QUALITATIVE AND QUANTITATIVE RISK ANALYSIS IN MECHANICAL LABORATORIES OF UTeM

ROSNA BINTI HAMZAH

This report is submitted in partial fulfillment of the requirement of the degree of Bachelor of Mechanical Engineering (Structure & Material)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2009

C Universiti Teknikal Malaysia Melaka

APPROVAL

'I / We admit that have read this composition and from my / our opinion this composition is enough from scope and quality for purpose of bestowal Bachelor of Mechanical Engineering (Structure & Material)'

Signature	:
Supervisor's Name I	: Pn Rafidah Binti Hassan
Date	:

Signature:Supervisor's Name II: En. Hamzah Bin Mohd. DomDate:

DECLARATION

"I hereby, declared that all part of this thesis is the results of my own work except for a few section which extracted and quoted from other resources that as been mentioned"

Signature:....Author: Rosna Binti HamzahDate:....

ACKNOWLEDGEMENT

First of all, I would like to thanks to Allah S.W.T for giving me the strength and patient to accomplish this PSM II report on time. I would like to express my sincere appreciation to my supervisor, Pn. Rafidah binti Hassan for her guidance, advise, encouragement and understanding. Without his cooperation and full support, this report will not be finished on time and as good as like this.

Besides, my heartfelt gratitude goes to all the Faculty Mechanical Engineering lecturers' and staffs' that were involve direct or indirectly especially to En. Nazim. I wish to thanks my lovely parents for their support and encouragement.

I would like to express too my sincere gratitude to my entire classmates and coursemates, especially Yani. Thanks for assisted me during the ups and downs in completing this research on PSM I and PSM II. Hopefully, this technical report on PSM somewhat will be inspired and being a reference source for the other students soon.

ABSTRACT

Risk analysis is about probability, modeling, prediction and making decision according to the results of analysis. The aim of this project is to carry out the risk analysis study on mechanical laboratories of UTeM both qualitatively and quantitatively. Besides, the differences between these two major aspects of risk analyses study will also be compared. To complete the analysis, it must includes these three steps; risk assessment, risk management and risk communication. Risk assessment is a widen scope needed to be analyzed much in quantitative perspective. It will be started by collecting data, probabilistic analysis (probabilistic risk assessment or PRA) with fault tree analysis Following that, risk management will be done based on the achievement of risk assessment. Lastly, risk communication will be come up with transferring and exchanging data, risk assessment result, and information and knowledge of the risk. This research will be done at mechanical laboratories B phase complex of UTeM only, limited to five high risky laboratories; hydraulic and pneumatic laboratory, thermodynamic laboratory, combustion laboratory, material science laboratory and heat transfer laboratory. The information will be gathered from the internet sources, journals, previous research and risk analysis book's guide. This thesis is seen to be highly beneficial for those who are using the mechanical laboratories especially students, lecturers and technicians, to provide them with information on safety level and risk probability at the laboratories' surroundings.

ABSTRAK

Analisis risiko ialah tentang kebarangkalian, pembinaan model, ramalan, dan membuat keputusan berdasarkan kepada keputusan analisis tersebut. Tujuan projek ini adalah untuk melakukan kajian analisis risiko secara kualitatif dan kuantitatif di makmal-makmal mekanikal UTeM. Selain itu, perbezaan diantara dua aspek kajian analisis risiko juga akan dibandingkan. Untuk menyiapkan analisis ini, terdapat tiga langkah penting iaitu; analisis penilaian, analisis pengurusan, dan analisis perhubungan. Analisis penilaian ialah skop terbesar kuantitatif yang perlu dianalisis secara mendalam. Proses ini akan dimulakan dengan mengumpul data, analisis kebarangkalian (analisis penilaian kebarangkalian atau PRA) dengan menggunakan analisis 'fault tree'. Seterusnya, analisis pengurusan akan dilakukan berdasarkan kepada pencapaian keputusan analisis penilaian. Akhirnya, analisis perhubungan akan dikemukakan dengan pemindahan dan penukaran data, keputusan analisis penilaian, dan maklumat dan pengetahuan tentang risiko. Kajian ini hanya akan dijalankan di kompleks fasa B makmal mekanikal UTeM, terhad kepada lima makmal yang berisiko tinggi; makmal hidraulik dan pneumatik, makmal termodinamik, makmal pembakaran, makmal sains bahan, dan makmal pemindahan haba. Maklumat kajian ini akan dikumpulkan daripada sumber internet, jurnal, kajian-kajian terdahulu, dan buku panduan analisis risiko. Tesis ini dilihat menjadi bermanfaat kepada pengguna-pengguna makmal mekanikal seperti pelajar, pensyarah, juruteknik, untuk menyediakan mereka pengetahuan tentang tahap keselamatan dan kebarangkalian risiko di persekiran makmal.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	APPROVAL	ii
	DECLARATION	iii
	ACKNOWLEDGEMENT	iv

ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDICES	xvii

CHAPTER 1

INTRODUCTION	1
1.1 Background of the Problem	1
1.2 Problem Statement	2
1.3 Objective	3
1.4 Scope	3

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to the Risk Analysis in	4
Mechanical Laboratory	4
2.2 The Process of the Risk Analysis	

2.2.1 Qualitative and Quantit	tative of Risk	5
Analysis		6
2.2.2 Risk Assessment		7
2.2.2.1 Logic Modeling Develo	opment and	10
Quantification		
2.2.2.2 Failure Data Analysis		11
2.2.2.3 Quantification and Inte	egration	13
2.2.2.4 Uncertainty Analysis		13
2.2.2.5 Sensitivity analysis		15
2.2.3 Risk Management		15
2.2.3.1 Risk Ranking		16
2.2.3.2 Interpretation the Result	lts	17
2.2.4 Risk Communication		18
2.2.4.1 Nature of the Risk		19
2.2.4.2 Nature of the Benefits		20
2.2.4.3 Uncertainty in Risk As	sessment	20
2.2.4.4 Risk Management Opti	ions	21
2.3 Recommendations for Im	provements in	21
Risk Analysis		

METHODOLOGY

3.1 St	udy Area	23
3.2 Ty	pes of Study	25
3.3 M	ethods and Equipments Used	25
3.2.1	Flow Chart of the Process	25
3.2.2	Risk Assessment Method	27

3.3.2.1 Definition of Potential Hazards and	28
Collection Historical Data and	
Identification Hazards at Five Mechanical	
Laboratories	
3.3.2.2 Calculation of Consequences and	28
Frequencies of Accident Happened in	
Laboratory	
3.3.2.3 Integration of Results Using Fault Tree	29
Method Probability	
3.2.3 Risk Management Method	30
3.2.4 Risk Communication Method	31
3.2.4.1 Risk Perception	31

RESULT

4.1	Risk Assessment	32
4.1.1	Potential Hazard and Historical Data	32
		33
		39
4.1.1.2	Identification Hazard	49
4.1.1.3	Potential Hazard	
4.1.1	Calculation of Consequences and	49
	Frequencies of Accident Happened in	
	Laboratory	
4.1.2.1	Sample calculation for range of frequency	
(per tw	o years)	51
4.1.2	Integration of Results Using Fault Tree	
	Method Probability	53

	4.1.3 Risk Ranking	60
CHAPTER 5		
	DISCUSSION	
	5.1 Risk Communication Method	62
	5.1.1 Trust and Perception	63
CHAPTER 6		
	CONCLUSION AND RECOMMENDATION	
	6.1 Conclusion	66
	6.2 Recommendation	67
	REFERENCES	68
	APPENDICES	
	APPENDIX A	
	Gant Chart for PSM 1	72
	Gant Chart for PSM 2	73
	APPENDIX B	
	Schematic diagram of saturation pressure	74
	Operational procedure	75
	APPENDIX C	
	A sample of rule base	78
	Failure rate	79
	Consequence severity	79
	Failure consequence probability	79

APPENDIX D	
Regulations of Boiler Safety Valve	80
APPENDIX E	
Factors Influence People's Perception of Risk	82
APPENDIX F	
Borang laporan kerosakan	83

LIST OF TABLES

BIL.	TITLE	PAGE
2.1	Qualitative probability category definition	9
3.1	Suggested qualitative risk assessment matrix	28
3.2	Suggested quantitative risk assessment matrix	29
3.3	The example of risk ranking	30
3.4	Suggested risk perception factors	31
4.1	Record for hazop results	33
4.2	Record for hazop results	34
4.3	Record for hazop results	35
4.4	Record for hazop results	38
4.5	Record for hazop results	38
4.6	Record for hazop results	39
4.7	QRA and PRA for material science laboratory	49
	for year 2004 - 2005	
4.8	QRA and PRA for material science laboratory	50
	for year 2007 - 2008	
4.9	QRA and PRA for combustion laboratory for	51
	year 2004 - 2006	
4.10	QRA and PRA for thermodynamic laboratory for	52
	year 2006	
4.11	QRA and PRA for heat transfer laboratory for	52
	year 2007	
4.12	QRA and PRA for pneumatic and hydraulic	53
	laboratory for year 2006	

4.13	Risk ranking from the evaluation of result	60
5.1	Risk perception Factors	65

LIST OF FIGURES

BIL.	TITLE	PAGE
2.1	Elements of risk analysis	6
2.2	Five steps to risk assessment procedures	8
2.3	Event, gate and transfer symbols used in logic	11
	trees	
2.4	Typical graph of failure rate	12
3.1	Layout of B phase mechanical laboratories	24
3.2	The flow chart of the risk analysis process	26
3.3	Suggested fault tree method probability of	30
	material science laboratory	
4.1	Layout of material science laboratory	40
4.2	Material science furnace	40
4.3	The storage of acid sulfuric in material science	41
	laboratory	
4.4	Schematic diagram of steam plant	42
4.5	Layout of thermodynamic laboratory	43
4.6	Schematic diagram of saturation pressure	44
	apparatus	
4.7	Schematic diagram of refrigeration training	45
	system apparatus	
4.8	Schematic diagram of mechanical heat pump	46
	apparatus	
4.9	Layout of heat transfer laboratory	47
4.10	Layout of pneumatic and hydraulic laboratory	48

4.11	Fault tree method probability for breakage failure	53
	mode	
4.12	Fault tree method probability for overheated	54
	failure mode	
4.13	Fault tree method probability for control	54
	computer and human error failure cause	
4.14	Fault tree method probability for overheated and	55
	overload failure mode	
4.15	Fault tree method probability for device failure	56
	mode	
4.16	Fault tree method probability for vibration failure	56
	mode	
4.17	Fault tree method probability for control	57
	computer failure mode	
4.18	Fault tree method probability for leaking failure	58
	mode	
4.19	Fault tree method probability for corrosion	58
	failure mode	
4.20	Fault tree method probability for heating failure	59
	mode	

LIST OF ABBREVIATIONS

PRA	: Probabilistic risk assessment
QRA	: Qualitative risk assessment
UTeM	: Universiti Teknikal Malaysia Melaka
RRW	: Risk reduction worth
RAW	: Risk achievement worth
et al.	: and others
i.e.	: that is to say
NIL	: nothing or zero
VLO	: very low
VHI	: very high
HSE	: Health and Safety Executive
R	: reliability
LHS	: Latin Hypercube Sampling

LIST OF APPENDICES

BIL.	TITLE	PAGE
	APPENDIX A	
1	Gant Chart for PSM 1	72
2	Gant Chart for PSM 2	73
	APPENDIX B	
3	Schematic diagram of saturation pressure	74
4	Operational procedure	75
	APPENDIX C	
5	A sample of rule base	78
6	Failure rate	79
7	Consequence severity	79
8	Failure consequence probability	79
	APPENDIX D	
9	Regulations of Boiler Safety Valve	80
	APPENDIX E	
10	Factors influence people's perception of risk	82
11	APPENDIX F	
	Borang laporan kerosakan	83

1.0 INTRODUCTION

1.1 Background of the Problem

Risk analysis is usually defined as the combination of the severity and probability of an event. In engineering system, risk analysis is performed to measure the amount of potential loss and more importantly the elements of the system that contribute to that loss (Macdonald, 2004). It is the process of characterizing, managing and informing others about existence, nature, magnitude, prevalence, contributing factors, and uncertainties of the potential losses (Modarres, 2006). Risk analysis can be evaluated qualitatively or quantitatively. Qualitative and quantitative risk analysis is covered on overall aspects of engineering as well as on building and plant. The quantitative value is an indicator of the qualitative analysis. They are both complete each other to make the analysis perfect and give the better result.

For public, mechanical laboratories are hazardous places and cautions shall be put up once entering these places. However, for mechanical engineering students, these are place where knowledge could be gained. With appropriate safety guidelines and regulations, any hazardous situations can be avoided. On the other hand, hazards can be arisen from the systems and apparatus itself. There are several types of hazards' that can be found such as mechanical hazards, electrical hazards, thermal hazards, noise hazards, vibration hazards, and radiation hazards. Sometimes, there will be a combination of these types of hazard. Mechanical, thermal and electrical hazards are always the main factors of risky conditions.

Mechanical hazards come from that machine itself. All the machines have their own ability and specification. The improper condition or any other chemical reactions may cause the machine become fatigue all over the years of usage. Rotary movement, sliding movement or reciprocating movement are typical mechanical hazards type. Machine parts or workpieces present mechanical hazard too. For instance, high kinetic energy such as flywheels, high acceleration and velocity or inadequate strength of material of construction may cause the hazardous situations. This study will focus only the hazards which are created by the systems and machinery factor. The study will not involve risks that arise from human errors. Besides the investigation of the risk analysis in the laboratories complex, the study will be important to determine the risk level of several mechanical engineering laboratories in UTeM. The investigation and information gathered are being useful to get better safety improvement soon.

1.2 Problem Statement

The qualitative and quantitative risk analysis case study on B phase mechanical laboratories of UteM will be done to investigate any potential loss of the system in the laboratories itself. These potential losses may be caused by the inappropriate system subject to improper arrangement and conditions. Any risky situation will contribute to injury and accidents. Even the preventive maintenance and inspection are being done periodically, this investigation will help to enhance the safety level in those laboratories' equipments. Moreover, the conducive and comfortable learning rooms are important and better for the students' lesson processes. It will not be safer only for the students, but also for those who will be using the laboratories especially for research assistants as well as technicians. This study is also being carried out since there was no previous study done on it. Hopefully, this risk analysis study somewhat will give beneficial information and improvement for better achievement in the future.

1.3 Objective

The objective of this project is to carry out the qualitative and quantitative risk analysis study in B phase mechanical laboratories of Mechanical Engineering Faculty of Universiti Teknikal Malaysia Melaka (UTeM). Besides, the objective is also to compare the qualitative and quantitative risk analysis of the mechanical laboratories complex of B phase in UTeM.

1.4 Scope

The scope and limitations of this project include:

- Qualitative and quantitative risk analysis study at five laboratories of B phase mechanical laboratories complex in UTeM.
- Evaluation on differences from both studies of B phase mechanical laboratories complex of UTeM.
- Uncertainty analysis and probabilistic risk assessment of safety risk analysis (i.e.: human-made products, technologies, and systems) in B phase mechanical laboratories complex of UTeM.
- Evaluation and recommendation to improve and increase safety in B phase mechanical engineering laboratories of UTeM.

2.0 LITERATURE REVIEW

2.1 Introduction to the Risk Analysis in Mechanical Laboratory

Generally, risk analysis is best described as the systematic study of uncertainties and risks encounter in business, engineering, public policy, and many other areas (Macdonald, 2004). In engineering perspective, it is well defined as the process of characterizing, managing and informing others about existence, nature, magnitude, prevalence, contributing factors, and uncertainties of the potential losses of the engineering elements. Risk analysis is performed to measure the amount of potential loss and more importantly the elements of the system that contribute to that loss (Speegle, 2005).

Typically, the safe machinery workshops are found to be physically safe, mechanically safe, electrically safe and functionally safe (Macdonald, 2004). Safety risk analysis can be best described as estimating potential harms caused by human-made products, technologies, and systems such as stress or damage on the barrier due to forces and pressure penetration. Also, there are six types of hazards that can be found in mechanical laboratories i.e.: mechanical hazards, electrical hazards, thermal hazards, noise hazards, vibration hazards, and radiation hazards (Speegle, 2005).

The studies of risk analysis in commercial mechanical workshops industry have been done by many researchers lately (Garrick, 1991, Donnely, 1991, Purdue, 1991, Long, 1991, Kaplan, 1991, Marsch, 1991, Simmon, 1991, et al.). But, none are doing risk analysis study in mechanical laboratories of university itself. People may not realize those fires, explosions, chemical leaks, and other bad incidents would happen in the mechanical laboratories. The investigation will find the potential loss in the mechanical complex due to the lacking of the systems. Thus, this can provide and assure systems and machine in the laboratories are in good and safe conditions (Speegle, 2005).

2.2 The Process of the Risk Analysis

Theoretically, the process of risk analysis includes identifying and quantifying uncertainties, estimating their impact on outcomes, building a risk analysis model that expresses these elements in quantitative form, exploring the model through simulation and sensitivity analysis, and making risk management decisions. There are three elements in risk analysis (as in Figure 2.1) and four steps towards the risk analysis process (Speegle, 2005):

- Identify and quantify uncertainty.
- Compute the impact of uncertainty.
- Analyze the model results.
- Make decisions to better manage risk.

Figure 2.1: Elements of risk analysis (Source: Modarres, 2006)

The risk analysis process starts with the determination of scope and objectives for the analysis. These scope and objectives are really emphasized to make sure the goal can be achieved appropriately. Before going further, there are three basic steps to achieve the risk analysis result respectively, i.e.; risk assessment, risk management and risk communication (Taylor, 1994). The three basic steps could be classified into qualitative and quantitative analysis. Overall briefly, qualitative is the analysis about the value of 'low', 'medium', or 'high'. Whereas, quantitative is the analysis about numerical value derived from the probability and calculation that have been made.

2.2.1 Qualitative and Quantitative of Risk Analysis

As mentioned earlier, risk can be evaluated qualitatively or quantitatively. Qualitative risk analysis is most widely used because it is simple and quick to perform (Vose, 2001). It is estimated using linguistic scales i.e.; low, medium and high (Modarres, 2006). Sometimes, the indication of prediction could be 'NIL', 'very low' (VLO) and 'very high' (VHI). This method seems not to rely on actual data and probability, but extremely subjective. Frequently, it is a choice for a very simple system (Vose, 2001).

Quantitative descriptions of risk use numerical values such as 'one irreversible injury per 1000 years', this might be the equivalent of a 'medium but unacceptable risk'. If the quantitative risk is reduced to say 'one irreversible injury per 100 000 years', it might be described as 'low and acceptable risk' (Garrick, 1991). Quantitative risk analysis is to estimate the risk in form of the probability of any losses. The quantitative analysis is usually complicated, time-consuming and expensive (Vose, 2001). The process begins by collecting the data and doing probability and uncertainty analysis (Macdonald, 2004). However, this method analysis is very particular for complicated system engineering as in machinery workshops as well as mechanical laboratories such as hydraulic and pneumatic laboratory, thermodynamic laboratory, combustion laboratory, material science laboratory and heat transfer laboratory (Vose, 2001).

2.2.2 Risk Assessment

Risk assessment is the process of collecting data begins. The historical data also included if any. What goes wrong in one system of machinery workshops will be found out and determined (Macdonald, 2004). A simple mathematical representation of the expected loss found in the literature as (Modarres, 2006) as shown below;

$$risk\left(\frac{consequense}{unit}\right) = frequency\left(\frac{event}{time}\right) \times magnitide\left(\frac{consequence}{event}\right)$$

(Source: Modarres, 2006)