DAMAGED IDENTIFICATION OF MECHANICAL SYSTEM VIA CHANGES IN THEIR VIBRATION CHARACTERISTICS

MOHD HAIRI FIFI BIN MANSOR

FUNIVERSITI TEKNIKAL MALAYSIA MELAKA

"I admit to have read this report and it has followed the scope and quality in Partial Fulfillment of Requirement for the Degree of Bachelor of Mechanical Engineering (Automotive)"

Signature	:
First Supervisor Name	: Mr. Ahmad Fuad Bin. Abd Ghani
Date	:

Signature	:
Second Supervisor Name	: Mr. Zairulazha Bin Zainal
Date	:

C Universiti Teknikal Malaysia Melaka

DAMAGED IDENTIFICATION OF MECHANICAL SYSTEM VIA CHANGES IN THEIR VIBRATION CHARACTERISTICS

MOHD HAIRI FIFI BIN MANSOR

This Report Is Submitted In Partial Fulfillment of Requirement for the Bachelor Degree of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2010

AGREEMENT

"I agree that this report is my own work except for some summaries and information which I have already stated"

Signature	:
Name	: MOHD HAIRI FIFI BIN MANSOR
Date	: MAY 2010

DEDICATION

To My Beloved Family

Mansor B. Salleh

Hasmah Bt. Derani

Illy Hazwani Bt. Mansor

Mohd Hanuar Fitri B. Mansor

Mohd Hazwan B. Mansor

Illy Haryanie Bt. Mansor

ACKNOWLEDGEMENT

Firstly, my greatest gratitude to Allah, for His will, I managed to complete this study. Thanks a lot for giving me the good health and opportunity for me to complete this study. Then, for the first important person that play big part in this study, I would like to dedicate my thousand of thanks to my supervisor Mr. Ahmad Fuad B. Abdul Ghani for his guidance while I'm doing this research besides help me to find out the information to complete this research (PSM) in the given due date.

I would like to dedicate my thanks to those who are directly or indirectly participate in this report. Thanks to all the CIMA worker, especially to Mr. Chong Kok Kong (Head of Maintenance Department, Perlis Plant), Mr. Saiful B. Anwar (Senior Engineer, Bahau Plant), Mr. Fikri b. Che Mansor (Young Executive Engineer), Mr. Muhammad Zulfadli bin wahab (Maintenance Planner Engineer, Bahau Plant) and Mohd Fais B. Mohd Yusof (Junior Technician) as their afford to give me a lot of information due to this research about vibration monitoring analysis.

Not forget to my beloved family, especially for my father and my mother, all my friends, class mate, house mate, and everyone who related to this report. I want to thank you a lot for given me support in finishing this report.

ABSTRAK

Projek ini dijalankan untuk mengenalpasti kerosakan sistem mekanikal melalui perubahan dalam kriteria getaran. Dengan demikian, tujuan daripada laporan ini adalah untuk menyemak sistem mekanikal menggunakan pengesanan, lokasi, dan Kriteria rosak melalui teknik pemantauan getaran selain menggunakan teknik yang tepat dalam mengukur sistem mekanikal. Kriteria getaran sangat berkaitan dengan pemantauan getaran analisis yang digolongkan dalam pemeliharaan ramalan (predictive maintenance) yang menjanjikan banyak kelebihan di dalam bidang industri. Untuk menyokong kajian ini, kajian kes dilakukan dengan kerjasama industri berat untuk menerapkan konsep (hands on) mahasiswa UTeM. Analisis Pemantauan Getaran akan diterapkan untuk melaksanakan tujuan kajian ini. Spesimen kajian ini iaitu mesin dipilih di CIMA (Cement Industries of Malaysia Berhad) berdasarkan prinsip operasinya. Kemudian, kajian dimulakan dengan mengambil bacaan getaran menggunakan Micro Log CMVA 60, Portable Data Collector / FFT Analyzer dan CSI 2130 FFT Analyzer. Kemudian ia dianalisis menggunakan software PRISM4 dan MHM. Sebelum itu, perbincangan mendalam mengenai analisis pemantauan getaran dilakukan seperti menetapkan parameter untuk memilih sensor atau bagaimana memilih lokasi pengukuran untuk memastikan bahawa kajian kes ini mengikuti piawaian analisa pemantauan getaran. Keputusan data akan diterjemahkan dalam satu gambarajah spektrum dan nilai keseluruhan terhadap masa. Kajian kes ini akan dihuraikan dengan lebih mendalam dengan menganalisis data mentah bergantung kepada krateria getaran mereka sendiri sebagai langkah untuk menentukan keadaan mesin.

ABSTRACT

This project is carried out to identify damages of mechanical system via changes in their vibration characteristics. Thus, the objective of this report is to examine mechanical system using detection, location, and characterization damaged via vibration monitoring technique besides utilize appropriate technique in measured mechanical system. Vibration characteristics are closely related with vibration monitoring analysis that classified under predictive maintenance that promised a lot of advantages in industrials fields. To support this study, a real case study with cooperation heavy industry is setup to apply hands on concept that is influence UTeM to their student. Vibration Monitoring Analysis will be applied to implement the objective of this study. The specimens of this study are selected among of the machine at CIMA (Cement Industries of Malaysia Berhad) due to its operational usage. The process starts by taking vibration reading using Micro log CMVA 60, Portable Data Collector/FFT Analyzer and CSI 2130 FFT Analyzer. Then it will be analyze using software PRISM4 and MHM. Before that, detail discussions of vibration monitoring analysis are conduct such as parameter to select sensor, transducers, or how to choose measurement location to make sure that this experiment followed the standard of Monitoring analysis. Result data will be present in single spectrum plot and overall value versus time trending. This study will go deeper by analyzing the raw data depending to their own characteristic as a process to determine the health and condition of the machine.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	AGREEMENT	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRAK	v
	ABSTRACT	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiv
	LIST OF FIGURE	xvi
	LIST OF SYMBOL	xix
	LIST OF APPENDIX	XX

CHAPTER I	INTRODUCTION	
	1.1 Background of Study	1
	1.2 Problem Statement	2
	1.3 Objective of Study	2
	1.4 Scope of Study	3
	1.5 Important of Study	3
	1.6 Report Summary	4

viii

CHAPTER II	LITERATURE REVIEW	
	2.1 Introduction of Vibration	6
	2.2 Previous case study depending of	6
	advantages of Vibration Monitoring	
	2.3 A Comparison of Maintenance	9
	Philosophies	
	2.4 Vibration as a Predictive Maintenance	9
	Tool	
	2.5 The Vibration Predictive Maintenance	10
	Program	
	2.6 Vibration Monitoring	10
	2.6.1 Vibration Definitions	11
	2.6.2 Vibration Causes	11
	2.6.2.1 Repeating Force	12
	2.6.2.2 Resonance	12
	2.6.3 Importance of Monitoring Machine	13
	Vibration	
	2.6.4 Basic Vibration Measurement	13
	2.6.4.1Understanding How	13
	Vibration Produces Strip	
	Chart	
	2.6.4.2 Vibration Frequency and	15
	How It Related To a Time	
	Waveform	
	2.6.4.3 Vibration Amplitude	16
	2.6.4.3.1 Vibration Displacement	17
	2.6.4.3.2 Vibration Velocity	17
	2.6.4.3.3 Vibration Acceleration	18
	2.6.4.4 When to Use Displacement,	19
	Velocity, and Acceleration	
	2.6.4.5 Vibration Phase	19

CHAPTER	TITLE	PAGE
	2.6.4.6 Vibration Spectrum (Known	20
	as FFT and Signature)	
	2.7 Type of Vibration Instruments	23
	2.8 Type of Various Transducers	23
	2.8.1 Transducers Mounting	24
	2.9 Spectra Alarm Bands and Frequency	24
	Range	
	2.9.1 Type of Spectral Alarm Bands	24
	2.9.2 Specification of Overall Vibration	25
	Alarm Level	

CHAPTER III METHODOLOGHY

3.1 Introduction	26
3.2 Study Procedure	28
3.3 Selecting the Suitable Method for Case	29
study	
3.4 Selecting Company	30
3.5 Selected Company Prolife Review	30
3.5.1 Company Introduction	30
3.5.2 CIMA, Perlis Plant	31
3.5.3 Basic Step of Cement Production	31
3.6 Selected Area of Case Study	32
3.7 Selected Machine of Case Study	32
3.8 Selected Data Collector / Analyzer	33
3.8.1 Microlog CMVA 60, Portable Data	33
Collector/FFT Analyzer details	
3.8.2 Specification	34
3.8.3 CSI 2130 Machinery Health	35
Analyzer	
3.9 Experiment Setup	35
3.9.1 Purpose of Experiment	36
3.9.2 Procedure of Experiment	36

CHAPTER	TITLE	PAGE
	3.9.2.1 Instrument Selection, Setup	36
	and Condition	
	3.9.2.2 Choosing Measurement	38
	Location	
	3.9.2.3 Vibration Measurement	40
	Techniques	
	3.9.2.4 Detail form of Inspection	42
CHAPTER IV	RESULT AND ANALYSIS	
	4.1 Introduction	48
	4.2 ISO Guidelines	49
	4.3 Criteria of Machine Diagnostic	50
	4.4 Microlog FFT Analyzer CMVA 60	51
	Vibration Test	
	4.4.1 Case 1: Burner Gun Fan 48AFN02	51
	4.4.1.1 Result Table for 48AFN02	52
	4.4.1.2 Overall Value vs. Time	53
	Trending Analysis for	
	48AFN02	
	4.4.1.3.Single Spectrum Plot for	54
	48AFN02 (DE2A)	
	4.4.1.4 Analysis for Single Spectrum	54
	Plot 48AFN02 (DE2A)	
	4.4.1.5 Single Spectrum Plot for	55
	48AFN02 (DE3H)	
	4.4.1.6 Analysis for Single Spectrum	56
	Plot 48AFN02 (DE3H)	
	4.4.2 Case 2: Kiln Air lift Blower	57
	48ABL01	
	4.4.2.1 Result Table for 48ABL01	57

TITLE	PAGE
4.4.2.2 Overall Value vs. Time	58
Trending Analysis for	
48ABL01	
4.4.2.3 Single Spectrum Plot for	59
48ABL01 (DE2H)	
4.4.2.4 Analysis for Single Spectrum	59
Plot 48ABL01 (DE2H)	
4.4.2.5 Single Spectrum Plot for	60
48ABL01 (NDE4V)	
4.4.2.6 Analysis for Single Spectrum	61
Plot 48ABL01 (NDE4V)	
4.4.3 Case 3: COOLER GRATE DRIVE	61
471GQ02	
4.4.3.1 Result Table for 471GQ02	62
4.4.3.2 Overall Value vs. Time	63
Trending Analysis for	
471GQ02	
4.4.3.3 Single Spectrum Plot	64
Analysis for 471GQ02	
(DE2V)	
4.4.3.4 Single Spectrum Plot for	65
471GQ02 (3V)	
4.4.3.5 Analysis for Single Spectrum	66
Plot 471GQ02 (3V)	
4.5 CSI 2130 ANALYZER Vibration Test	67
4.5.1 831FN1 Summary of Machine	67
Condition Matrix	
4.5.2 Result and analysis for 831FN1	68
4.5.3 Single Spectrum Plot Analysis for	69
831FN1 (DE3H)	

CHAPTER TITLE

CHAPTER V DISCUSSION

5.1 Introduction	71
5.2 General Initial Start Up of Vibration	72
5.3 Effect on frequency of FFT lines Used	73
5.4 Vibration Hardware	74
5.5 Discussion of Result and Analysis	76
5.6 Alarm Band	77
5.7 Potential Causes of Vibration	79
5.7.1 Equipment and Material	79
5.7.2 People	80
5.7.3 Environment	80
5.8 Method to Eliminate Vibration	81

CHAPTER VI IMPROVEMENT

6.1 Conclusion	83
6.2 Suggestion of Improvement	85

REFERENCE 87

BIBLIOGRAPHY 89

APPENDIX A (TABLE)	90
A1. Typical Vibration Measurement	91
Instrument Characteristics	
A2. General Transducers Characteristics	92
A3. Criteria For Overall Condition Rating	93
RMS	
A4. Illustrated Vibration Diagnosis Part 1	94
A5. Illustrated Vibration Diagnosis Part 2	95
A6. Illustrated Vibration Diagnosis Part 3	96

PAGE

A7. Illustrated Vibration Diagnosis Part 4	97
A8. Illustrated Vibration Diagnosis Part 5	98
A9. Vibration Symptoms Matrix	99
A10: Fan Troubles and Causes	100
APPEENDIX B (EQUATION)	101
B1. Vibration Conversation	102
B2. Total Power	
APPENDIX C (FIGURE)	103
C1. Taking Vibration Data Figure	104
APPENDIX D (GANTT CHART)	105
Gantt Chart for PSM I and PSM II	106

LIST OF TABLE

NUMBER	TITLE	PAGE
Table 3.1	List of Equipment	37
Table 3.2	Detail form of Inspection of machine Kiln Air Lift Blower	
Table 3.3	Detail form of Inspection of machine Burner Gun Fan	44
Table 3.4	Detail form of Inspection of machine cooler grate drive	46
Table 4.1	Vibration Severity Per ISO 10816	50
Table 4.2	Summary of Machine Condition Matrix for 831FN1	67
Table 5.1	Countermeasures of vibration	81

APPENDIX TABLE

NUMBER TITLE

PAGE

Table A1	Typical Vibration Measurement Instrument	91
	Characteristics	91
Table A2	General Transducers Characteristics	92
Table A3	Criteria For Overall Condition Rating	93
Table A4	Illustrated Vibration Diagnosis Part 1	94
Table A5	Illustrated Vibration Diagnosis Part 2	95
Table A6	Illustrated Vibration Diagnosis Part 3	96

Table A7	Illustrated Vibration Diagnosis Part 4	97
Table A8	Illustrated Vibration Diagnosis Part 5	98
Table A9	Vibration Symptoms Matrix	99
Table A10	Fan Troubles and Causes	100

LIST OF FIGURE

NUMBER	TITLE	
FIGURE 2.1	mass in natural position with no applied force	14
FIGURE 2.2	mass being simulated by applied force	14
FIGURE 2.3	mass responding to the release of applied force	14
FIGURE 2.4	continue response to applied force	15
FIGURE 2.5	Pen added to mass to trace its oscillating motion on a	15
	constant	
FIGURE 2.6	Displacement and Frequency From The Time	16
	Waveform	
FIGURE 2.7	Velocity from the Displacement Waveform	17
FIGURE 2.8	Acceleration from the Displacement Waveform	19
FIGURE 2.9	Two Masses with 0, 90, 180 degree of Phase	20
FIGURE 2.10	Indirect Means of Recording Vibration	20
FIGURE 2.11	Comparison of Time Domain and Frequency	21
FIGURE 2.12	Frequency Time Developed From Time Domain	22
	Waveform	
FIGURE 2.13	Simplistic explanation of how vibration data is	22
	acquired	
FIGURE 3.1	Flow Chart of Study Case	27
FIGURE 3.2	Basic Step of Cement Production	31
FIGURE 3.3	Kiln Line 1	32
FIGURE 3.4	Microlog CMVA 60, Portable Data Collector/FFT	33
	Analyzer	
FIGURE 3.5	CMSS 786M Dual Sensor - Accelerometer and SEE TM	34

Sensor,	Piezoelectric	
---------	---------------	--

FIGURE 3.6	CSI 2130 Machinery Health Analyzer	35
FIGURE 3.7	Good and Poor Location Measurement Locations	39
FIGURE 4.1	Vibration result for 48AFN02 on 4 Jan 2010	52
FIGURE 4.2	Spectrum of overall value versus time trending for	53
	point motor drive end, DE2A in axial axis on 4 Jan	
	2010	
FIGURE 4.3	Spectrum of overall value versus time trending for	53
	point blower drive end, DE3H in horizontal axis on 4	
	Jan 2010	
FIGURE 4.4	Single spectrum plot for point motor drive end, DE2A	54
	in axial axis on 4 Jan 2010	
FIGURE 4.5	Spectrum plot for eccentric rotor problem, illustrated	55
	vibration diagnosis	
FIGURE 4.6	Single spectrum plot for point motor drive end,	55
	DE3H in axial axis on 4 Jan 2010	
FIGURE 4.7	Spectrum plot for rotor rubs problem, illustrated	56
	vibration diagnosis	
FIGURE 4.8	Vibration result for 48ABL01 on 4 Jan 2010	57
FIGURE 4.9	Spectrum of overall value versus time trending for	58
	point motor drive end, DE2H in Horizontal axis on 4	
	Jan 2010	
FIGURE 4.10	Spectrum of overall value versus time trending for	58
	point blower not drive end, NDE4V in Vertical axis on	
	4 Jan 2010	
FIGURE 4.11	Single spectrum plot for point motor drive end,	59
	DE2H in horizontal axis on 4 Jan 2010	
FIGURE 4.12	Spectrum plot for journal bearing problem, illustrated	59
	vibration diagnosis	
FIGURE 4.13	Single spectrum plot for point blower not drive end,	60
	NDE4V in vertical axis on 4 Jan 2010	
FIGURE 4.14	Spectrum plot for cavitations problem, illustrated	61
	vibration diagnosis	

FIGURE 4.15	Vibration result for 471GQ02 on 4 Jan 2010	62
FIGURE 4.16	Spectrum of overall value versus time trending for	63
	point motor drive end, DE2V in vertical axis on 4 Jan	
	2010	
FIGURE 4.17	Spectrum of overall value versus time trending for	63
	point PL Gear First Stage, 3V in Vertical axis on 4 Jan	
	2010	
FIGURE 4.18	Single spectrum plot for point motor drive end,	64
	DE2V in vertical axis on 4 Jan 2010	
FIGURE 4.19	Single spectrum plot for point PL Gear First Stage,	65
	3V in Vertical axis on 4 Jan 2010	
FIGURE 4.20	Spectrum plot for looseness problem, illustrated	66
	vibration diagnosis	
FIGURE 4.21	Vibration Spectrum Plotted for Coal Mill Fan 831FN1,	68
	Point 3, Horizontal axis, Drive End	
FIGURE 4.22	Route Waveform for Coal Mill Fan 831FN1,	68
	Point 3, Horizontal axis	
FIGURE 4.23	Spectrum plot for overhung rotor unbalance problem,	69
	Illustrated vibration diagnosis	
FIGURE 4.24	Spectrum plot for looseness problem, illustrated	70
	vibration diagnosis	

LIST OF SYMBOL

Μ	=	Mass
Κ	=	Stiffness
Hz	=	Hertz
С	=	Damping
μs	=	microsecond
CPM	=	Cycle per Minute
RPM	=	Rotation per Minutes
mm	=	millimeter
sec	=	second (time)
ft	=	feet
F _{max}	=	Maximum Force, N
t _{max}	=	Total sampling Period Setting
%	=	Percentage
dB	=	decibel
mV	=	millivolts
OZ	=	Ounce
g	=	gram

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Table	90
В	Equation	101
С	Figure	103
D	Gantt chart	105

CHAPTER I

INTRODUCTION

1.1 Background of Study

Now days, the expenses on maintenance and repairing machine are among the most important features of any technical system operation more over at the factory based. We can conclude that when the system is maintainable, we need some technique or technical program such as condition monitoring. It refers to control and diagnostics especially for rotating machinery that will be the most common part that found at factory. Predictive maintenance through understanding the characteristic by vibration diagnostics is the most efficient way that rapidly used to reduce or decrease cost of repairing or avoid damaged. So, it is possible to begin the diagnostics by vibration any time even after several years of system operation when the expenses for maintenance and repair exceed the economically affordable value (Basim Al-Najjar and Imad Alsyouf 2003).

Consider of the benefits that show by vibration monitoring which is classified in predictive maintenances, this study aiming to identify damages of mechanical system via changes in their vibration characteristics. First of all, this study will discuss on the theory about the vibration study which contains introduction of vibrations such as vibration definition, the causes that due to vibration, why do we need to monitor vibration and anything that related to the vibration will be elaborate in details. Then, it will be followed up by how examine mechanical system using detection, location, and characterization damaged via vibration monitoring technique. This report also been written to utilize appropriate technique that examines changes in measured structural and mechanical system. This study also carried out with the real case study which is had been done with industry that used vibration monitoring analysis in their principal of operating system which involved the usage of latest equipment that can collects vibration data and performs standard analysis functions, but also incorporates on-board intelligence to facilitate detection, analysis and correction of machine problems. Only selected machine will be tested to get the related data. Data will be present in single spectrum plot and overall value versus time trending. From the result, we will find out the characteristics of it whether that machine functioning well or not.

1.2 Problem Statement

Machine vibration can be unintended and lead to machine damage. Most times machine vibration is unintended and undesirable. The vibration of operating pump, the vibration of operating motor, vibrating belt and vibrating fan are a few examples to show undesirable machine vibration. Monitoring the vibration characteristics of a machine gives us an understanding of the 'health' condition of the machine. We can use this information to detect problems that might be developing. Vibration monitoring can avoid of lead to poor quality products being made, large yield losses, rework costs, or worse still, warranty returns by irate customers.

1.3 Objective of Study

Besides discuss about the theory of vibration monitoring analysis, this study are also contain a real case study which is been done at selected factory by using vibration sensor due to detect the characteristics of the tested machine to determine whether there are any undesirable vibration occurs. The objectives to accomplish this study are: