PERFORMANCE TEST OF ELECTRIC AND ELECTRO-HYDRAULIC PARKING BRAKE

MUHD SYAFIQ BIN MOHD YUSOF B040610143

This Report Is Submitted In Accordance With Requirement as Partial Fulfillment Of The Bachelor of Mechanical Engineering (Automotive)

FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2010

"I hereby admit that have read this project paper entitled "Performance Comparison between Manual Parking Brake, Electronic Parking Brake and Electro-Hydraulic Parking Brake" by Muhd Syafiq Bin Mohd Yusof and in our opinion was adequate in terms of scope aspect and quality to award in purpose Degree in mechanical

engineering (Automotive)"

Signature First Supervisor's Name Date

: Mr. Herdy Rusnandi

24/5/2017 ENCIK HERDI RUSNANDI Pensyarah Fakulti Kejuruteraan Mekanikat Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Keroh 75450 Melaka

Signature

Second Supervisor's Name

Date

: Mr. Mohd Hanif B Harun

:

"I admit that the testing of the new Manual, Electronic, And Electro-Hydraulic Parking Brake System is my own work except for every statement and passage that I have already mention it source and quotes"

Signature

......Myfiq......

i

Author's Name

: 24 May 2010

: Muhd Syafiq Bin Mohd Yusof

Date

ACKNOWLEDGEMENT

ii

Alhamdulilah, praise to Allah with His bless, I could successfully finish this final year project report on time. Foremost, I would like to express my sincere gratitude to my supervisor Mr. Herdy Rusnandi for the continuous support of my project study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

I thank my fellow classmate in Mechanical engineering of automotive class for the stimulating discussions, for being so helpful, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last four years.

Last but not the least; I would like to thank my family: my parents Mohd Yusof and Siti Rubiah, for giving birth to me at the first place and supporting me spiritually throughout my life.

ABSTRACT

The automotive technology is pacing to new era, where vehicle runs on alternative fuel such as hydrogen and can be driven by wire. Though, a need to develop an electric and electro-hydraulic parking brake was identified by UTeM's researcher. The functional requirements of the new brake system are must able to support the max torque produce by the engine, reliable and guarantee safe for user. In simple word the performance of the new parking brake system should be at least equivalent with the conventional system. Thus, this final year project report provided a solution to the requirements of the electric and electro-hydraulic parking brake by planning and running a few test. The objective of the test is to measure the torque and force applied by the brake and force required to trigger the brake. The test should also provide data of response time for each of the new parking brake system. At the end of this project, comparison of performance between the new parking brake systems and the conventional parking brake system will be made. The performance comparison should help to conclude if the new systems are reliable and have the potential to replace the conventional system thus globally commercialize.

ABSTRAK

Teknologi automotif sedang rancak berubah ke era baru, di mana kenderaan bergerak menggunakan bahan bakar alternatif seperti hidrogen dan berfungsi lebih secara elektronik berbanding mekanikal. Disebabkan demikian, para penyelidik UTeM telah mengenal pasti keperluan untuk membangunkan sistem brek parkir yang berfungsi secara elektrik dan elektro-hidraulik. Sistem brek yang baru dibangunkan in haruslah terbukti mampu berfungsi dengan baik, mampu menyokong daya pulas maksima yang dihasilkan oleh enjin serta dijamin selamat untuk pengguna. Dalam erti lain, sistem parkir brek yang dibangunkan ini haruslah sekurang-kurangnya setara dengan sistem konvensional dalam aspek prestasi. Dengan demikian, laporan projek tahun akhir ini akan merancang dan menyediakan penyelesaian terhadap cara ujian perbandingan prestasi akan dijalankan dan seterusnya menjalankan ujian tersebut. Menerusi projek tahun akhir ini beberapa ujian akan dijalankan terhadap sistem brek parker elektrik dan elektro-hydraulic. Objektif kepada ujian ini adalah untuk mengukur daya dan daya pulas yang dihasilkan oleh system tersebut serta daya yang diperlukan untuk memicu sistem brek ini. Selain itu ujian juga akan dijalankan bagi mengukur masa tindak balas dari waktu pemandu memberi input sehingga kenderaan berhenti bergerak. Di akhir projek ini, perbandingan sistem baru dengan sistem konvensional akan dibuat. Perbandingan ini diharap dapat membantu untuk adakah sistem baru ini berpotensi mengantikan menyimpulkan sistem konvensional dan sehingga dapat dipasarkan secara global.

TABLE OF CONTENT

v

CHAPTER	TITLE	PAGE
	DECLARATION	i
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	ABSTRAK	iv
	TABLE OF CONTENT	v
	LIST OF TABLE	viii
	LIST OF FIGURE	x
	NOMENCLATURE	xiv
	LIST OF APPENDIX	xv
CHAPTER I	INTRODUCTION	(i)
	1.1 Objective	2
	1.2 Scope	2
	1.3 Problem Statement	3

CHAPTER	TIT	LE	PAGE
CHAPTER II	LIT	ERATURE REVIEW	
	2.1	Automotive Brake	4
	2.2	Definition of Torque and Force	11
	2.3	The Strain Gauge	12
CHAPTER III	MET	THODOLOGY	
	3.1	Measuring Force and Torque	28
	3.2	Responsiveness Test	47
CHAPTER IV	RES	ULT AND DISCUSSION	
	4.1	Installing Strain Gage	53
	4.2	Validating Strain Measured	53
	4.3	Parking Brake Systems Forces	60
		and Brake Torque	
	4.4	Systems Response	66
	4.5	Performance Comparison	68
		Analysis	

CHAPTER TITLE

PAGE

CHAPTER V

CONCLUSION AND

RECOMMENDATION

5.1	Conclusion	70
5.2	Recommendations	71

REFERENCE	72
BIBLIOGRAPHY	73
APPENDIX	74

C Universiti Teknikal Malaysia Melaka

LIST OF TABLE

NO.	TITLE	PAGE
2.1	Drum Brake Legends	10
4.1	Calibration Strain	54
4.2	Relation between Forces and Strain	55
4.3	Relation between Forces and Strain	56
	(Continue)	
4.4	Manual Parking Brake System	60
4.5	Electronic (Motor) Parking Brake System	61
4.6	Electro-Hydraulic (Hydraulic Cylinder)	62
	Parking Brake System	
4.7	Strain, Force and Brake Torque for	62
	Each System	
4.8	Minimum Times to Fully Activate the System	65

C Universiti Teknikal Malaysia Melaka

viii

NO. TITLE

PAGE

4.9	Minimum Time to Fully Deactivate	66
	the System	
4.10	Parking Brake System Reactions	66
4.11	Minimum Times to Activate the Brake	67
4.12	Performance Comparison	68

8

LIST OF FIGURE

NO.	TITLE	PAGE
2.1	Disc Brake Diagram	6
2.2	Brake Pad Wear Indicator	7
2.3	Noise From Brake Pad Indicator	7
2.4	Type of Disc Rotor	8
2.5	Drum Brake Diagram	10
2.6	Definitions of Torque and Force	11
2.7	Definitions of Stress and Strain	14
2.8	Shearing Strain	15
2.9	Poisson Strain	15
2.10	Schematic Diagram of Wheatstone	17
	Bridge's Circuit	
2.11	Schematic Diagram of Wheatstone	19
	Bridge's Circuit	

NO.	TITLE	PAGE
2.12	3-Wires Quarter Bridge Strain Gauge	20
	Circuit and Connection	
2.13	Quarter Bridge Strain Gauge with	21
	Dummy Gauge Circuit	
2.14	Strain Gauge Designs	22
2.15	Bonded Resistance Strain Gauge	26
	Constructions	
2.16	Typical metal-foil strain gauges	27
3.1	Forces and Torque Test Flow Chart	30
3.2	Gauge Lead Wire	32
3.3	Connecting Wire Were Soldered To	33
	the Gauge Lead Wire	
3.4	Free Body Diagram of Car in Static Braking	34
3.5	Arrangements of Specimen and Mass	37
	Block Hanger	
3.6	Arrangements in Calibration Process	37
3.7	Specimen Attached To the Torque Lever	39
3.8	Hand Lever, Electric Motor And Piston	40

NO.	TITLE	PAGE
3.9	Hand Lever for Manual Parking	40
	Brake System (a) (b)	
3.10	Electric Motor Connected To the Controller	41
3.11	Applying Force to the Torque Lever	41
3.12	Measuring the Strain	41
3.13	The 12V Battery Used to Power up	42
	Electric Motor and Hydraulic Actuator	
3.14	Piston and Controller for Electronic (Motor)	42
	Parking Brake System (a) (b)	
3.15	Hydraulic Piston for Electro-Hydraulic	42
	Parking Brake System (a) (b)	
3.16	(a) Hydraulic Actuator and	43
	(b) Hydraulic Pump	
3.17	Layout of the Hydraulic System Components	43
3.18	Hooke's Law	44
3.19	Spring Elongation Due To Mass or Force	46
3.20	Set Up Of Spring in Manual Parking	46
	Brake System	

3.21	Stop Watch Used	48
3.22	Responsiveness Test's Flow Chart	49
3.23	Hand Lever (a) (b)	51
3.24	Mechanical Piston Powered By	51
	Electric Motor (a) (b)	
4.1	Strain Gauge Bonded Parallel to Force Action	52
4.2	Specimen Dimension	55
4.3	Graph of Force versus Strain	58
4.4	Flow Chart Shows Step to Achieve the	59
	Final Result	
4.5	Torque Lever Diagram	59
4.6	The Axis of Force	63
4.7	Action Made Change the Direction of Force	64
4.8	Connecting Screw Pointed By the Red Arrow	64

NO. TITLE

C Universiti Teknikal Malaysia Melaka

xiii

NOMENCLATURE

a	=	Acceleration
F	=	Force
GF	=	Gage Factor
k	=	Spring Constant
L	=	Length
m	=	Mass
r	=	Length of Moment Arm
R _{1,2,3,4,x}		= Resistance
τ	=	Torque
σ	=	Stress
3	=	Strain

xiv

APPENDIX

NO.	TITLE	PAGE
А	Gantt Chart PSM I	73
В	Gantt Chart PSM II	74
С	Flow Chart	75
D	Strain Gauge Connection and Bridge Circuit	76
Е	Strain Gauge Installation	77
F	Strain Meter Sensor Connection	78
G	Report Cover	79

CHAPTER I

INTRODUCTION

A brake is a compulsory and most critical part in a machine or vehicle used to applied a force against the friction of the road resulting slowing or stopping the motion of the body. Parking brake usually activated by driver using a hand lever. In 2009 an electronic and electro-hydraulic parking brake was developed by the UTeM's researcher in order to simplify the way to activate the brake. This is a breaking research and development as the automotive industries preparing for the next generation drive by wire car.

This final year project report is about the performance test of new Electronic and Electro-Hydraulic Parking Brake Systems. This report briefly explains the method used in performance and responsive test of the brake system as well as the procedure on how to measure the torque and forces in the system. In the test to measure brake torque and forces, strain gauge will be use widely as precise measuring instrument. Besides of high-tech instrument, the test will be carried out using a simple spring method as a low cost alternative. This method should be reliable for responsive test too.

Based on the data obtain, comparison between manual, electric and electrohydraulic parking brake will be made to conclude if the new system is reliable for real life situation and thus commercialized. There are tremendous potential in this new parking brake systems as the automotive technology just started to evolve from mechanical to drive by wire.

1.1 Objective

To test the performance as well as obtaining the torque and force in the system of electric and electro-hydraulic parking brake.

1.2 Scope

- 1. To measure the brake torque and force of the brake system.
- 2. To test the responsiveness of the brake system.
- 3. Performance comparison between manual parking brake, electronic parking brake and electro-hydraulic parking brake.

1.3 Problem Statement

To achieve the objective of the project, the scope listed above should be made as guidance while running the project. In the process to measure brake torque and forces of the brake system, choosing a low cost but precise method is somehow challenging. Responsiveness test heard as uncomplicated, but the way to compute the response time from driver input until the brake fully triggered can be tricky. Before the performance comparison between conventional, electric and electro-hydraulic parking brake can be made, installation and functional test should be carried out on a car. Studies on the installation and safety precaution should be made before running on the installation and functional test. This particular part of the project is challenging and should be made up as a test to measure the level of mechanical and automotive knowledge.

CHAPTER II

LITERATURE REVIEW

2.1 Automotive Brake

Brake is a device used to apply a force to an object to retard its motion. The most common method is to bring the moving surface into contact with a fixed surface, thereby generating friction which opposes the direction of movement. In a vehicle such as car and small truck, braking can be triggered by driver in 2 ways which is by the foot pedal and the hand lever. The brakes on today's cars and trucks have come from long way and history. The basic of hydraulic never changed, but friction material and other components have. From one-piece cast iron, the material of disc brake has changed to ceramic composite for high performance racing car or heavy trucks.

For better understanding of the brakes on today's car, the evolution history of brake should be considering review. Prior to the 1920s, all the brake systems were mechanically operated rather than hydraulic. Rods or cables connected to the brake cable were used to tighten band brakes around the flywheel, driveshaft or a wheel drum. The set rods or cables connected to the brake cable were also used to rotate a cam or wedge that pushed a set of brake shoes outward against the inside drum. In this era, most of the vehicle only had rear wheel brakes. A hollow flexible steel "Bowden" cable was used to operate brake drum in few vehicles with front wheel brakes. For a better 4 wheel braking, it required complex arrangement of equalizer yokes pulleys to even out the braking forces so the rear wheels would not lock up and skid when the brakes were applied.

According to Mike Mavrigian (1998), hydraulic brakes invention by Malcom Loughead in 1918 is a real breakthrough. He helps eliminated the rods, levers and cables that were previously needed to work the brakes because hydraulic brakes could transmit force equally to piston at each wheel brake without losses. Hydraulic also reduced the amount of pedal effort required to stop the vehicle, which made for easier braking and safer driving. In 1920, Duensenberg became the first production vehicle to offer hydraulic brakes. Chrysler was the next in 1924, and soon all the vehicle manufacturers offered hydraulic brakes.

2.1.1 Disc Brake

Most modern cars have disc brakes on the front wheels, and some have disc brakes on all four wheels. The most common type of disc brake on modern cars is the single-piston floating caliper and the number of piston can be more according to its application. Disc brake consists of three main components. The components are brake pad, disc rotor and caliper.

Figure 2.1 Disc Brake Diagram

i. The brake pads

Brake pads are steel backing plates with friction material bound to the surface. The surface of the friction material faces the disk brake rotor. When the brake is triggered, the hydraulically force are applied, the caliper clamps or squeezes the two pads together into the spinning rotor to slow or stop the vehicle. When a brake pad is in contact with the rotor can gets heated, it transfers small amounts of friction material to the disc, turning it dull gray.

Disc brake system is usually consisting of two brake pads per disc rotor. Even though, racing calipers utilize up to six pads with varying material frictional properties for optimum performance. Usually, brake pad has a piece of metal on them called wear indicator shown in Figure 1. This metal piece makes a squealing sound when intact with disc brake rotor to indicate it is time to change the brake pad as in Figure 2.

Figure 2.2 Brake Pad Wear Indicator

Figure 2.3 Noise From Brake Pad Indicator

ii. The caliper

The caliper contain piston the piston in the caliper emerges from the hollow cylinder where it resides inside the caliper. The brake caliper fits over the rotor like a clamp. In one side of each caliper, there is one or more hollow cylinder where the piston resides and as inlet of hydraulic fluids. When driver step on the brake, the brake fluid from the master cylinder creates hydraulic pressure on one or more pistons in the brake caliper forcing the pads against the rotor.

iii. The disk rotor

There are three types of disc rotor. The ventilated disc rotor consists of a wider disc with cooling fins cast through the middle to ensure good cooling. Proper cooling prevents fading and ensures longer pad life. Some ventilated rotors have spiral fins