

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

NEW PACKAGING MATERIAL BY USING MECHANICAL RETTING KENAF AS A NATURAL FILLER

This report submitted in accordance with requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Material) with Honours.

by

SITI EAISYAH BINTI KAMARUZAMAN

FACULTY OF MANUFACTURING ENGINEERING 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESA	HAN STATUS LAPORAN PROJEK SARJANA MUDA			
TAJUK: New Packaging M Filler	aterial By Using Mechanical Retting Kenaf As a Natural			
SESI PENGAJIAN: 2008/09 S	emester 2			
Saya SITI EAISYAH BINTI	KAMARUZAMAN			
mengaku membenarkan lap Teknikal Malaysia Melaka (I	mengaku membenarkan laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:			
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 				
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
√ TIDAK TERHAD Disahkan oleh:				
Alamat Tetap: <u>40, Jalan Padi Huma, Bandar Baru Uda 81200Johor Bahru</u>	Cop Rasmi:			
Johor	Johor			
l arikh:	I arikn:			
** Jika laporan PSM ini SULIT ata berkenaan dengan menyatakan SULIT atau TERHAD.	au TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai			

DECLARATION

I hereby, declared that this report entitled "New Packaging Material By Using Mechanical Retting Kenaf As a Natural Filler" is the result of my own research except as cited in the references.

Signature	:	
Author's Name	:	SITI EAISYAH BINTI KAMARUZAMAN
Date	:	20 MEI 2009

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material) with Honours. The member of the supervisory committee is as follow:

.....

(Principal Supervisor) (Mohd Yuhazri Bin Yaakob)

ABSTRACT

Egg packaging material mostly produced from non-biodegradable material such as PET and the material itself cannot protect the product properly such as recycle paper. The new natural composite which contain natural source and recycle material developed to design a new material packaging which are economically and environmental friendly. Different composition of starch, recycle newspaper, mechanical retting and water retting kenaf fiber contain in composition 2 until composition 6. This natural composite composition produce by using manual cold press technique and dried it under the sunlight. There are four mechanical tests and one physical test has done which are Tensile Test, Flexural Test, Impact Test, Water Absorption Test and Vibration Test. These entire tests will be following the ASTM D 638, ASTM D 790, ASTM D 256, ASTM D 570 and ASTM D 3580 standard respectively. Composition 9 and 10 as reference compositions contain 100 percent of PET and recycle paper which these materials exist in the market. Young's Modulus value for composition 9 or PET higher 99.31 % than composition 2 which is the third higher because PET is a polymer and the elasticity should be higher and the common failure mode is delamination and pull out condition. From impact test result, the impact energy of specimen composition 2 more higher 100 % impact energy absorb and impact strength compare to composition 9. This is because composition 9 has a very small value that cannot detect by the machine. Critical damping value composition 2 for vibration test has higher 97.05 % than composition 9. This value is the maximum damping that can reduce the amplitude of the vibration. This natural composite can replaced current material from observation and data analysis. The best composition is composition 2 which contains 70 percent of tapioca starch, 20 percent of recycle newspaper and 10 percent of mechanical retting kenaf fiber with thickness 10.3 ± 0.2 mm has Young's modulus, impact strength and critical damping value are 11234.88 kPa, 17 kJ/m², 0.85. Some of the result has a small different and some has a large different value when compare to the available material where the reference specimen made from different process method that involve high technology such as injection molding.

.ABSTRAK

Penghasilan bahan pembungkusan bagi telur kebiasaanya diperbuat daripada bahan bukan organic seperti PET dan juga daripada bahan yang tidak mampu menampung beban yang berlebihan seperti kertas yang dikitar semula. Komposit semulajadi ini mengandungi sumber bahan semulajadi yang digabungkan dengan bahan kitar semula untuk dijadikan sebagai bahan pembungkusan yang baru dimana lebih ekonomi dan mesra alam. Perbezaan komposisi kanji, surat khabar yang dikitar semula, gentian kenaf dalam bentuk mechanical retting dan water retting adalah bahan yang terkandung di dalam komposisi 2 hingga komposisi 6. Semua komposit semulajadi ini dihasilkan menggunakan cold press secara manual dan dikeringkan di bawah cahaya matahari. Sebanyak empat jenis ujian mekanikal dan satu ujian fizikal telah dijalankan iaitu Ujian Tegangan, Ujian Lenturan, Ujian Hentaman, Ujian Resapan Air dan Ujian Getaran dan kesemua ujian ini adalah berdasarkan piawaian ASTM D 638, ASTM D 790, ASTM D 256, ASTM D 570 dan ASTM D 3580. Komposisi 9 dan 10 merupakan komposisi rujukan yang mengandungi seratus peratus *PET* dan kertas yang dikitar semula dimana ianya merupakan bahan pembungkusan yang terdapat di pasaran. Komposisi 9 mempunyai nilai modulus keanjalan sebanyak 99.31 % berbanding composisi 2. Ini kerana PET merupakan sejenis polimer dimana mempunyai sifat elastik dan jenis kegagalan delamination dan juga *pull-out* terjadi kepada hampir kesemua spesimen yang telah diuji. Daripada ujian hentaman, didapati komposisi 2 mempunyai 100 % tenaga hentaman yang diserap dan tenaga hentaman lebih tinggi berbanding komposisi rujukan. Ini kerana nilai bagi komposisi 9 adalah terlalu kecil dan tidak dapat dikesan oleh mesin. Komposisi 2 mempunyi nilai critical damping sebanyak 97.05 % berbanding PET. Nilai ini merupakan nilai maksimum bagi komposisi ini untuk mengurangkan amplitud getaran tersebut. Komposit semulajadi ini mampu menggantikan penggunaan bahan pembungkusan yang sedia ada. Komposisi 2 merupakan komposisi yang terbaik dimana mengandungi 70 peratus kanji, 20 peratus surat khabar kitar semula dan 10 gentian kenaf mechanical retting yang mempunyai ketebalan 10.3 ± 0.2 mm serta mempunyai nilai modulus keanjalan, tenaga hentaman

dan *critical damping* adalah 11234.88 kPa, 17 kJ/m² dan 0.85. Sesetengah keputusan yang didapati mempunyai perbezaan peratusan yang kecil dan besar berbanding dengan bahan yang sedia ada dimana PET dihasilkan daripada proses yang berbeza serta melibatkan teknik berteknologi tinggi seperti *Injection molding*.

DEDICATION

Dedicated to my beloved Allahyarham Cikgu Hj. Mustafa Bin Hussein, thank you for being such a great teacher and grandfather to your grand daughter. Also to my beloved abah, ummi, ammar and Noor Afendi.

ACKNOWLEDGEMENT

Thanks to Allah s.w.t provide me strength to complete my Projek Sarjana Muda (PSM) in a good health and good circumstances from the beginning till the end of the first part. The first person that I would like to thank is Mr. Yuhazri Bin Yaacob as my project supervisor for his encouragement, full spirit, hope and kindness to do this project properly. Without his support, I can't complete my first part PSM properly. I also would like to give my appreciations to Mr. Sivarao a/l Subramonian as my PSM Coordinator Faculty of Manufacturing Engineering in Universiti Teknikal Malaysia Melaka to do his responsibility guide and manage all of student include myself in PSM. Last but not least, a thousand of thanks I would like give to BMFB's members, housemate and family that there are willing to help which relate to my PSM and give a moral support so that I can complete my project with a good result.

TABLE OF CONTENTS

ABST	RACT		i
ABST	RAK		ii
DEDI	CATIO	N	iv
ACKN	NOWLE	EDGEMENT	v
TABL	E OF C	CONTENT	vi
LIST	OF FIG	URES	X
LIST	OF ABI	BREVATIONS	XV
LIST	OF SYN	ABOLS	xvi
1.0	INTR	ODUCTION	1
1.1	Object	ives of the Research	2
1.2	Scope	of the Research	2
1.3	Ration	al of Research	3
1.4	Problem Statement Research 3		
1.5	Conclusion 5		
1.6	Thesis Frame6		
2.0	LITE	RATURE REVIEW	8
2.1	Fillers		8
	2.1.1	Introduction of Kenaf Fiber	10
	2.1.2	Kenaf Plant in Malaysia	11
	2.1.3	Kenaf Fiber Processing	12
	2.1.4	The advantages and Disadvantage of Natural Fiber Include Kenaf	13
2.1	Matrix	Material	14
2.2	Hardener 15		15
2.3	Cushie	oning	16
	2.4.1	Advantages and Disadvantages of Cushioning	18
2.4	Cold F	Press Process	18
2.5	Mecha	unical Test	19
	2.6.1	Tensile Test	19

	2.6.2 Impact Test	21	
	2.6.3 Flexural Test	23	
	2.6.4 Vibration Test	24	
2.7	The Previous Study on Kenaf Fiber in Natural Composite		
2.8	Summary of Journal	26	
3.0	METHODOLOGY	28	
3.1	Introduction	28	
3.2	Raw Materials	30	
3.3	Fabrication of Composite Design	31	
	3.3.1. Composite Design	34	
3.4	Tensile Test	34	
	3.4.1. Procedure	36	
3.5	Impact Test	37	
	3.5.1. Procedure	38	
3.6	Flexural Test	38	
	3.6.1. Procedure	39	
3.7	Vibration Test	40	
	3.7.1 Procedure	40	
3.8	Moisture Absorption Test	41	
	3.8.1. Procedure	41	
4.0	RESULT AND DATA ANALYSIS	41	
4.1	Natural Composite Composition Analysis	41	
4.2	Tensile Test Analysis		
	4.2.1 Tensile Result for Composition 2	44	
	4.2.2 Tensile Result for Composition 3	46	
	4.2.3 Tensile Result for Composition 4	47	
	4.2.4 Tensile Result for Composition 5	49	
	4.2.5 Tensile Result for Composition 6	50	
	4.2.6 Tensile Result for Composition 9	51	
	4.2.7 Tensile Result for Composition 10	52	
	4.2.8 Compile Data of Young's Modulus	53	
	4.2.9 Compile Data of Tensile Force	54	

	4.2.10	Compile Data of Stress	55
	4.2.11	Compile Data of Stoke	56
4.3	Impac	npact Test Analysis	
4.4	Water	Absorption Test	61
	4.4.1	Water Absorption Result for Composition 1	61
	4.4.2	Water Absorption Result for Composition 2	63
	4.4.3	Water Absorption Result for Composition 3	65
	4.4.4	Water Absorption Result for Composition 4	67
	4.4.5	Water Absorption Result for Composition 5	69
	4.4.6	Water Absorption Result for Composition 6	71
	4.4.7	Water Absorption Result for Composition 8	72
4.5	Flexu	ral Test Analysis	74
	4.5.1	Flexural Test for Composition 2	74
	4.5.2	Flexural Test for Composition 3	76
	4.5.3	Flexural Test for Composition 4	77
	4.5.4	Flexural Test for Composition 5	78
	4.5.5	Flexural Test for Composition 6	80
	4.5.6	Compile Data of Young's Modulus	81
	4.5.7	Compile Data of Flexural Stress	81
	4.5.8	Compile Data of Flexural Strain	82
4.6	Vibrat	tion Test	83
	4.6.1	Vibration Test for Composition 2	83
	4.6.2	Vibration Test for Composition 3	84
	4.6.3	Vibration Test for Composition 4	85
	4.6.4	Vibration Test for Composition 5	86
	4.6.5	Vibration Test for Composition 6	88
	4.6.6	Vibration Test for Composition 9	89
	4.6.7	Vibration Test for Composition 10	90
	4.6.8	Compile Data of Critical Damping	91
	4.6.9	Compile Data of Damping Ratio	92
	4.6.10	Compile Data of Damping Coefficient	93

5.0	CONCLUSION AND RECOMMENDATION	94
5.1	Conclusion	94
5.2	Recommendation	96
REFE	RENCES	97
	Manual Cold Pressing Technique	00
A D	Diastan of Daris Molding Technique	100
D	Plaster of Paris Molding Technique	100
C	Vibration Equation	101
D	Ghant Chart PSM 1	102
E	Ghant Chart PSM 2	103

F ASTM Standards 104

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Kenaf Fiber	2
1.2	Recycled Newspaper Fiber	2
1.3	Benefits of Kenaf Fiber	5
1.4	PSM 1 Flow Chart	6
2.1	Jute Fiber	9
2.2	Kenaf Plant	11
2.3	Water Retting Kenaf Fiber	13
2.4	Foam Structure Cushioning	17
2.5	Hot Press Machine in Material Lab	19
2.6	Main Part of Tensile Machine In Material Lab	21
2.7	Charpy Test in Material Lab	22
2.8	The Specimen Position in Flexural Test	24
3.1	Kenaf Fiber From Lembaga Tembakau Malaysia	28
3.2	Newspaper After Mild	29
3.3	Newspaper After Blend	29
3.4	Boiling Glue	29
3.5	Manual Cold Pressing	30
3.6	Plaster of Paris Mold	30
3.7	Composite Design Based on Table 3.1	35
3.8	Dog Bone Geometry for Tensile Test	37
3.9	Charpy Test Specimen Geometry	36
3.10	Three Point Bending Process	37
3.11	Vibration Test Machine for Cushion or Foam Packaging	39
3.12	Electronic Weight Scale in Material Lab	40

4.0	(a) the new composition for green egg pallet	42
	(b) recycle paper which material in market	
	(c) PET also one of the existent material in market	
4.1	Tensile graph stroke strain versus stress for Composition 2	43
4.2	Failure of Composition 2 at UTM machine	45
4.3	Tensile graph stroke strain versus stress for Composition 3	46
4.4	Failure of Composition 3 at UTM machine	47
4.5	Tensile graph stroke strain versus stress for Composition 4	47
4.6	Types of failure shows by composition 4 during tensile test	48
4.7	Tensile graph stroke strain versus stress for Composition 5	49
4.8	Peel off and pullout occur on composition 4 during tensile test	50
4.9	Tensile graph stroke strain versus stress for Composition 6	50
4.10	Tensile graph stroke strain versus stress for Composition 9	51
4.11	Tensile graph stroke strain versus stress for Composition 10	52
4.12	Average value of young's modulus for all composition	53
4.13	Average value of tensile force for all composition	54
4.14	Average value of stress for all composition	55
4.15	Average value of strain for all composition	56
4.16	Specimen place on the impact tester	57
4.17	Impact energy and impact strength for all specimens	58
4.18	Break composition 2	58
4.19	Failure occur on composition 4	59
4.20	(a) Failure occur on specimen 5	60
	(b) Failure of specimen 6	
4.21	Water absorption graph for composition 1	62
4.22	Results of absorption test for composition 2	63
4.23	Composition 2 weighted after one minute test	64
4.24	Results of absorption test for composition 3	66
4.25	Filler starts to separate from the resin	67
4.26	Specimen to be rupture	67
4.27	Results of absorption test for composition 4	68
4.28	Specimen 3 turns to be rupture	69
4.29	Results of absorption test for composition 5	70

4.30	Specimen rupture and separate from the material	70
4.31	Graph results of absorption test for composition 6	71
4.32	The failure of composition 6	72
4.33	Graph results of absorption test for composition 8	73
4.34	Graph results of flexural test for composition 2	73
4.35	Break specimen with delamination for composition 2	75
4.36	Graph results of flexural test for composition 3	76
4.37	Graph results of flexural test for composition 4	77
4.38	Specimen break with pullout condition and peel off for	77
	composition 4.	
4.39	Graph results of flexural test for composition 5	78
4.40	Break specimen with peel off condition for composition 5	79
4.41	Graph results of flexural test for composition 6	80
4.42	Break in specimen 6	81
4.43	Graph average value of stress for flexural test	81
4.44	Graph average value of strain	82
4.45	Accelerometer is placed under the specimen	83
4.46	Vibration graph for composition 2	83
4.47	Vibration graph for composition 3	84
4.48	Vibration graph for composition 4	85
4.49	Vibration graph for composition 5	86
4.50	Vibration graph for composition 6	88
4.51	Vibration graph for composition 9	89
4.52	Vibration graph for composition 10	90
4.53	Average of critical damping value	91
4.54	Average of damping ratio value	92
4.55	Average of damping coefficient value	93
4.56	Broken eggs because of the packaging cannot protect it at Mydin	95
	Hypermarket	
4.57	Defect on composition 7	95
4.58	Green egg pallet	96

LIST OF TABLES

NO

TITLE

PAGE

3.1	Composition of Material	33
3.2	Specimen Dimension for Thickness in ASTM D638	35
3.3	Types of Failure in ASTM D256	38
1.4	PSM 1 Flow Chart	6
4.1	Percentage of Natural Composite Data	43
4.2	Data for five specimens of composition 2 with average obtained	44
	from tensile test	
4.3	Data for five specimens of composition 3 with average obtained	46
	from tensile test	
4.4	Data for five specimens of composition 4 with average obtained	47
	from tensile test	
4.5	Data for five specimens of composition 5 with average obtained	49
	from tensile test	
4.6	Data for five specimens of composition 6 with average obtained	51
	from tensile test	
4.7	Data for five specimens of composition 9 with average obtained	52
	from tensile test	
4.8	Data for five specimens of composition 10 with average obtained	53
	from tensile test	
4.9	Results of impact test	57
4.10	Result absorption test for 100 percent mechanical retting kenaf	61
4.11	Results of absorption test for composition 2	63
4.12	Results of absorption test for composition 3	65
4.13	Results of absorption test for composition 4	67
4.14	Results of absorption test for composition 5	69
4.15	Results of absorption test for composition 6	71
4.16	Results of absorption test for composition 8	72

4.17	Data for five specimens of composition 2 with average obtained	74	
	from flexural test		
4.18	Data for five specimens of composition 3 with average obtained	76	
	from flexural test		
4.19	Data for five specimens of composition 4 with average obtained	77	
	from flexural test		
4.20	Data for five specimens of composition 5 with average obtained	78	
	from flexural test		
4.21	Data for five specimens of composition 5 with average obtained	80	
	from flexural test		
4.22	Data of composition 2 for vibration test	84	
4.23	Data of composition 3 for vibration test8.		
4.24	Data of composition 4 for vibration test	86	
4.25	Data of composition 5 for vibration test	87	
4.26	Data of composition 6 for vibration test	88	
4.27	Data of composition 9 for vibration test		
4.28	Data of composition 10 for vibration test	90	

LIST OF ABBREVATIONS

ASTM	_	American Society for Testing & Materials
С	_	Complete break
DUT	_	Device Under Test
EPS	_	Expandable Polystyrene
Н	_	Hinge Break
HDPE	_	High Density Polyethylene
KWh	_	KiloWatt per Hour
NB	_	Non Break
Р	_	Partial Break
TMP	_	Thermo Mechanical Pulp
UTM	_	Universal Tensile Machine
PET	_	Polyethylene terepthalate

LIST OF SYMBOLS

εf	_	Flexural Strain
σf	_	Flexural Stress
mm	_	Milimeter
C _c	_	Critical damping
ζ	_	Damping ratio
%	_	Percent
ω _n	_	Omega N
h	_	Thickness
b	_	Wide
L	_	Length
E	_	Young's Modulus
KPa	_	KiloPascal
N/mm ²	_	Newton per mililimeter squared
kN	_	kilonewton
Hz	_	Hertz
С	-	Damping Coefficient
MPa	_	Mega Pascal
KPa	_	Kilo Pascal
J	_	Joule
KJ	_	KiloJoule
J/mm ²	_	Joule per millimeter squared
g	_	Gram

CHAPTER 1 INTRODUCTION

Kenaf or known as Hibiscus Cannabinus L is a wild plantation from Africa. In China and America, this plant has been planted commercially to get the fiber and supply it to produced paper (Kenaf Conference Proceedings 1994). In Malaysia, this plant is still under progress to replaced tobacco plant and government still doing research on the function of kenaf fiber to produce and invent a new product. This research will use kenaf fiber as a natural filler to produce one new packaging material. The main function of packaging is to protect the product from manufacturing process, loading and unloading till the product goes to the consumer. So that, the product will be in good condition and avoiding from any disadvantages of the packaging. Egg pallet packaging is a one type of cushion in packaging that used to protect, relaxing, holder, and absorb the external vibration of the product. Majority the pallet is made from PET (polyethylene terephthalate) and recycles paper. In this research, the material of this egg pallet will be replaced with an organic material (matrix material, filler and hardener). Composite is a combination of two materials that have different types of mechanical properties. In this project, the researcher used natural composite to produce a new material packaging. Natural composite means the materials are from natural source. Then the researcher do comparison by using between water retting kenaf and mechanical retting kenaf. Figure 1.1 shows the mechanical retting kenaf fiber as filler and Figure 1.2 shows the recycled newspaper fiber as a matrix material. Starch will be as hardener. All these materials are environmental friendly, biodegradable and at the same time, cost can be reduced.

Figure 1.1: Kenaf Fiber

Figure 1.2: Newspaper Fiber

1.1 Objectives of the Research

- i. To obtain and analyze mechanical properties from purpose composite.
- Design a new packaging material for egg pallet by using an organic fiber as a filler
- iii. To compare between mechanical retting kenaf fiber and water retting kenaf fiber.

1.2 Scope of the Research

- i. Literature survey on types of common natural filler that been used in packaging industry.
- ii. A replacement of the common filler with organic filler which is kenaf fiber as an alternative.
- iii. To combine two or more materials in such a way that a synergism between the components result in a new material that is better than individual components.
- iv. Mechanical retting kenaf and Water retting kenaf technique process.
- v. Recycled newspaper process.
- vi. Kenaf fiber as filler, starch as a hardener and recycle newspaper as a matrix material.
- vii. To learn the properties of kenaf fiber and recycled newspaper fiber.

- viii. Mechanical Testing based on ASTM Standard
 - ix. To produce a product that environmental friendly packaging material from kenaf fiber, recycled newspaper fiber and glue.

1.3 Rational of Research

The main purpose of this research is to analyze and investigate the exertion of kenaf fiber as an alternative organic fiber. Nowadays, there a lot of organic fiber can be used as natural filler such as wood flour and banana fiber. This research is to reduce out using all of the chemical filler that is expensive and can avoid any chemical reaction between the packaging and the product. It also can reduce of utilize in inorganic matrix such as PET (Polyethylene terephthalate). Furthermore, it can be easily to recycle and environmental friendly.

1.4 Problem Statement of Research

Currently, packaging material are made of polymer. The usage of the natural fiber in the natural composite as the replacement of conventional fiber can reduce the production cost of the composite product. Global environment issues have led to a renewed interest in bio-based materials with the focus on renewable raw materials can be biodegradable or recyclable at reasonable cost (A.R Sanadi et al. 1994).

Based on the process of the kenaf fiber, there are two ways for a production of kenaf fiber which are mechanical retting process and water retting process Mechanical retting is an easy process compared to water retting because this process is easy and just need a short time compare to water retting process that really need a properly process in a long term. Even though water retting processes produce a nice and smooth fiber, the cost is really high rather than mechanical retting that has a rough surface fiber but in a low cost produce.

Inorganic filler are commonly used in industry to make the materials of product stronger and long lasting. However filler have a bad side effects to the environment sometimes can produce chemical reaction. This wouldn't be environmental friendly user. Mica is a one of inorganic filler that commonly used now day's industry. In a good ways, mica has an outstanding mechanical, thermal, electrical and chemical properties rarely found in any other products. In a bad ways, mica is chemically inert and can easily resist actions of heat, light, water, oil, solvents, alkali and various chemicals. Plus, inorganic matrix like PET have a high cost in recycling it and it cant be vanish easily as refer to Malaysian, they will throw the inorganic egg packaging after they used the egg. Organic filler is natural filler by using hemp fiber or wood flour. The fiber is one of the most valuable parts of the hemp plant. It is commonly called bast, which refers to the fibers that grow on the outside of the woody interior of the plant's stalk, and under the most outer part (the bark). Bast fibers give the plants strength, which is especially true with the hemp plant

Petroleum chemical based materials are expensive and not biodegradable. Kenaf fiber plant will be used as filler, recycled newspaper as matrix material and starch will be as a hardener. In this case, all the materials are come from natural source. Mostly, materials for cushioning or foam packaging are made from polymer. Polymer or plastic mostly are not biodegradable. So, by using these entire natural sources at the same time this research can support the Malaysian Campaign which is 3R (reused, recycled and reduced) that been launched by Malaysia Plastic Forum at One Utama Shooping Centre (Tan Karr Wei et, al 2007). This campaign is about to educate the public to less used plastic bags and reused it. So, Malaysia can save landfills rather than open the new one. Figure 1.3 below shows the benefit of using kenaf fiber as filler in products based on this research.