PROFILE IMAGING OF CONVEYING PIPE VIA FAN BEAM PROJECTION OF ULTRASONIC BASED TOMOGRAPHY

NABILA AINI BINTI ABDUL RAHMAN

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronic Engineering)

With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

May 2011

4.

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

 Tajuk Projek
 : PROFILE IMAGING OF CONVEYING PIPE VIA FAN BEAM PROJECTION OF ULTRASONIC BASED TOMOGRAPHY

Sesi Pengajian : 2010/2011

Saya NABILA AINI BINTI ABDUL RAHMAN

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

Sila ta	indakan (V):	
	SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
₩	TIDAK TERHAD	
		Disahkan oleh:
	(TANDATANGAN PENULI	S) (COP DAN TANDATANGAN PENYELIA)

Tarikh:

Tarikh:

"I hereby declare that this report is the result of my own work except for the quotes as cited in the references."

Signature :

Author : Nabila Aini Binti Abdul Rahman

Date : 2nd May 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in
terms of the scope and quality for the award of Bachelor of Electronic Engineering
(Telecommunication Electronic Engineering) With Honours."

Signature :

Supervisor's Name : Mr Adie Bin Mohd Khafe

Date : 2nd May 2011

To my parents, family members, friends and all which involved

ACKNOWLEDGEMENT

بسم الله الرحين الرحيم

First and foremost, I would like to praise God for His blessing. He gave me physical and mental strength to carry on my final year project up to completion. I would like to express gratitude and thanks to my supervisor, Mr Adie Bin Mohd Khafe for his support and unfailing patience throughout the duration of the project. His encouragement and guidance are truly appreciated. Otherwise, this project has not been possible. I have learnt a lot under his guidance, be it practically or theoretically. Thanks a lot to all FKEKK lectures because willing to give an opinion and also give me guides to realize this project. Every idea that all of you gave to me is very constructive and help me to solve the technical problem during I do this project. Other than that, I am also grateful to my all friends who help me and giving me opinion along implementation of this project. I would like to thanks my parent on their moral support as I can count on them whenever I am upset or down. Finally, I would like to offer thanks and deepest gratitude from the bottom of my heart for all the support, encouragement and inspirations I obtained throughout the duration of this project. The help rendered to me priceless, be it from the smallest of its kind to the largest.

ABSTRACT

Information on flowing particles is vital in the analysis and measurement of industrial process flow. The overall objective of this project is to implement Ultrasonic emitter and receiver in a Fan Beam Type Projection for monitoring of flowing particles. This method is able to provide cross-sectional image of material distribution i.e. the concentration profile. This image is formed by reconstruction of data obtained from the array of sensors. Images of the flow captured using infra-red sensors are digitized into a form suitable for computer processing of the flow pictures. The advantages of this method is that it is cheaper and safer than most of the current methods which mostly made use of radioactive methods. Various process industries such as petroleum and food processing can benefit from such invention to improve their products and reduce the amount of wastage. This project involved constructing hardware and interfaces it with software through Data Acquisition Card. In this project, student will design & implement signal control circuit, jig & fixture design / fabrication and data processing method using Visual Basic.

ABSTRAK

Maklumat mengenai zarah yang mengalir adalah penting dalam menganalisis dan mengukur untuk industri pemprosesan ukuran. Objektif keseluruhan projek ini adalah untuk melaksanakan pemancar dan penerima ultrasonic dalam 'Fan Beam Type Projection' untuk memantau pergerakan zarah. Kaedah ini berkebolehan untuk mendapatkan imej keratan retas bagi taburan material seperti profil penumpuan. Imej ini dibentuk menggunakan pembinaan semula data yang diperoleh daripada susunan sensor. Aliran imej yang diambil menggunakan sensor infra-merah didigit pada bentuk yang sesuai untuk menghasilkan gambar aliran dalam proses computer. Kelebihan kaedah ini adalah murah dan selamat berbanding kaedah yang digunakan sekarang yang kebanyakannya menggunakan kaedah radioaktif. Pelbagai proses industri seperti petroleum dan pemprosesan makanan akan mendapat faedah untuk meningkatkan kualiti produk dan mengurangkan pembaziran. Projek ini melibatkan pembuatan perkakasan dan juga dihubungkaitkan dengan perisian melalui Kad Pemungutan Data. Dalam projek ini, pelajar akan merekabentuk dan melaksana litar kondisi isyarat, memasang rekabentuk/fabrikasi dan kaedah memproses data menggunakan 'Visual Basic'.

TABLE OF CONTENTS

CHAPTER	TITI	LE	PAGE
	PRO	JECT TITLE	i
	REP	ORT'S STATUS APPROVAL FORM	ii
	DEC	CLARATION	iii
	SUP	ERVISOR APPROVAL	iv
	DED	DICATION	v
	ACN	OWLEDGEMENT	vi
	ABS	TRACT	vii
	ABS	TRAK	viii
	TAB	LE OF CONTENTS	ix-xii
	LIST	T OF FIGURES	xiii-xv
	LIST	T OF ABBREVIATIONS	xvi-xvii
	LIST	Γ OF APPENDIXES	xviii
	LIST	T OF SYMBOLS	xix
I	1.0	INTRODUCTION	1
	1.1	Overview of Project	1-2
	1.2	Objectives of the Project	2
	1.3	Problem Statement	2
	1.4	Scope of the Project	3
	1.5	Methodology of the Project	4
	1.6	Project Outline	5

II	2.0	LITERATURE REVIEW	6
	2.1	Introduction to Tomography Process	6-7
	2.2	Types of Tomography Sensors	7-8
		2.2.1 Electrical Capacitance Tomography	8
		(ECT)	
		2.2.2 X-Ray Computed Tomography	9
		(CT)	
		2.2.3 Magnetic Resonance Imaging	10
		(MRI)	
		2.2.4 Electrical Charge Tomography	11
		2.2.5 Electrical Impedance Tomography	12
		(EIT)	
		2.2.6 Ultrasonic Tomography	13-15
		2.2.7 Optical Tomography	15-16
	2.3	Type of Projection	17
		2.3.1 Fan Beam Projection Technique	17-18
		2.3.2 Parallel Beam Projection Technique	18-19
	2.4	Visual Basic 6.0	20
Ш	3.0	RESEARCH METHODOLOGY	21
	3.1	Introduction	21
	3.2	Ultrasonic Sensors	22-23
	3.3	Sensor Fixture	23-24
	3.4	Ultrasonic Transmitting Circuit	25
	3.5	Ultrasonic Receiving Circuit	26
		3.5.1 The Design of Ultrasonic Receiving Circuit	27-30

		3.6 Circu	iit Designation in Proteus 7.1 software	31-32
		3.7 Print	ed Circuit Board (PCB Design)	33-35
		3.8 Imag	e Reconstruction	35-36
		3.9 Linea	ar Back Projection (LBP) Technique	36-40
		3.10 Data	Acquisition System	41
		3.11 Softv	vare Development	42
IV	4.0	RESULTS A	AND DISCUSSIONS	43
	4.1	Introduction		43
	4.2	The Circuit	Гesting	44
		4.2.1 The I	Protoboard Test	44-45
		4.2.2 Simu	lation	46-47
		4.2.3 PCB	Circuit Test	48-49
	4.3	Concentration	on Measurement	49
		4.3.1 Expe	riment 1 (2cm x 2cm cube)	50-51
		4.3.2 Expe	riment 2 (3cm x 3cm cube)	52-53
	4.4	Discussion		54-55
V	5.0	CONCLUS	IONS AND SUGGESTIONS	56
	5.1	Conclusions		56-57
	5.2	Suggestions	For Future Work	58

REFERENCES	59-61
APPENDIX A	62
APPENDIX B	63-68
APPENDIX C	69-71
APPENDIX D	72-75

LIST OF FIGURES

NO	TITLE	AGE
1.1	Methodology Flow	4
2.1	Overview of Process Tomography	6
2.2	Principal Components of a Process Tomography System	7
2.3	Schematic Diagram of ECT System	8
2.4	Basic CT Imaging System	9
2.5	Diagram showing the Electrical Model of EIT	12
2.6	Fan-shaped Arrangements of Different Array Structure	18
	of the Sensor	
	(a) 4 Light Sources, 15 Beams;	
	(b) 15 Light Sources, 5 Beams;	
	(c) 15 Light Sources, 15 Beams	
2.7	(a) Parallel Beam Projections	19
	(b) Two Orthogonal Projections	
	(c) Two Rectilinear Projections	
3.1	Research Methodology	21
3.2	Ultrasonic System Topology	23
3.3	Top View and Side View of the Sensor Fixture	23
3.4	The arrangement of sensors on top view	24
3.5	The arrangement of sensors from top view	24
3.6	Ultrasonic Transmitting Circuit	25
3.7	Ultrasonic Receiving Circuit	26

3.8	Pre amplifier	27
3.9	Output of pre-amplifier	27
3.10	Amplifier	28
3.11	Signal output that was amplified	28
3.12	Bandpass filter circuit	29
3.13	Combination of full wave rectifier and dc converter circuit	30
3.14	Output of dc value	30
3.15	Schematic Layout of Transmitting Circuit	31
3.16	Schematic Layout of Receiving Circuit	32
3.17	PCB Layout of Transmitting Circuit	32
3.18	PCB Layout of Receiving Circuit	32
3.19	Fabrication Process	33
3.20	Ultrasonic Transmitting Circuit (5 units)	34
3.21	Ultrasonic Receiving Circuit (15 units)	34
3.22	Complete Installation of Hardware and Software	35
3.23	LBP Concept in Fan Beam Projection	36
	(a) Different Back Projected Rays Results from	
	Fan Beam Emanation	
	(b) Ray Summation for Fan Beam Projections	
3.24	The sensitivity map for each sensor's projection	40
3.25	Concentration Profile Flow Chart	42
4.1	The protoboard testing for receiving	
	and transmitting circuit	44
4.2	Output of pre-amplifier	44
4.3	Signal output that was amplified	45
4.4	Output of dc value	45
4.5	Transmitting Circuit	46
4.6	The result from simulation of transmitter circuit	46
4.7	Receiving Circuit	47
4.8	The result from simulation of receiving circuit	47
4.9	Receiver, 39.37 kHz	48

4.10	Transmitter, 38.76 kHz	48
4.11	Output of Receiver, 9V	49
4.12	Measurement 1 for 2cm x 2cm cube	50
4.13	Measurement 2 for 2cm x 2cm cube	51
4.14	Measurement 1 for 3cm x 3cm cube	52
4.15	Measurement 2 for 3cm x 3cm cube	53
4.16	The GUI of the system measurement	54
4 17	Concentration Profile	54

LIST OF ABBREVIATIONS

AC Alternating Current

CT X-Ray Computed Tomography

DAS Data Acquisition System

DC Direct Current

ECT Electrical Capacitance Tomography

EIT Electrical Impedance Tomography

EMI Electromagnetic interference

GUI Graphical User Interface

IDE Integrated Development Environment

kHz kilohertz

LBP Linear Back Projection

LED Light Emitted Diode

MRI Magnetic Resonance Imaging

 $M_{Tx,Rx(x,y)}$ The normalized sensitivity matrices for the view of Tx-Rx

Linear Back Projection algorithms

nm nanometres

OpAmp Operational Amplifier

PC Personal Computer

PCB Printed Circuit Board

pm picometres

PVC Polyvinyl chloride

Rx Receiver

 $S_{RX,TX}$ Signal loss amplitude of receiver Rx-th for projection

Tx- th in unit of volt

Tx Transmitter
VB Visual Basic

 $V_{LBP(x,y)}$ Voltage distribution obtained using LBP algorithms

LIST OF APPENDIX

NO	TITLE	PAGE
A	Project Planning Schedule	62
В	Visual Basic Programming Software	63-68
C	Example of Data in Microsoft Excel format	69-71
D	List of Data Sheets	72
	(A) ULTRASONIC TRANSDUCER	72-73
	(B) OP-AMP TL084	74
	(C) TIMER 555	75

LIST OF SYMBOLS

 $V_{LBP(x,y)}$ - Voltage distribution obtained using LBP algorithms

 $S_{RX,TX}$ - Signal loss amplitude of receiver Rx-th for projection

Tx- th in unit of volt

 $\overline{M}_{Tx,Rx(x,y)}$ - The normalized sensitivity matrices for the view of Tx-Rx

Linear Back Projection algorithms

CHAPTER 1

INTRODUCTION

This chapter will discuss the overview of project, the objectives of the project, problem statement and scope of the project. The end of this chapter will discuss the outline of the methodology used in this project.

1.1 Overview Of Project

This project describes an investigation of the use of ultrasonic based tomography to provide cross-sectional image of material distribution. The system employs fan beam projection with the using of ultrasonic sensor. The system can be applied to produce cross-sectional images of flowing particles. The ultrasonic tomography measurements circuit consists of sensors, signal conditioning circuits and data acquisition system. Sensors fixture are designed based on fan beam projection technique. The signal is transmitted from the transmitter to the receiver whereas for this project, the transmitter will produce three beam projections. The numbers of transmitter used are five in order to get fifteen projections to the receiver. This project also involves constructing hardware and interfaces it with software through Data Acquisition Card. Visual Basic 6.0 is used for software algorithms on concentration and velocity measurement. Interfacing card is

used to interface the analog signals to the computer. This provides information on the concentration of the flowing objects.

1.2 Objectives of the Project

This project aims to construct/fabricate an ultrasonic based tomography system which is utilizes fan beam projection to obtain cross section view of conveying pipe. The specific objectives of this project are:

- 1. Become familiar with the concept of process ultrasonic based tomography.
- 2. To integrate hardware and data acquisition system that will provide data for cross sectional image of flowing particle.
- 3. To implement the using of infrared as the transmitter or source.
- 4. To produce a safer and cheaper products in industrial process.
- 5. Develop software using Visual Basic (VB) 6.0 to display the cross sectional image of flowing particle.

1.3 Problem Statement

The main purpose of this project is to find the cross section view by using tomography method. Previously, the methods that have been used are rectilinear and orthogonal method. These methods are very straight forward which is used just one emitter for one projection causing high cost with low number of resolution. The number of emitter is directly proportional to the number of resolution. In order to increase the number of resolution, fan beam projection method has been identified that is more effective which is using only one emitter can produce three projections. Besides, it also can reduce cost.

1.4 Scope of the Project

The scope of this project is:

- 1. Construct jig/fixture of ultrasonic tomography system.
- 2. Construct signal emitter circuit and signal conditional circuit for ultrasonic emitter and receiver.
- 3. Develop a fan beam based tomography system to display cross section view by using Visual Basic programming.
- 4. Ensure scope of work above can be integrate and measure. Besides, it can implement fan beam tomography system.

1.5 Methodology of the Project

Below is the flow of the methodology used in this project:

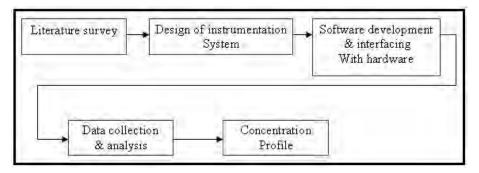


Figure 1.1: Methodology flow

- 1. Literature Survey
 - Process tomography
 - Sensing techniques
 - Image reconstruction algorithms
- 2. Design of Instrumentation System
 - Sensor's fixture
 - Transmitter & receiver selection
 - Signal conditioning circuit
- 3. Software development & interfacing with hardware
 - Interfacing DAS card with measurement system
 - Design of PCB Circuit and also simulation
- 4. Data collection & analysis
 - Process measurement
 - Data collection & analysis
- 5. Concentration profile
 - Tomography image reconstruction by using Visual Basic 6.0

1.6 Project Outline

This report consists of five chapters. Chapter 1 introduces the overview of project, the objectives of the project, problem statement, scope of project, methodology and project outline.

Chapter 2 mainly discusses the literature review that is related to this project research. It consists of the introduction to process tomography, typical sensors used in process tomography, type of projection in tomography system and lastly some overview regarding Visual Basic 6.0.

Chapter 3 discusses on the research methodology hardware development process where the criteria of the sensors are presented. The basic structure of the process, data acquisition system, signal conditioning circuit and software development on image reconstruction using Visual Basic also discussed here.

Chapter 4 presents the results obtained from the experiments done to test the receiver circuit. The results obtained are discussed and a conclusion was drawn based on the analysis.

Chapter 5 contains the conclusions from this project and some suggestions for future work and development are given in order to improve the system ability.