	2.4.7.2.	Audio/Video Remote Control Profile (AVRCP)	18
	2.4.7.3.	Dial-up Networking Profile (DUN)	18
	2.4.7.4.	Fax Profile (FAX)	18
	2.4.7.5.	File Transfer Profile (FTP)	19
	2.4.7.6.	Hard Copy Cable Replacement Profile (HCRP)	19
	2.4.7.7.	Hands-Free Profile (HFP)	19
	2.4.7.8.	Human Interface Device Profile (HID)	20
	2.4.7.9.	Headset Profile (HSP)	21
	2.4.7.10.	Intercom Profile (ICP)	21
	2.4.7.11.	LAN Access Profile (LAP)	21
	2.4.8. Objec	t Push Profile (OPP)	22
	2.4.9. Bluet	ooth vs. Wi-Fi in networking	22
	2.4.10. Bluet	ooth devices	23
	2.4.11. Wi-Fi	i	23

2.5. Specifications and features	24
2.5.1. Bluetooth 1.0 and 1.0B	24
2.5.2. Bluetooth 1.1	24
2.5.3. Bluetooth 1.2	25
2.5.4. Bluetooth 2.0	25
2.5.5. Bluetooth 2.1	26
2.5.6. Between Bluetooth 1.2 and Bluetooth 2.0 EDR	27
2.6. Bluetooth specification	28
2.6.1. Spectrum	28
2.6.2. Range	28
2.7. Setting up connections	28
2.7.1. Pairing	29
2.7.2. Air interface	30
2.7.3. SKC-21 Bluetooth Module	31
2.7.4. Communication Protocol	32
2.7.5. Mode of Operation	33
2.7.6. BlueSoleil	34
2.7.7. Remote Bluetooth Devices	36
2.7.8. Icons and the meanings	36
2.7.9. Explanation of Icon Meanings	37
2.8. Microcontroller	38
2.8.1. Types of Microcontroller	39
2.8.1.1. Intel 8051	40
2.8.1.2. Freescale 68HC11	40
2.8.1.3. Microchip PIC	40
2.8.1.4. PIC Microcontroller	41
2.9. Relay	41
2.9.1. Longevity: Relays Last	43
2.9.2. Speed: Relay Switch	44
2.9.3. Sealed vs. Unsealed Relays	44

2.9.4.	Solid State vs. Mechanical Relays	44
2.9.5.	Isolation and EMI	45
2.9.6.	Latching Relays	46
2.9.7.	Communicating to an NCD Relay Controller	46

CHAPTER 3

3.	Methodology	
	3.1. Hardware and Software requirements	47
	3.2. Development of Multimode Universal Controller	
	Using Bluetooth Technology	48
	3.3. Circuit Diagram	50
	3.4. PCB Layout	51
	3.5. Circuit Explanation	52
	3.5.1. Clock generator	52
	3.5.2. UIC00A Programmer	53
	3.6. Hardware Design	54
	3.6.1. Hardware of the PIC16F877A	54
	3.6.2. Port A	57
	3.6.3. Port B	57
	3.6.4. Port C	58
	3.7. Relay Connection	59

4.	Software Development	60
	4.1. Programming the PIC16F877A Microcontroller	60
	4.2. MPLAB IDE	61
	4.3. MPLAB C18	61
	4.4. WINPIC 800	61

4.5. PIC16F877A program		62	
4.6. Visua	4.6. Visual Basic Programming 69		
4.6.1.	Visual Basic Program	69	
4.6.2.	PC screen of Visual Basic program	72	
4.6.3.	How does the Visual Basic program working	73	
4.7. PIC16F877A Firmware		74	
4.7.1. System Configuration		75	
4.7.2.	Port Initialization	76	
4.7.3.	Baud rate setting	77	
4.7.4.	EUSART	78	
4.7.5.	Serial Port communication	79	
4.7.6.	Serial Port Setup	80	

5.	Testing an	d Discussion	82
	5.1. Discu	ssion about Bluetooth	82
	5.1.1.	The way to connect SKC module to microcontroller	83
	5.1.2.	The way to send AT command using microcontroller	83
	5.1.3.	Discussion on SKC Bluetooth module and PIC board	83
	5.1.4.	Comparison between SKC21 Serial	
		Adaptor and Bluetooth USB dongle	84
	5.1.5.	The different between SKC21 module and Serial Adaptor	84
5.2. Discussion about power requirements for Hardware		ssion about power requirements for Hardware	85
5.3. Discussion about Relay circuit5.3.1. The advantages of relay as a switch instead of using transistor			85
			86
	5.3	.1.1. Advantages of relays:	86
	5.3	.1.2. Disadvantages of relays:	86
	5.4. Setup	PC for Bluetooth interface	87
5.4.1. USB dongle setup (IVT BlueSoleil)			87

	5.5. Frequency and Baud Rate Testing	90
	5.6. Results of this project	91
Cŀ	HAPTER 6	
6.	Conclusion	94
RE	EFFERENCES	96
AI	PPENDIXS	98

LIST OF FIGURES

No	TITLE	PAGE
1.0	Flow chart for project methodology	5
2.0	Bluetooth Home scatters net	13
2.1	Bluetooth software protocol stack	14
2.2	SKC-21 Bluetooth Module Features	31
2.3	Photo slide of SKC 21 Bluetooth Module and top	
	view of the device	32
2.4	The physical connection between host and Bluetooth module	33
2.5	Microcontroller	38
2.6	Pin diagram of PIC16F877A and PIC16F877A Block Diagram	41
3.1	Block diagram of overall system of this project	49
3.2	Circuit Diagram of This Project	50
3.3	PCB Layout (Top View)	51
3.4	PCB Layout (Bottom View)	51
3.5	Circuit diagram of Voltage Input	52
3.6	Circuit diagram of Clock generator	52
3.7	Connector for UIC00A Programmer	53

3.8	Block diagram of connection between Bluetooth and	
	microcontroller device	53
3.9	Pin Configuration	55
3.10	Relay connection to switch On Bulb	59
4.0	Programming via Hex code and PIC program	62
4.1	PC screen as controller of electrical appliances and	
	Visual Basic Program	72
4.2	Visual Basic Work area	73
4.3	VB program when the Relay is ON and OFF	73
4.4	Flow chart for microcontroller to communicate with Bluetooth	75
4.5	Block Diagram of Serial Port Communication Program	80
4.6	Serial Port Communication Program Setup Part	81
5.0	Circuit diagram of Relay protection	86
5.1	The 1 st step to connect the Bluesoliel	87
5.2	The 2 nd step to connect the Bluesoliel	88
5.3	The 3 rd step to connect the Bluesoliel	88
5.4	The 4 th step to connect the Bluesoliel	89
5.5	The 5 th step to connect the Bluesoliel	89
5.6	Bluetooth USB dongle is connected to USB port	91
5.7	USB Dongle connected to SKC21	92
5.8	Double click at SKCwire-free device and connect the device	92
5.9	Visual Basic application and select the RELAY ON	93
5.10	Relay 1 is activated	93

LIST OF TABLES

No	TITLE	PAGE
2.0	Radio frequency spectrum	7
2.1	Classes and Maximum permitted power	16
2.2	Version and Data rate	19
2.3	The Bluetooth functions	34
2.4	Icons and the meanings	37
3.0	Explanation of PIC16F877A	56
4.0	PIC16F877A System Configuration	76
4.1	PIC16F877A Port Initialization	77
5.0	The different between SKC21 module and Serial Adaptor	84
5.1	Frequency Setting	90
5.2	Baud rate setting	90

LIST OF ABREVATIATION

ADC	ANALOG TO DIGITAL CONVERTER
ALU	ARITHMETIC LOGIC UNIT
BCD	BINARY CODED DECIMAL
CCW	CONTER CLOCKWISE
СН	CLOCK HERTZ
СР	CODE PROTECTION
CW	CLOCKWISE
GND	GROUND
IC	INTEGRATED CIRCUIT
ICSP	IN CIRCUIT SERIAL POGRAMMING
ICSP INDF	IN CIRCUIT SERIAL POGRAMMING INDIRECT FILE
INDF	INDIRECT FILE
INDF LED	INDIRECT FILE LIGHT EMMITING DIODE
INDF LED PC	INDIRECT FILE LIGHT EMMITING DIODE PROGRAM COUNTER

LIST OF APPENDIX

NAME	TITLE	PAGE
А	Gantt chart	98
В	Data sheet from Cytron Sdn. Bhd.	99

xix

CHAPTER I

INTRODUCTION

The Bluetooth specification was developed in 1994 by Jaap Haartsen and Sven Mattisson, who were working for Ericsson Mobile Platforms in Lund, Sweden. The specification is based on frequency-hopping spread spectrum technology. The specifications were formalized by the Bluetooth Special Interest Group (SIG). The SIG was formally announced on May 20, 1998. Today it has a membership of over 7000 companies worldwide. It was established by Ericsson, IBM, Intel, Toshiba, and Nokia, and later joined by many other companies [1].

1.1 Multimode Universal Controller Using Bluetooth Technology

Wireless communication is currently becoming popular and evolving to support communication needs for wide range of applications. It gives opportunity to wireless data transfer technologies such as Infrared, Home radio frequency (RF), Wi-Fi and Bluetooth to be improved for future benefit. With the advancement of radio frequency (RF) and semiconductor technologies, researchers are now concentrating effort in developing Pico-networks where electronic devices can communicate within 100 meters without requiring any fixed infrastructure. The best & cost efficient future is Bluetooth, a technology named after a 10th century king who brought warring Viking tribes under a common rule. The choice of operating in the license-exempt band that is ISM (Industrial Scientific Medical) band which ranges from 2.4 GHz to 2.4835 GHz enable the goals of global applicability, low power and high aggregate capacity to be meet [2]. To be more specific, this project demonstrates the development of the household and office devices that can be controlled using wireless Bluetooth technology, which is suitable for a wireless home or office environments. This system can be adapted to the needs of the customer, for an example this system used as long as the device is able to read the Visual Basic Program.

1.2 Problem Statements

Even thought this demonstrate with latest technology by using Bluetooth, there got some problems that can't avoid from persist.

- a) The data only can be sending in serial communication. That means, it's only allowed for one way communication.
- b) Let say the laptop didn't build in with Bluetooth modem, its compulsory to buy a Bluetooth dongle and install it to the appropriate laptop.
- c) But for PDA system which was not built in with Bluetooth, it's impossible to demonstrate this project into their PDA system.

1.3 Project Objective

This project demonstrates the development of the household and office device that can be controlled using wireless Bluetooth technology. This device is suitable for a wireless home or office environment situation and best solution to eliminate the need for wires, cables and the corresponding connectors between mobile phones, modems, computers, printers, PDAs and etc. Besides that, the purpose of this project is to design and develop PIC system using Bluetooth technology. Apart from that, this project also interfaces the system between hardware and software (Visual Basic and C-Language). It is a system that can be used to control several home and office appliance like fan, light and etc by using bluetooth device (SKC21).

1.4 Scope of work

The scope of the project is hardware on the hardware and Software. The system also includes of applying the wireless Bluetooth, hardware and Visual Basic by using PIC microcontroller. Bluetooth module is included in the hardware for wireless transmission. However, the software parts that analysis the data is done by Visual Basic program. At the end, the wireless data glove system will be combining with the software part to become the completed home and office environments using Bluetooth technology. The Scope of work has been listed below:

• Hardware:

- Studied specifications of SKC 21 Bluetooth module and other electronics devices.
- Designed a circuit board for a relay card system.
- Completed circuits and wiring for PIC, Bluetooth.

• Programming:

- Develop PIC Microcontroller's program.
- Write a program for Visual Basic.

1.5 Expected outcome of the project

The purpose of this project is to design and develop PIC system using Bluetooth technology. Apart from that, this project also interfaces the system between hardware and software (Visual Basic and C-Language). It is a system that can be used to control several home and office appliance like fan, light and etc by using bluetooth device (SKC21). At the end of this project we able see that, all output will be control by Visual Basic 6.

1.6 **Project Methodology**

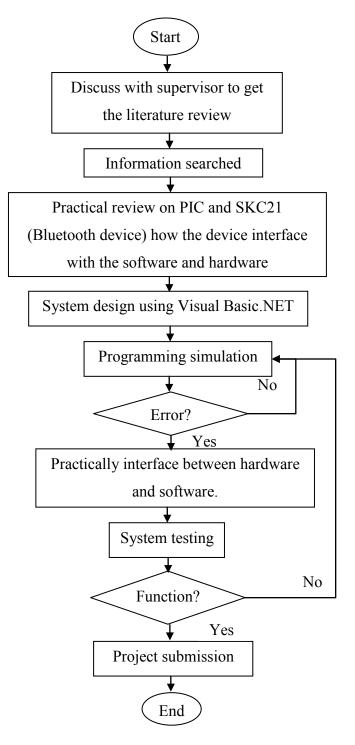


Figure 1.0: Flow chart for project methodology

C Universiti Teknikal Malaysia Melaka