## DESIGN OF PARASITIC MEANDER LINE ANTENNA AT ISM BAND

NAGARAJAN S/O SAYSOO

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2011

| FAKULTI KE                                                     | U <b>NIVERSTI TEKNIKAL MALAYSIA MELAKA</b><br>JURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER<br><b>BORANG PENGESAHAN STATUS LAPORAN</b><br><b>PROJEK SARJANA MUDA II</b> |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Tajuk Projek</b> : DESIGN O                                 | F PARASITIC MEANDER LINE ANTENNA AT ISM BAND                                                                                                                              |
| Sesi : 2010/2011<br>Pengajian                                  |                                                                                                                                                                           |
| Saya NAGA                                                      | RAJAN A/L SAYSOO                                                                                                                                                          |
| mengaku membenarkan Lapora<br>syarat-syarat kegunaan seperti t | n Projek Sarjana Muda ini disimpan di Perpustakaan dengan perikut:                                                                                                        |
| 1. Laporan adalah hakmilik U                                   | niversiti Teknikal Malaysia Melaka.                                                                                                                                       |
| 2. Perpustakaan dibenarkan m                                   | nembuat salinan untuk tujuan pengajian sahaja.                                                                                                                            |
| 3. Perpustakaan dibenarkan m                                   | nembuat salinan laporan ini sebagai bahan pertukaran antara                                                                                                               |
| institusi pengajian tinggi.                                    |                                                                                                                                                                           |
| 4 Sila tandakan $()^{\circ}$                                   |                                                                                                                                                                           |
| 1. Shu undukun ( 1 ).                                          |                                                                                                                                                                           |
| SULIT*                                                         | (Mengandungi maklumat yang berdarjah keselamatan atau<br>kepentingan Malaysia seperti yang termaktub di dalam AKTA<br>RAHSIA RASMI 1972)                                  |
| TERHAD*                                                        | (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)                                                                 |
| TIDAK TERHAD                                                   |                                                                                                                                                                           |
|                                                                | Disahkan oleh:                                                                                                                                                            |
| (TANDATANGAN PEN                                               | ULIS) (COP DAN TANDATANGAN<br>PENYELIA)                                                                                                                                   |
|                                                                |                                                                                                                                                                           |

ii

"I, hereby declare that this thesis entitled, Design of Parasitic Meander-line Antenna at ISM Band is a result of my own research idea concept for works that have been cited clearly in the references."

SIGNATURE:NAME: NAGARAJAN S/O SAYSOODATE: 12 MAY 2011

"I, hereby declare that I have read this report an in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honours"

SIGNATURE : ..... SUPERVISOR NAME: EN.MOHAMAD ZOINOL ABIDIN BIN ABD. AZIZ DATE : 12 MAY 2011

#### ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest gratitude to my most dedicated and supportive supervisor, En. Mohamad Zoinol Abidin bin Abd Aziz for providing his insightful knowledge and valuable assistance throughout the completion and successfully of this project. It has been a precious learning experience to be to work on this project under his guidance.

A special note of appreciation is extended to my parents, for their unfailing encouragement and financial support that they have given to me for over the years. Their supports and encouragement is one of the main causes of the success I gain.

Thanks also to the technician for their guidance and knowledge they provide to me. My thanks also go to all who support me directly and indirectly in completing this project.

Thank you.

### ABSTRACT

This report proposes the design of Parasitic Meander-line Antenna at ISM band which operates at frequency of 2.4 GHz. The ISM band used is 2.45 – 24.125 GHz. The meander line antenna is classified as microstrip antenna and it is designed using a single layer known as microstrip patch. The project is proposed to design a parasitic meander line antenna which emphasize the reduction in size and increasing the directivity of the antenna. Besides, the antenna is designed to attain the return loss as minimum as well. Initially, a basic meander line antenna is designed by using Parametric Study Method in order to obtain an optimum dimensions of basic design. Then, the project continues towards designing the parasitic meander line antenna by using the similar method. The parasitic element assist the antenna to change its directivity by itself. There are 3 different structures of parasitic meander line antenna are completed at the end of the project. The 3 structures are known as Skewed Up Parasitic Meander Line Antenna (Design I), Skewed Down Parasitic Meander Line Antenna (Design III) and the last is Diamond Shaped Parasitic Meander Line Antenna (Design II). The antenna is designed and simulated using Computer Simulation Technology (CST). It is fabricated on doublesided FR-4 printed circuit board using chemical etching technique. Then the fabricated antennas are measured using indoor measurement techniques with elevated ranges. The antennas are measured using network analyzer, spectrum analyzer and trainer. Similar parameters have been chosen for both simulation and measurement process. The parameters are the resonant frequency, return loss, radiation pattern, directivity, gain, bandwidth and polarization. The comparison between the simulation and measurement results of the designed antennas were presented in the form of report.

### ABSTRAK

Laporan ini mencadangkan reka bentuk Antena Berlekuk Parasit yang berfungsi pada pita ISM iaitu pada frekuensi 2.4 GHz. Pita ISM digunakan adalah 2.45 - 24.125 GHz. Antena berlekuk dikelaskan sebagai mikrostrip antena dan direka menggunakan lapisan tunggal iaitu tampalan mikrostrip. Projek ini dicadangkan untuk mereka antena berlekuk parasit yang menekankan pengurangan saiz dan meningkatkan direktiviti antena selain dari mencapai pulangan kembali yang minimum yang baik. Pada awalnya, antena berlekuk yang asas direka dengan menggunakan Kaedah Kajian Parametrik untuk mendapatkan dimensi optimum. Kemudian, projek ini terus menuju merancang antena berlekuk parasit dengan menggunakan kaedah yang sama. Unsur parasit membantu untuk menukar direktivitinya dengan sendiri. Terdapat tiga struktur antena berlekuk parasit yang berbeza pada akhir projek tersebut. Setiap struktur ini dikenali sebagai "Skewed Up Parasitic Meander Line Antenna (Design I)", "Skewed Down Parasitic Meander Line Antenna (Design III)" dan akhirnya ialah "Diamond Shaped Parasitic Meander Line Antenna (Design II)". Antena ini direka dan disimulasikan menggunakan perisian Simulasi Komputer Teknologi. Antena ini dibuat pada dua sisi papan-4 litar dan dicetak menggunakan teknik etsa kimia. Kemudian diukur dengan menggunakan teknik pengukuran dalam bilik dengan rentangan yang tinggi dengan menggunakan penganalisis rangkaian, penganalisis spektrum dan pelatih antena. Parameter yang serupa telah dipilih untuk kedua-dua simulasi dan proses pengukuran. Parameternya adalah frekuensi resonansi, pulangan kembali, pola radiasi, direktiviti, kuasa penerimaan, lebar jalur frekuensi dan polarisasi. Perbandingan antara hasil kajian yang diperoleh daripada simulasi dan pengukuran direkod dan dipersembahkan dalam bentuk laporan.

# CONTENT

### CHAPTER CONTENT

### PAGE

| PROJECT TITLE                    | i   |
|----------------------------------|-----|
| REPORT STATUS VERIFICATION FORM  | ii  |
| STUDENT'S DECLARATION            | iii |
| SUPERVISOR'S DECLARATION         | iv  |
| ACKNOWLEDGEMENT                  | v   |
| ABSTRACT                         | vi  |
| ABSTRAK                          | vii |
| LIST OF FIGURES                  | xii |
| LIST OF TABLES                   | XV  |
| LIST OF ABBREVIATION AND SYMBOLS | xvi |
| LIST OF APPENDIX                 | XX  |

## I INTRODUCTION

| 1.0 | Project Background   | 1 |
|-----|----------------------|---|
| 1.1 | Problem Statement    | 2 |
| 1.2 | Project Objective    | 3 |
| 1.3 | Scope of the Project | 4 |
| 1.4 | Methodology          | 4 |

## II LITERATURE REVIEW

| 2.0   | Antenna                                 | 7  |
|-------|-----------------------------------------|----|
| 2.0.1 | Radiation Pattern                       | 8  |
| 2.0.2 | Resonant Frequency                      | 9  |
| 2.0.3 | Antenna Gain                            | 9  |
| 2.0.4 | Antenna Directivity                     | 10 |
| 2.0.5 | Antenna Polarization                    | 10 |
| 2.0.6 | Antenna Bandwidth                       | 11 |
| 2.1   | Meander Line Antenna                    | 11 |
| 2.1.1 | Empirical Relation Method               | 14 |
| 2.1.2 | Grid Points Method                      | 16 |
| 2.1.3 | Evolutionary Approach using Genetic     | 17 |
|       | Algorithm and Method of Moment          |    |
| 2.1.4 | Method of Moment using Fractal Dipoles  | 18 |
| 2.2   | Parasitic Element                       | 20 |
| 2.2.1 | Parasitic Element as Directors          | 20 |
| 2.2.2 | Parasitic Element as Shorting Strips    | 21 |
| 2.2.3 | Parasitic Strips with Slot Type Antenna | 22 |
| 2.2.4 | Parasitic as Loading Bars               | 23 |

# III METHODOLOGY

| 3.0 | Introduction                           | 25 |
|-----|----------------------------------------|----|
| 3.1 | Design Specifications                  | 27 |
| 3.2 | Design and Simulation Process of Basic | 29 |
|     | Meander Line Antenna                   |    |
| 3.3 | Parametric Studies on Basic Design of  | 38 |
|     | Meander Line Antenna                   |    |

| 3.4   | Design of Parasitic Element Using | 38 |
|-------|-----------------------------------|----|
|       | Parametric Study Method           |    |
| 3.5   | Fabrication Process               | 41 |
| 3.6   | Measurement Process               | 42 |
| 3.6.1 | Return Loss Measurement           | 42 |
| 3.6.2 | Radiation Pattern Measurement     | 43 |

## IV RESULT AND DISCUSSION

| 4.0   | Introduction                                  | 45 |
|-------|-----------------------------------------------|----|
| 4.1   | Parametric Study for Basic Meander Line       | 45 |
|       | Antenna                                       |    |
| 4.2   | Parametric Study for Design of Parasitic      | 49 |
|       | Element                                       |    |
| 4.2.1 | Analysis for Different Number of Parasitic    | 50 |
|       | Elements with Spacing of 1mm                  |    |
| 4.2.2 | Analysis for Three Different Structures of    | 51 |
|       | Skewed Up Parasitic Meander Line Antenna      |    |
| 4.2.3 | Analysis for Three Different Structures of    | 52 |
|       | Skewed Down Parasitic Meander Line            |    |
|       | Antenna                                       |    |
| 4.2.4 | Analysis for Three Different Structures of    | 53 |
|       | Diamond Shaped Parasitic Meander Line         |    |
|       | Antenna                                       |    |
| 4.3   | Analysis of Results of Basic Meander Line     | 54 |
|       | Antenna                                       |    |
| 4.4   | Analysis of Results of Parasitic Meander Line | 55 |
|       | Antenna                                       |    |

# V CONCLUSION & SUGGESTION

| 5.1 | Conclusion | 58 |
|-----|------------|----|
| 5.2 | Suggestion | 59 |
|     |            |    |

| VI  | REFERENCES | 6 | 0 |
|-----|------------|---|---|
| V I | NEFENEICES | 0 | υ |

# LIST OF FIGURES

| NO   | TITLE                                                             | PAGE |
|------|-------------------------------------------------------------------|------|
| 1.1  | Quarter Wave Vertical Antenna                                     | 2    |
| 1.2  | Dipole Antenna                                                    | 2    |
| 1.3  | Flow Chart of Project                                             | 6    |
| 2.1  | Azimuth and Elevation Angle                                       | 8    |
| 2.2  | Radiation Patterns in Polar Coordinates                           | 8    |
| 2.3  | Directivity of Horn Antenna                                       | 10   |
| 2.4  | Polarization Coordinates                                          | 11   |
| 2.5  | Prototype Antenna Electrical Configuration                        | 12   |
| 2.6  | Basic Structure of Meander Line Antenna                           | 13   |
| 2.7  | Meander Line Antenna                                              | 14   |
| 2.8  | Methods of Designing Meander Line Antenna                         | 14   |
| 2.9  | Various Dimension of Meander Line Antenna using                   | 14   |
|      | Empirical Relation Method                                         | 15   |
| 2.10 | Construction steps of Antenna                                     | 17   |
| 2.11 | Non Uniform MLAN with Parameters                                  | 18   |
| 2.12 | (a) Initiator and (b) Generator                                   | 19   |
| 2.13 | Methods of Designing Meander Line Antenna using Parasitic Element | 20   |

| 2.14 | Notch Antenna with Parasitic Elements                                                                     | 21 |
|------|-----------------------------------------------------------------------------------------------------------|----|
| 2.15 | Antenna Geometry For A Circularly Polarized Patch Antenna with Parasitic Shorting Strips                  | 22 |
| 2.16 | Structures For the Antenna in Terms of Three Ways To<br>Reject the Limited Band                           | 23 |
| 2.17 | Comparisons of the simulated VSWR among Figure 2.16                                                       | 23 |
|      | (a)-(c)                                                                                                   |    |
| 3.1  | Project Methodology                                                                                       | 26 |
| 3.2  | Various dimensions of Meander Line Antenna using                                                          | 28 |
|      | Empirical Relation Method                                                                                 |    |
| 3.3  | a) CST Design Environment and (b) Template of Project                                                     | 30 |
| 3.4  | Workspace Window                                                                                          | 30 |
| 3.5  | (a) Background Properties and (b) Units                                                                   | 31 |
| 3.6  | (a) and (b) Brick Windows                                                                                 | 33 |
| 3.7  | Parameters Setup                                                                                          | 33 |
| 3.8  | Waveguide Port Settings: (a) Dimension and (b) Design                                                     | 34 |
| 3.9  | Frequency Range Settings                                                                                  | 35 |
| 3.10 | Boundary Conditions Settings                                                                              | 35 |
| 3.11 | Monitor Settings for (a) E-Field, (b) H-Field/Surface Current and (c) Farfield/RCS.                       | 36 |
| 3.12 | Mesh Properties Settings                                                                                  | 37 |
| 3.13 | Transient Solver Parameter Settings                                                                       | 37 |
| 3.14 | Method of adding parasitic strips                                                                         | 39 |
| 3.15 | Parasitic Meander Line Antenna with 2 parasitic elements                                                  | 39 |
| 3.16 | (a) Skewed Up Parasitic Design, (b) Skewed Down Parasitic Design and (c) Diamond Shaped Parasitic Design. | 40 |

| 3.17 | Return Loss Measurement Setup                              | 42 |
|------|------------------------------------------------------------|----|
| 3.18 | Radiation Pattern Measurement Setup                        | 43 |
| 4.1  | (a) Graph Frequency vs Number of turns and                 | 46 |
|      | (b) Graph Return Loss vs Number of turns                   |    |
| 4.2  | (a) Graph Frequency vs Horizontal width and                | 47 |
|      | (b) Graph Return loss vs Horizontal width                  |    |
| 4.3  | (a) Graph Frequency vs Vertical width and                  | 48 |
|      | (b) Graph Return loss vs Vertical width                    |    |
| 4.4  | (a) Graph Distance vs Frequency,                           | 49 |
|      | (b) Graph Distance vs Return Loss and                      |    |
|      | (c) Graph Distance vs Directivity                          |    |
| 4.5  | Simulated Radiation Pattern of Basic Meander Line Antenna  | 55 |
| 4.6  | Radiation Pattern of Skewed Up Parasitic Meander Line      | 57 |
|      | Antenna (Design I)                                         |    |
| 4.7  | Radiation Pattern of Skewed Down Parasitic Meander Line    | 57 |
|      | Antenna (Design III)                                       |    |
| 4.8  | Radiation Pattern of Diamond Shaped Parasitic Meander Line | 58 |
|      | Antenna (Design II)                                        |    |

# LIST OF TABLES

| NO  | TITLE                                                          | PAGE |
|-----|----------------------------------------------------------------|------|
| 4.1 | Results of parametric studies for <i>n</i> number of parasitic | 50   |
|     | elements                                                       |      |
| 4.2 | Simulation Results for Three Different Structures of Skewed    | 51   |
|     | Up Parasitic Meander Line Antenna                              |      |
| 4.3 | Simulation Results for Three Different Structures of Skewed    | 52   |
|     | Down Parasitic Meander Line Antenna                            |      |
| 4.4 | Simulation Results for Three Different Structures of           | 53   |
|     | Diamond Shaped Parasitic Meander Line Antenna                  |      |
| 4.5 | Simulation and Measurement Results for Basic Meander           | 54   |
|     | Line Antenna                                                   |      |
| 4.6 | Simulation and Measurement Results for Three Types of          | 55   |
|     | Parasitic Meander Line Antenna                                 |      |

## LIST OF ABBREVIATION AND SYMBOLS

| RF                | - | Radio Frequency                                               |
|-------------------|---|---------------------------------------------------------------|
| ISM               | - | Industrial, Science and Medical (band)                        |
| FR-4              | - | Flame Retardant (Type 4 – made of woven glass                 |
|                   |   | reinforced epoxy resin)                                       |
| CST               | - | Computer Simulation Technology                                |
| U                 | - | Radiation Intensity                                           |
| G                 | - | Gain                                                          |
| $G_{	heta}$       | - | Gain in direction of x-y plane                                |
| $G_{arphi}$       | - | Gain in direction of y-z plane                                |
| $U_{	heta}$       | - | Radiation Intensity in direction of $x$ - $y$ plane           |
| $U_{arphi}$       | - | Radiation Intensity in direction of <i>y</i> - <i>z</i> plane |
| Pin               | - | Input power                                                   |
| Ex                | - | Electric field in x direction                                 |
| $E_{\mathcal{Y}}$ | - | Electric field in <i>y</i> direction                          |
| U-MLA             | - | Uniform meander line antenna                                  |
| NU-MLA            | - | Non Uniform Meander Line Antenna                              |
| MLAN              | - | Non Uniform Meander Line Antenna                              |
| GA                | - | Genetic Algorithm                                             |
| МоМ               | - | Method of Moment                                              |

| d                 | - | Vertical separation between meander line turns |
|-------------------|---|------------------------------------------------|
| S                 | - | Horizontal length of meander line design       |
| L                 | - | Vertical length of meander line design         |
| w                 | - | Width of meander line design                   |
| λ                 | - | Wavelength                                     |
| $\lambda g$       | - | Guided wavelength                              |
| $\epsilon_r$      | - | Relative dielectric constant                   |
| $\epsilon_{reff}$ | - | Effective dielectric constant                  |
| d                 | - | Height or thickness of substrate               |
| RFID              | - | Radio Frequency Identification                 |
| Ν                 | - | Number of turns                                |
| wnl               | - | Horizontal length of Non Uniform Meander Line  |
|                   |   | Antenna                                        |
| wn2               | - | Horizontal length of Non Uniform Meander Line  |
|                   |   | Antenna                                        |
| hn1               | - | Vertical length of Non Uniform Meander Line    |
|                   |   | Antenna                                        |
| hn2               | - | Vertical length of Non Uniform Meander Line    |
|                   |   | Antenna                                        |
| Wo                | - | Central segment horizontal length              |
| ho                | - | Central segment vertical length                |
| HN                | - | Total vertical length for N turns              |
| WN                | - | Total horizontal length for N turns            |
| Nbit              | - | Number of bits                                 |
| hmin              | - | Minimum segment length                         |
| hmax              | - | Maximum segment length                         |
| Х                 | - | Input Reactance                                |

| Hmax           | - | Maximum vertical length                       |
|----------------|---|-----------------------------------------------|
| Wmax           | - | Maximum horizontal length                     |
| IFS            | - | Iterated Function System                      |
| ω              | - | Number of Iteration                           |
| r              | - | Scaling factor                                |
| e, f           | - | Translations of transformation                |
| UWB            | - | Ultra Wideband                                |
| VSWR           | - | Voltage Standing Wave Ratio                   |
| d              | - | Ground plane                                  |
| h              | - | Horizontal length of meander line antenna     |
| v              | - | Vertical length of meander line antenna       |
| dB             | - | Desibel                                       |
| f              | - | Frequency                                     |
| RL             | - | Return loss                                   |
| BW             | - | Bandwidth                                     |
| D              | - | Directivity                                   |
| w <sub>c</sub> | - | Copper width                                  |
| Zo             | - | Characteristic Impedance                      |
| PEC            | - | Perfect Electric Conductor                    |
| E-field        | - | Electric field                                |
| H-field        | - | Magnetic field                                |
| RCS            | - | Radar Cross Section                           |
| HPBW           | - | Half Power Beam Width                         |
| FNBW           | - | Full Null Beam Width                          |
| п              | - | Number of turns of basic meander line antenna |

| hw  | - | Horizontal width of basic meander line antenna |
|-----|---|------------------------------------------------|
| vw  | - | Vertical width of basic meander line antenna   |
| t   | - | Maximum length of parasitic element            |
| SMA | - | Subminiature version-A (connector)             |
| AUT | - | Antenna Under Test                             |
| DUT | - | Device Under Test                              |
| GEN | - | Generator                                      |
| OUT | - | Output                                         |
| ACQ | - | Acquisition (software)                         |
| GR  | - | Received Gain                                  |
| GT  | - | Transmitted Gain                               |
| PR  | - | Received Power                                 |
| PT  | - | Transmitted Power                              |
| dBi | - | Desibel Isotropic                              |

# LIST OF APPENDICES

| APPENDIX | TITLE                                     | PAGE |
|----------|-------------------------------------------|------|
| А        | Basic and Parasitic Meander Line Antennas | 64   |
| В        | Simulation Return Loss Graphs             | 65   |
| С        | Farfield/RCS Diagrams                     | 67   |
| D        | Measurement Return Loss Graphs            | 69   |
| Е        | Measurement Radiation Patterns            | 71   |

XX

### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.0 Project Background

An antenna is a transducer that transmits or receives electromagnetic waves. In other words, antennas convert electromagnetic radiation into electrical current or vice versa. Antennas generally deal in the transmission and reception of radio waves and are a necessary part of all radio equipment. Based on another source, antenna is defined as an electrical conductor or system of conductors. Antenna can be used in two ways communication, transmitting and receiving. An antenna is a circuit element that provides a transition form a guided wave on a transmission line to a free space wave and it provides for the collection of electromagnetic energy. The most basic antenna is called quarter wave vertical antenna, it is a quarter wavelengths long and is a vertical radiator. Typical examples of this type would be seen installed on motor vehicles for two way communications. Technically the most basic antenna is an "isotropic radiator". This is a mythical antenna which radiates in all directions as does the light from a lamp bulb. It is the standard against which we sometimes compare other antennas.

In transmitting systems the RF signal is generated, amplified, modulated and applied to the antenna. Meanwhile, in receive systems the antenna collects electromagnetic waves that are ,cutting" through the antenna and induce alternating currents that are used by the receiver. An antenna ability to transfer energy from the atmosphere to its receiver with the same efficiency as it transfers energy from the transmitter into the atmosphere. Antenna characteristics are essentially the same regardless of whether an antenna is sending or receiving electromagnetic energy.



Figure 1.1 Quarter Wave Vertical Antenna [2].



Figure 1.2 Dipole Antenna [2].

#### 1.1 Problem Statement

There are many aspects need to be considered in designing an antenna. The problems that usually found in existing antenna are referred to the size of the antenna. First of all, the size of normal antennas is very huge and increasing the cost expended. The larger antennas are difficult to be located and unable to shift from one place to another place. For example, the Yagi-Uda and parabolic-dish (ASTRO) antennas that

found on home rooftops are difficult to remove or relocate [3]. In order to overcome the problem, a meander line antenna could be a best solution to be designed. Meander line antenna is chosen because it is one of the best techniques used to reduce or miniaturize the size of antenna. It is smaller in size and very flexible to be shifted or relocated.

The meander line technique is an effective size to be designed because it consumes smaller area and produced larger volume due to the meandered element. In terms of radiation, an ordinary antenna radiates its signal only in one direction of strongest emission called directivity. The current ordinary antennas have a small scope of directivity and not able to change its directivity itself. In order to obtain a uniform transmission of radiation through the strongest emission, the directivity should be increased. Therefore, designing parasitic element together with meander line antenna can contributes towards good parasitic effect [4]. It enables the changing of its directivity by itself and resulting in higher power gain of antenna.

#### **1.2 Project Objectives**

The objective of this project is to design, simulate and fabricate a parasitic meander line antenna at ISM band (2.4 - 2.5 GHz). It is designed to be smaller in size compared to existing antennas and consistently reducing the cost of design. The meander line antenna has been designed to operate at 2.4 GHz as it approaches the industrial, scientific and medical radio bands. Aside from size, the proposed design also emphasize in producing higher directivity as well as it can contributes towards higher gain. The characteristic of antenna with minimum return loss as possible is obtained and considered good and able to perform well.

#### 1.3 Project Scope

The scope of the project is designing the basic meander line antenna then enhances the design by adding parasitic element at low cost of simple structure. The parasitic meander line antenna is designed to operate at ISM band. Then, both of the basic and parasitic meander line antennas are simulated using the Computer Simulation Technology (CST) software. The project continues by fabricating both of the designs on FR-4 printed circuit board by using chemical etching process. The parameters that simulated and measured through the project are the resonant frequency, return loss, directivity, gain, bandwidth and radiation pattern. The fabricated designs are measured with the aid of the equipments such as network analyzer, coaxial cables and signal generator. Then, the comparison between simulation and measurement results of basic meander line and parasitic meander line antenna are presented in the form of report.

### 1.4 Methodology

First of all, before the project was conducted, the literature review was done by gathering information about existing ordinary antennas. Information regarding the project taken from books, journals and internet resources for better understanding and to find solutions or options. As for next step, the design of parasitic meander line antenna was studied. The process of designing antenna using parasitic element was analyzed. Then, get used to the software and basic skills of it. The software or simulator that used is Microwave Studio CST of Microwave Office. The parameters that obtained from simulation are the frequency, return loss, directivity, gain, bandwidth, radiation pattern and polarization [5].

Besides, the fabrication process is carried out onto FR-4 printed circuit board by using chemical etching technique. The FR-4 board is used because of its material substrates. It is made of woven fiberglass cloth with an epoxy resin binder that is flame resistant. It is versatile high pressure thermo set plastic laminate grade with good