

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

NOISE INSULATOR FROM NATURAL FIBER COMPOSITE

This report submitted in accordance with requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Material) with Honours.

by

MOHD NOOR IKHWAN BIN MOHD FAUZI

FACULTY OF MANUFACTURING ENGINEERING 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA (UTeM)

BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL: NOISE INSULATOR FROM NATURAL FIBER COMPOSITE

SESI PENGAJIAN: 2 - 2008/2009

Saya MOHD NOOR IKHWAN BIN MOHD FAUZI

mengaku membenarkan laporan PSM/tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM/tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM/tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

	SULIT	(Mengandungi maklumat yang berdarjah keselan kepentingan Malaysia yang termaktub di dalam Al RASMI 1972)	
\checkmark	TERHAD	(Mengandungi maklumat TERHAD yang telah dite organisasi/badan di mana penyelidikan dijalankan)	entukan oleh
	TIDAK TERHAD		
[pu	/m/m/m/	1
(TANDA	TANGAN PENULIS	S) (TANPATANGAN PERFEIT	A)
Alamat LOT 279		Cop Rasmi:	
kg buki		MOHD YUHAZRI BIN YAAK Pensyarah	OB
22000 JI TERENG	ERTEH, GANU DARUL IM	Fakulti Kejuruteraan Pembuata	n aka
Tarikh:	22 MAY 2009	Tarikh: <u>22 MAY 2009</u>	
* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.			

FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref): 13 Mei 2009

Pustakawan Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) Taman Tasik Utama, Hang Tuah Jaya, Ayer Keroh, 75450, Melaka

Saudara,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD - LAPORAN PSM SARJANA MUDA KEJURUTERAAN PEMBUATAN (BAHAN KEJURUTERAAN): MOHD NOOR IKHWAN BIN MOHD FAUZI TAJUK: NOISE INSULATOR FROM NATURAL FIBER COMPOSITE

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk **"NOISE INSULATOR FROM NATURAL FIBER COMPOSITE"** mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA KERANA ALLAH"

Yang benar,

MOHD YUHAZRI BIN YAAKOB Pensyarah, Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka(UTeM) Karung berkunci 1200, Ayer Keroh, 75450, Melaka

DECLARATION

I hereby, declared this report entitled "NOISE INSULATOR FROM NATURAL FIBER COMPOSITE" is the result of my own research except as cited in the references.

Signature	:	
Author's Name	:	Mohd Noor Ikhwan B Mohd Fauzi
Date	:	22 MAY 2009

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material). The members of the supervisory committee are as follow:

.....

Mohd Yuhazri Bin Yaakob (Principal Supervisor)

ABSTRACT

Due to high interest in high quality but low cost material, lots of researches have been done by the researcher and engineers. Together with the increasing usage of composite material from mixture of natural materials nowadays, this technical report will proposed a research titled 'Noise Insulator from Natural Fiber Composite'. Coconut fiber and natural rubber is the material selected for this research as it offer lots of advantage which it has high quality as well as easy to found especially in Malaysia. This mixture of coconut fiber and natural rubber is mixed together in cold press process in a mold to fabricate the composite with different composition of natural rubber by increasing 5 percent of weight for each sample which is start from 0 percent up until 60 percent of natural rubber respectively. Mold of ten millimeters in thickness is prepared as the mold of the specimen preparation. A actual specimen will be as comparison to the specimens with natural rubber for its mechanical properties. These four specimens will then be tested with Tensile Test, Compression test, Moisture Absorption Test and Noise absorption Test to make assessment. From the results obtained, the best specimen will be chosen for Noise Insulator application.

ABSTRAK

Seiring dengan permintaan yang tinggi untuk bahan yang berkualiti dan berkos rendah, banyak kajian telah di lakukan oleh para pengkaji dan jurutera. Sejajar dengan penggunaan bahan komposit daripada campuran bahan semula jadi yang semakin meluas masa ini, laporan teknikal ini membentangkan hasil kajian yang bertajuk Noise Insulator from Natural Fibers Composite. Sabut kelapa dan getah asli semula jadi adalah bahan mentah yang digunakan dalam kajian ini. Campuran sabut kelapa dengan getah asli semula jadi dihasilkan menerusi proses mampatan menggunakan kaedah mampatan acuan untuk mengfabrikasi komposit dengan kadar kenaikan 5% bg setiap sampel bermula 0% kandungan getah asli semula jadi hingga 60% kandungan getah asli semulajadi di dalam setiap sampel plat acuan setebal 10mm disediakan sebagai acuan untuk penyediaan sampel. Sampel sabut kelapa sepenuhnya juga difabrikasi untuk tujuan perbandingan sifat mekanik nya dengan sabut kelapa yang diisi dengan getah asli semula jadi. Keempat-empat sampel ini akan diuji dengan ujian tegangan, ujian mampatan, ujian penyerapan kelembapan dan ujian bunyi bagi setiap sampel untuk dibuat penilaian. Daripada keputusan yang diperolehi, hasil yang terbaik akan dijadikan produk yang sesuai untuk perendam atau penebat bunyi.

DEDICATION

Special gift to my family especially to my beloved parents, Abah, Mohd Fauzi Bin Abdul Razak and Ma, Gayah Bte Sulaiman, to my supportive brothers and sisters, to my supervisors, thanks for the priceless knowledge you provided to me and also to all my friends. May Allah S.W.T bless all of you.

ACKNOWLEDGEMENT

In the name of ALLAH, Most Gracious, Most Merciful. Dengan Nama ALLAH yang Maha Pemurah, Lagi Mengasihani.

I would like to express my appreciation to the individuals who had played a part in ensuring a successful occurrence and flow of activities throughout the duration of my final year project. Endless appreciation and gratitude to my supervisor, Mohd Yuhazri Bin Yaakob for the encouragement and support and spending quite time with myself, providing a lot of guidance and ideas for my project research. Their knowledge and experience really inspired and spurred myself. I truly relished the opportunity given working with them. Last but not lease, my appreciation to all technicians involved to complete this project especially to polymer and material lab in UTeM. Finally, my sincere appreciation is dedicated to my family especially Abah and Ma for prayer, harmful support and all the guidance to make sure I stand as like as nowdays. Not forgotten, as well as all friends for their priceless assistance and patronage throughout the process of data gathering and also the idea's regarding this project. Thank you all of you.

TABLE OF CONTENT

Decl	laration			ii
App	roval			iii
Abst	tract			iv
Abst	trak			V
Dedi	ication			vi
Ack	nowledg	ements		vii
Tabl	le of Coi	ntents		viii
List	of Table	S		ix
List	of Figur	es		xi
List	of Abbr	eviations	S	xiv
List	of Sym	bols		XV
1	INT	RODUC	CTION	1
	1.1	Projec	ct Background	1
	1.2	Proble	em Statement	3
	1.3	Objec	ctive	3
	1.4	Scope		3
	1.5	Ratio	nal of The Research	4
2	LITI	ERATU	RE REVIEW	5
	2.1	Soun	d	5
		2.1.1	Sound production and propagation	5
		2.1.2	Noise	7
		2.1.3	Noise Reduction or Noise prevention	10
		2.1.4	Reflection, Dispersion, Absorption,	
			Refraction of Sound	13
		2.1.5	Wave Character	14
	2.2	Cocoi	nut Fiber	16

		2.2.1 Coconut Fiber Description	17
		2.2.2 Physical Properties of Coconut Fiber	20
		2.2.3 Natural Humidity, Specific Weight	
		and Water Absorption	21
		2.2.4 Water Absorption Of Natural Fiber	22
		2.2.5 Mechanical Properties of Natural Fiber	24
	2.3	Composite	26
		2.3.1 Definition of The Composite	26
	2.4	Rubber	29
		2.4.1 Natural Latex	29
		2.4.2 Synthetic Rubber	30
3	MET	THODOLOGY	32
	3.1	Introduction	32
	3.2	Materials Selection and Preparation	33
		3.2.1 Coconut Fiber	34
		3.2.2 Natural Latex	36
	3.3	Composite Fabrication	37
		3.3.1 Procedure Of Cold Compress	43
	3.4	Mechanical Testing and Analysis	44
		3.4.1 Tensile Testing	45
		3.4.1.1 Procedure	46
		3.4.2 Compression Testing	49
	3.5	Physical Testing	51
		3.5.1 Moisture Absorption Testing	51
		3.5.1.1 Procedure	52
		3.5.1.2 Calculation	52
		3.5.2 Noise Absorption Testing	53
		3.5.2.1 Procedure	54
		3.5.2.2 Calculation	56

4	RESU	LT AN	D DISCUSSION	58
	4.1	Tensile	e Test Analysis	58
		4.1.1	Tensile Result for 0 wt. % of Latex	60
		4.1.2	Tensile Result for 5 wt. % of Latex	61
		4.1.3	Tensile Result for 10 wt. % of Latex	62
		4.1.4	Tensile Result for 15 wt. % of Latex	64
		4.1.5	Tensile Result for 20 wt. % of Latex	65
		4.1.6	Tensile Result for 25 wt. % of Latex	66
		4.1.7	Tensile Result for 30 wt. % of Latex	68
		4.1.8	Tensile Result for 35 wt. % of Latex	69
		4.1.9	Tensile Result for 40 wt. % of Latex	71
		4.1.10	Tensile Result for 45 wt. % of Latex	72
		4.1.11	Tensile Result for 50 wt. % of Latex	73
		4.1.12	Tensile Result for 55 wt. % of Latex	75
		4.1.13	Tensile Result for 60 wt. % of Latex	76
		4.1.14	Tensile Result for Actual Product	77
		4.1.15	Tensile Test Analysis Conclusion	79
	4.2	Compr	ression Test Analysis	82
		4.2.1	Compression Result for 0 wt. % of latex	83
		4.2.2	Compression Result for 5 wt. % of latex	84
		4.2.3	Compression Result for 10 wt. % of latex	85
		4.2.4	Compression Result for 15 wt. % of latex	86
		4.2.5	Compression Result for 20 wt. % of latex	87
		4.2.6	Compression Result for 25 wt. % of latex	88
		4.2.7	Compression Result for 30 wt. % of latex	89
		4.2.8	Compression Result for 35 wt. % of latex	90
		4.2.9	Compression Result for 40 wt. % of latex	91
		4.2.10	Compression Result for 45 wt. % of latex	92
		4.2.11	Compression Result for 50 wt. % of latex	94
		4.2.12	Compression Result for 55 wt. % of latex	95
		4.2.13	Compression Result for 60 wt. % of latex	96

	4.2.14 Compression Result for Actual Product	97
	4.2.15 Compression Test Analysis Conclusion	98
4.3	Moisture Absorption Test Analysis	100
	4.3.1 Moisture Absorption Analysis Conclusion	107
4.4	Noise Absorption Test Analysis	107
	4.4.1 Measurement of Noise Absorption and Coefficient	
	of a Room	111
	4.4.2 Noise Absorption Test Analysis Conclusion	117
4.5	Bill of Materials	117

5	CON	CLUSI	ON AND RECOMMENDATION	118
	5.1	Concl	usion	118
	5.2	Recon	nmendation	119
		5.2.1	Future Research	119
		5.2.2	Natural Fiber Composite Strength	119
		5.2.3	Natural Fiber Composite Weakness	120

6 **REFERENCES**

7 APPENDICES

124

122

LIST OF TABLE

PAGES

TITLE

2.1	Mechanical Characteristic of Sound Wave	6
2.2	Tensile Properties of Coconut Fiber	19
2.3	Sisal Production in Brazil Since 1985 (in tones)	19
2.4	Length and Diameter for Sisal and Coconut Fiber	20
2.5	Chemical Composition in Coconut Fiber	21
2.6	Natural Humidity and Specific Weight for Sisal and Coconut Fiber	22
2.7	Average Properties of Coconut Fiber	26
3.1	Tensile Specimen Geometry Recommendation	47
3.2	Compression Specimen Geometry Recommendation 49	
4.1	Data Tensile for Five Specimen for 0 wt. % of Latex	60
4.2	Data Tensile for Five Specimen for 5 wt. % of Latex	61
4.3	Data Tensile for Five Specimen for 10 wt. % of Latex	62
4.4	Data Tensile for Five Specimen for 15 wt. % of Latex	64
4.5	Data Tensile for Five Specimen for 20 wt. % of Latex	65
4.6	Data Tensile for Five Specimen for 25 wt. % of Latex	66
4.7	Data Tensile for Five Specimen for 30 wt. % of Latex	68
4.8	Data Tensile for Five Specimen for 35 wt. % of Latex	69
4.9	Data Tensile for Five Specimen for 40 wt. % of Latex	71
4.10	Data Tensile for Five Specimen for 45 wt. % of Latex	72
4.11	Data Tensile for Five Specimen for 50 wt. % of Latex	73
4.12	Data Tensile for Five Specimen for 55 wt. % of Latex	75
4.13	Data Tensile for Five Specimen for 60 wt. % of Latex	76
4.14	Data Tensile for Five Specimen for Actual Product	77
4.15	Data Compression for Five Specimen for 0 wt. % of Latex	83
4.16	Data Compression for Five Specimen for 5 wt. % of Latex	84
4.17	Data Compression for Five Specimen for 10 wt. % of Latex	85

NO

]

4.18	Data Compression for Five Specimen for 15 wt. % of Latex	86
4.19	Data Compression for Five Specimen for 20 wt. % of Latex	87
4.20	Data Compression for Five Specimen for 25 wt. % of Latex	88
4.21	Data Compression for Five Specimen for 30 wt. % of Latex	89
4.22	Data Compression for Five Specimen for 35 wt. % of Latex	90
4.23	Data Compression for Five Specimen for 40 wt. % of Latex	91
4.24	Data Compression for Five Specimen for 45 wt. % of Latex	92
4.25	Data Compression for Five Specimen for 50 wt. % of Latex	94
4.26	Data Compression for Five Specimen for 55 wt. % of Latex	95
4.27	Data Compression for Five Specimen for 60 wt. % of Latex	96
4.28	Data Compression for Five Specimen for Actual Product	97
4.29	Data for Initial Weight of Specimen for Moisture Test	102
4.30	Data after Sample Exposed to Moisture Absorption	103
4.31	Average Percentage of Moisture Absorption	104
4.32	Result for Noise Absorption Testing	110
5.1	Natural Fiber Composite Prices	117
5.2	Actual Product Prices	117
5.3	Natural Fiber Composite Price for All Specimen	118

LIST OF FIGURES

TITLE	PAGES
Reflection of The Sound Wave	14
Reinforced From Single Wave Length	15
General Process To Get Coconut Fiber	16
Longitudinal Section of a Coconut	17
Interaction of Natural Reinforcement Fiber and Drying Soil	23
Water Absorption of Natural and Treated Sisal and Coconut Fiber	24
Tensile Strength and Strain of The Fiber With Time	25
Four Main Categorize Summarize under Methodology	32
Type of Materials Used in This Project	33
Coconut Fiber in Chopped Strand Mats	35
Natural Latex Form in Original Color	36
Example of Latex Based Product	37
Flow Process of The Composite Fabrication	38
Process Flow to Get Natural Fiber Composite	40
The Actual Size of The Sample	41
Hydraulic Cold Compress Machine	42
The Mould Used in Prepare Specimen	42
Process Flow for The Mechanical Testing	44
Sample Result for UTS	45
Universal Tensile Machine	46
Sample Dimension For The Tensile Test	47
Sample Position During Testing	48
	Reflection of The Sound WaveReinforced From Single Wave LengthGeneral Process To Get Coconut FiberLongitudinal Section of a CoconutInteraction of Natural Reinforcement Fiber and Drying SoilWater Absorption of Natural and Treated Sisal and Coconut FiberTensile Strength and Strain of The Fiber With TimeFour Main Categorize Summarize under MethodologyType of Materials Used in This ProjectCoconut Fiber in Chopped Strand MatsNatural Latex Form in Original ColorExample of Latex Based ProductFlow Process of The Composite FabricationProcess Flow to Get Natural Fiber CompositeThe Actual Size of The SampleHydraulic Cold Compress MachineProcess Flow for The Mechanical TestingSample Result for UTSUniversal Tensile MachineSample Dimension For The Tensile Test

3.16	Geometry of Compression Specimen	50
3.17	Process Flow For Physical Testing	51
3.18	Sample Test For Noise Absorption	54
3.19	Location For Sound Source	55
3.20	Location For Noise Level Meter	55
4.1	Example of Specimen Already Break	60
4.2	Tensile Graph for 0 wt. % of Latex	61
4.3	Tensile Graph for 5 wt. % of Latex	62
4.4	Tensile Graph for 10 wt. % of Latex	63
4.5	Tensile Graph for 15 wt. % of Latex	65
4.6	Tensile Graph for 20 wt. % of Latex	66
4.7	Tensile Graph for 25 wt. % of Latex	67
4.8	Tensile Graph for 30 wt. % of Latex	69
4.9	Tensile Graph for 35 wt. % of Latex	70
4.10	Tensile Graph for 40 wt. % of Latex	72
4.11	Tensile Graph for 45 wt. % of Latex	73
4.12	Tensile Graph for 50 wt. % of Latex	74
4.13	Tensile Graph for 55 wt. % of Latex	76
4.14	Tensile Graph for 60 wt. % of Latex	77
4.15	Tensile Graph for Actual Product	78
4.16	Average Value of Force for Tensile	79
4.17	Average Value of Young's Modulus for Tensile	80
4.18	Compression Graph for 0 wt. % of Latex	83
4.19	Compression Graph for 5 wt. % of Latex	84
4.20	Compression Graph for 10 wt. % of Latex	85
4.21	Compression Graph for 15 wt. % of Latex	86
4.22	Compression Graph for 20 wt. % of Latex	87
4.23	Compression Graph for 25 wt. % of Latex	88
4.24	Compression Graph for 30 wt. % of Latex	90
4.25	Compression Graph for 35 wt. % of Latex	91
4.26	Compression Graph for 40 wt. % of Latex	92
4.27	Compression Graph for 45 wt. % of Latex	93

4.28	Compression Graph for 50 wt. % of Latex	94
4.29	Compression Graph for 55 wt. % of Latex	95
4.30	Compression Graph for 60 wt. % of Latex	96
4.31	Compression Graph for Actual Product	97
4.32	Average Value of Young's Modulus for Compression	98
4.33	Average Value of Force for Compression	99
4.34	Average Percentage of Moisture Absorption	105
4.35	Average Percentage Vs No of Specimen	106
4.36	Average Value for Noise Level Reading	111
4.37	Sound Absorption for Each Specimen	114
4.38	Noise Coefficient for Each Specimen	115

LIST OF ABBREVIATIONS

Hz	-	Hertz
SI	-	International Systems of Units
kHz	-	Kilohertz
MHz	-	Megahertz
GHz	-	Gigahertz
THz	-	Terahertz
DUT	-	Device Under Test
RLC	-	Electrical Circuit
cm	-	Centimeter
S	-	Second
AC	-	Alternate Current
rms	-	Root Means Square
m	-	Meters
m/s	-	Meters per Second
m/s ²	-	Meters per Second Square
BA	-	Bahia
РВ	-	Paraiba
UTeM	-	Universiti Teknikal Malaysia Melaka
UTM	-	Universal Tensile Machine

V	-	Volume
S-t	-	Strength Immersion Time
MPa	-	Mega Pascal
GPa	-	Giga Pascal
NBR	-	Nitrile Elastomers
RPDM	-	Ethylene Propylene Rubbers
Sdn.Bhd	-	Sendirian Berhad
RM	-	Ringgit Malaysia

LIST OF SYMBOLS

%	-	Percent
Pd	-	Air Dried
Σ	-	Stress
3	-	Strain
E	-	Elasticity
Ро	-	Oven Dried
γ	-	Specific Weight
Ftu	-	UTS, MPa
Pmax	-	Max Load Before Failure
σί	-	Tensile Stress at X data Point
Pi	-	Load at X data Point
А	-	Cross Sectional
εi	-	Tensile Strain at X data Point
δί	-	Extensometer Displacement at X data Point
Lg	-	Extensometer Gage Length
ωe	-	Experimentally Determined Deflaction
$(\varepsilon x + \varepsilon y)$	-	Experimentally Sum of The Strain

В	-	Bending Stiffness
S	-	Shear Stiffness
С	-	Core Thickness
F	-	Face Sheet Thickness
C1, C2	-	Constant Resulting From Navier Solution
Fcu	-	Ultimate Compression Strength
Pmax	-	Maximum Load Before Failure
σ1	-	Compression Stress At X data Point
Pi	-	Load At X Data Point
А	-	Cross Sectional Area, mm2
Wi	-	Current Specimen Mass
Wb	-	Baseline Specimen Mass
α	-	Noise Coefficient

CHAPTER 1 INTRODUCTION

In this chapter, there are briefly discussed about the main body part of the thesis. In this chapter, it's focused about the Noise insulator from natural fiber composite. This chapter contain background, problem statement, objective, scope and rational of research.

1.1. Background

Noise pollution generally refers to unwanted sound produced by human activities unwanted in that it interferes with communication, work, rest, recreation, or sleep. Unlike other forms of pollution, such as air, water, and hazardous materials, noise does not remain long in the environment. However, while its effects are immediate in terms of disturbance, they are cumulative in terms of temporary or permanent hearing loss. Society has attempted to regulate noise since the early days of the Romans, who by decree prohibited the movement of chariots in the streets at night. In the United States, communities since colonial days have enacted ordinances against excessive noise, primarily in response to complaints from residents. It was not until the late 1960s, however, that the federal government officially recognized noise as a pollutant and began to support noise research and regulation. Federal laws against noise pollution included the National Environmental Policy Act of 1969, especially sections concerning environmental impact statements; the Noise Pollution and Abatement Act of 1970; and the Noise Control Act of 1972, which appointed the Environmental Protection Agency (EPA) to coordinate federal research and activities in noise control.

Noise intensity is measured in decibels units. The decibel scale is logarithmic; each 10 decibel increase represents a tenfold increase in noise intensity. Human perception of loudness also conforms to a logarithmic scale; a 10 decibel increase is perceived as roughly a doubling of loudness. Thus, 30 decibels is 10 times more intense than 20 decibels and sounds twice as loud; 40 decibels is 100 times more intense than 20 and sounds 4 times as loud; 80 decibels is 1 million times more intense than 20 and sounds 64 times as loud. Distance diminishes the effective decibel level reaching the ear. Thus, moderate auto traffic at a distance of 100 ft (30 m) rates about 50 decibels. To a driver with a car window open or a pedestrian on the sidewalk, the same traffic rates about 70 decibels; that is, it sounds 4 times louder. At a distance of 2,000 ft (600 m), the noise of a jet takeoff reaches about 110 decibels approximately the same as an automobile horn only 3 ft (1 m) away.

Subjected to 45 decibels of noise, the average person cannot sleep. At 120 decibels the ear registers pain, but hearing damage begins at a much lower level, about 85 decibels. The duration of the exposure is also important. There is evidence that among young Americans hearing sensitivity is decreasing year by year because of exposure to noise, including excessively amplified music. Apart from hearing loss, such noise can cause lack of sleep, irritability, heartburn, indigestion, ulcers, high blood pressure, and possibly heart disease. One burst of noise, as from a passing truck, is known to alter endocrine, neurological, and cardiovascular functions in many individuals; prolonged or frequent exposure to such noise tends to make the physiological disturbances chronic. In addition, noise-induced stress creates severe tension in daily living and contributes to mental illness.

Fiber reinforcement composite materials widely use in mainly industry such as air craft, space structures and robot arms because have high specific strength and damping ratio. Composite is a combination of two or more materials, for example, fiberglass and epoxy where fiberglass will act as reinforcement and while epoxy will act as matrix. Combination of materials should be more than 5 percent to be the composite. If the combination less than 5 percent, it's called as impurities and not composite. Composite also present in interphase. The main function interphase is to

transfer the stress from matrix to fibers. Composite also have a different mechanical or physical properties if compare to the original materials (raw materials).

1.2 Problem Statement

Noise control is very important nowadays and not even limited to our daily life. The noise control is very important to in industry both small and medium or high technology industries. Noise can cause major problems and not only limited to the physical condition but it's also can affected mentally itself.

The purpose for this research is to produce new inventor insulator for reducing excessive noise. Noise insulator already used, but this research to design the noise insulator from natural fiber composite. Mostly insulator used the petroleum based to produce noise, vibration and heat insulator. This research will study the potential for the natural fiber composite.

1..3 Objectives

- (a) To identify the mechanical and physical properties of natural fiber and natural rubber.
- (b) To design and fabricate the noise insulator material from natural fiber composite.

1.4 Scope

- (a) Study coconut as a reinforcement agent in natural fiber composite.
- (b) Study natural latex as matrices in natural fiber composite.
- (c) Study mechanical properties in natural fiber composite.
- (d) Study the potential of natural fiber composite as a noise insulator.