DESIGN OF ROBOTIC ARM CONTROLLER USING MATLAB

SITI HAJJAR BINTI ISHAK

This Report Is Submitted In Partial Fulfillment of Requirements For The Bachelor Degree of Electronic Engineering (Computer Engineering) with Honours

> Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

> > APRIL 2011

Tajuk Projek Sesi Pengajian	UNI FAKULTI KEJUR : : : DESIGN : : SESI 2010	IVERSTI TEKNIKAL MALAYSIA MELAKA UTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II OF ROBOTIC ARM CONTROLLER USING MATLAB
Saya <u>SITI HAJJAR B</u>	INTI ISHAK	
mengaku membenarkan kegunaan seperti beriku	Laporan Projek S t:	arjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
Laporan adalah hak	amilik Universiti T	eknikal Malaysia Melaka.
Perpustakaan diben	arkan membuat sa	linan untuk tujuan pengajian sahaja.
Perpustakaan diben	arkan membuat sa	linan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.		
Sila tandakan ($$)):	
SUI	LIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TEI	RHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
√ TID	DAK TERHAD	
		Disahkan oleh:
(TAND. No. 44, Jalan Put Taman Putrimas,	ATANGAN PENULIS tri 7.	S) (COP DAN TANDATANGAN PENYELIA)
50200 Simpang I Johor Tarikh: 30 APRII 20	Kenggam	Tarikh: 3 MAY 2011
Talikii. 50 AF KIL 20	<i>y</i> 11	1411KII. J 1917-1 2011

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	: Siti Hajjar Binti Ishak
Date	: 30 APRIL 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor Degree of Electronic Engineering (Computer Engineering) with Honours."

Signature	:
Supervisor Name	e: En. Khairul Azha Bin A. Aziz
Date	: 3 MAY 2011

This project and research work is dedicated to my beloved parents for their devoted caring throughout my life, my loving brother and sisters also my friends for their encouragement and love.

ACKNOWLEDGEMENT

First of all, I would like to express my sincere thanks and indebted to En Khairul Azha Bin A. Aziz as my supervisor, thank you very much for accept me as one of your PSM student and the collaborative leadership that you show will always I remembered. I also would like to thank to my PSM1 panel En. Ahmad Nizam and En. Muzaffar who gave me idea on my project.

I would like to express my special thanks and a very down to earth and full with sense of humor-great experience to the Faculty of Electronic Engineering and Computer Engineering (FKEKK) on putting into practice the Final Year Project as a compulsory chore for the final year students prior to complete their course.

I also wish to extend heartfelt thanks to my friends Farahiyah, Siti Aminah, Siti Dhamirah, Baira, Hajar, Fira, Basha and my entire classmate for your help and support during this three years in University Technical Malaysia Melaka. The memory we spent together will not I forget.

Finally, I wish to thank to my lovely parents and my siblings, I love you so much and also to my lectures and friends for their encouragement, strength and support.

Thank you.

ABSTRACT

This project is about designing a robot arm control using MATLAB. It is designed to be used in the movement either to the left and right and is also used to lift an object using a robot arm is controlled using MATLAB. This project also uses a PIC 16F877A microcontroller circuit as the basic circuit. 3 servo motors will be used as an application extension to make movements and lifting an object. In this project, the PIC microcontroller to be programmed instructions to control the servo motor. This project uses MATLAB as a graphical user interface (GUI) for controlling the movement of this robot. The microcontroller software will be standardized to achieve the simulation is not always limited to the convergence between the tools used by the circuit. The project is also designed in such electronics industry and the manufacturing industry.

ABSTRAK

Tugas projek ini adalah tentang rekabentuk kawalan lengan robot menggunakan Matlab. Ia adalah rekabentuk yang digunakan dalam melakukan gerakan sama ada ke kiri dan ke kanan dan juga digunakan untuk mengangkat sesuatu benda dengan menggunakan lengan robot yang dikawal dengan menggunakan MATLAB. Projek ini juga menggunakan litar mikropengawal PIC 16F877A sebagai litar asas. 3 motor servo akan digunakan sebagai aplikasi sambungan untuk membuat pergerakan dan juga mengangkat sesuatu benda. Di dalam projek ini, mikropengawal PIC akan diprogram kepada arahan untuk mengawal motor servo. Projek ini menggunakan perisian MATLAB sebagai "Antaramuka Pengguna Grafik" untuk mengawal pergerakan robot ini. Perisian yang diseragamkan dengan pengawalmikro ini akan sentiasa mencapai simulasi yang tiada terhad daripada percantuman antara alat yang digunakan dengan litar. Projek ini juga direka dalam industri contohnya industri elektronik dan juga industri pembuatan.

TABLE OF CONTENTS

CHAPTER

CONTENT

PAGE

PROJECT TITLE	i
REPORT VERIFICATION STATUS FORM	ii
DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDIXES	xix

I

INTRODUCTION

1.1	Robot	1
1.2	Robot Arms	2
1.3	Introduction of Project	2
1.4	Objectives of Projects	2
1.5	Problem Statements	3
1.6	Scope of project	3
1.7	Thesis Organization	3
1.8	Methodology	4

LITERATURE REVIEW

II

2.1	Introduction		5
2.2	Robo	tic Arms	5
	2.2.1	Robot Arm Kinematics	6
2.3	Micro	ocontroller	7
	2.3.1	PIC Microcontroller	9
	2.3.2	Origins	9
	2.3.3	Variants	11
2.4	RS23	2 Serial Port	11
2.5	Servo	Motor	13
	2.5.1	Type of servo motor	14
	2.5.2	Advantages and disadvantages of servo	16
		motor and stepper motor	
	2.5.3	The PWM Signal	17
2.6	MAT	LAB (Graphical User Interface)	18
	2.6.1	MATLAB	18
	2.6.2	General definition of GUI	19
	2.6.3	MATLAB GUI	20
	2.6.4	MATLAB GUIDE	20
	2.6.5	Two Basic in Process of implementing a GUI	21
	2.6.6	Designing Graphical User Interfaces	21
	2.6.7	How a Graphical User Interface Works	22
	2.6.8	Operation of GUI	23
2.7	PICB	ASIC PRO Compilers	25
	2.7.1	Introduction	25
	2.7.2	The PICmicros	26
	2.7.3	Command Line Options	28
	2.7.4	PICBASIC PRO Statement Reference	28
		2.7.4.1 PULSIN	28

2.7.4.2	PULSOUT	29
2.7.4.3	PWM	30

METHODOLOGY

Π

3.1	Introduction		31
3.2	Project Outline Review		
3.3	Methodology		32
3.4	Hardware Imp	blement	34
	3.4.1 Power	r Supply +5V	34
	3.4.2 Micro	controller PIC 16F877A	35
	3.4.3 Fabric	cation process for PIC	38
	microc	controller circuit	
	3.4.3.1	Design circuit using Proteus 7	39
		Professional	
	3.4.3.2	Ultra Violet light emission	39
		process	
	3.4.3.3	Developing Process	40
	3.4.3.4	Etching Process	41
	3.4.3.5	The process of drilling holes	43
		in the PCB	
	3.4.3.6	Installing Process the	44
		components on the PCB	
	3.4.3.7	Soldering Process	47
	3.4.4 RS232	Serial Communication	48
	3.4.5 Power	Supplies for Digital Circuits	50
	Review	N	
	3.4.6 Servos	Review	50
	3.4.6.1	Servo Connections	50
3.5	Software Imp	blementation	51
	3.5.1 Overa	ll Robot Arm programming	51

3.5.1.1	PIC 16F877A programming	51
3.5.1.2	MATLAB Programming	53
3.5.2 Develop	ment MATLAB GUI Using	54
MATLAI	B GUIDE	
3.5.3 Build M	ATLAB Programming	58
3.5.4 Build P	PIC Programming using	60
PICBA	SIC PRO Compiler	
3.5.4.1	PULSOUT	60
3.5.4.2	Command FOR and NEXT	61

IV RESULT AND DISCUSSION

4.1	Introduction	62
4.2	Introduction to PIC controller circuit	62
	4.2.1 Programming Using PICBASIC PRO	63
	COMPILER	
4.3	Experiment 1: Testing to determine the degree	64
	of servo motor	
4.4	Experiment 2: Testing using the serial port	66
	connected with the PIC and MATLAB	
4.5	Testing MATLAB to Robot Arm	67
4.6	Project Prototype Design	70
	4.6.1 Building the Grip	70
	4.6.2 Project Prototype: Robotic Arm	71
4.7	Troubleshooting And Maintenance	71
	4.7.1 Equipment Failure	71
	4.7.2 Maintenance	72
	4.7.3 Keeping Proper Record	72

CONCLUSION AND RECOMMENDATION

V

5.1	Concl	lusion	73
5.2	Probl	ems	74
5.3	Recor	nmendation	74
	5.3.1	Hardware Improvement	74
	5.3.2	Software Improvement	75

REFERENCES	76
APPENDIX A	77
APPENDIX B	80

LIST OF TABLES

NO	TITLE	PAGE
2.1	RS232 pin assignments (DB9 PC signal set)	12
2.2	Servo motor	16
2.3	Stepper motor	17
2.4	Some Basic GUI Components	24
2.5	List of Options	28
3.1	Pin connection of PIC16F877A for servo motor	36
3.2	Basic MATLAB GUI Component	56
3.3	Kind of Callback	58
4.1	Degree of analysis for each servo motor	65
4.2	First analysis	66
4.3	Second analysis	66
4.4	Third analysis	66

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Flow chart for whole project	4
2.1	Robotic arm	6
2.2	Forward kinematics scheme	6
2.3	Inverse kinematics scheme	7
2.4	PIC Microcontroller	9
2.5	PIC 16F877A	10
2.6	Handshake looping a PC serial connector 20	12
2.7	The servo motor and servo motor connector	15
2.8	Internal servo motor	16
2.9	PWM wave at 50Hz	18
2.10	MATLAB	19
2.11	GUIDE layout of a wavelet analysis GUI (top)	22
	together with the completed interface (bottom).	
2.12	A Figure Window showing examples of MATLAB	25
	GUI elements	
2.13	Example for DEFINE coding	29
2.14	Example for PULSOUT coding	29
3.1	Flow chart for methodology	33
3.2	IC LM7805	34
3.3	Schematic circuit of +5V power supply	35
3.4	Power supply circuit design on protoboard	35
3.5	Schematic circuit of PIC16F877A	37
3.6	IC PIC 16F877A	37

3.7	PIC Circuit in ISIS software	38
3.8	PIC PCB Layout in ARES software	39
3.9	Tools to make the process of UV	39
3.10	UV radiation	40
3.11	Developing process	41
3.12	Drying process	41
3.13	Automatically Etching Process	41
3.14	Manually Etching Process	42
3.15	Clean PCB process	43
3.16	Examples of drill bit used for drilling holes	43
3.17	Drilling machine	43
3.18	PCBs are ready drilled	44
3.19	Resistor	44
3.20	Crystal Oscillator	45
3.21	Capacitor	45
3.22	LED	46
3.23	PIC 16F877a	46
3.24	LM7805	46
3.25	Tools used for soldering processes	47
3.26	Soldered circuit completed	47
3.27	NRZ (Non Return to Zero) format data 31	49
3.28	Connection between D9 Female serial port, MAX232	48
	and PIC16F877A	
3.29	Connection between serial port and computer	48
3.30	Servo motor connection	50
3.31	Flowchart for robot arm programming	52
3.32	Flowchart MATLAB programming	53
3.33	MATLAB GUIDE Layouts	54
3.34	Property Inspector	55
3.35	Example GUI	57
3.36	Example M-files for GUI	57

3.37	Example pulsout program for servo motor	60
3.38	Example For and Next program for servo motor	61
4.1	PCB layout for PIC circuit	63
4.2	Block diagram for testing robot arm using LCD	67
	Display	
4.3	LCD displayed ,,terima = 10cm"	67
4.4	LCD displayed ,,terima = 20cm"	67
4.5	MATLAB GUI have designed	68
4.6	Program for MATLAB GUI	68
4.7	Testing robot arm with MATLAB GUI	69
4.8	Program for PIC control 3 servo motor	69
4.9	Gripper for robot arm	70
4.10	Frame for robot arm	70
4.11	Prototype Robotic Arm	71

LIST OF ABBREVIATIONS

- PWM Pulse Width Modulation
- RAM Random Access Memory
- ROM Read-Only Memory
- PROM Programmable Read-Only Memory
- IC Integrated Circuit
- I/O Input / Output
- PIC Programmable Interface Controller
- USART Universal Synchronous Asynchronous Receiver Transmitter
- USB Universal Serial Bus
- PBP PICBASIC PRO

LIST OF APPENDIXES

NO	TITLE	PAGE
A	COMPLETE PROGRAMMING	77
В	DATASHEET OF SERVO MOTOR	80

CHAPTER I

INTRODUCTION

1.1 Robot

Robots are indispensable in many factoring industries. The reason is that the cost per hour to operate a robot is a fraction of the cost per hour to operate a robot is a fraction of the cost human labor needed to perform the same function. More than this, once programmed, robots repeatedly perform function with a high accuracy that surpasses that of the most experienced human operator. Human operators are, however, for more versatile. Humans can switch job tasks easily. Robots are built and programmed to be job specific. You wouldn't be able to program a welding robot to start counting parts in a bin [5].

Today's most advanced industrial robot will soon become "dinosaurs". Robots are in the infancy stage of their evolution. As robots evolve, they will become more versatile, emulating the human capacity and ability to switch job tasks easily. While the personal computer has made an indelible mark on society, the personal robot hasn't made an appearance. Obviously there's more to a personal robot than a personal computer robots require a combination of elements to be effective: sophistication of intelligence, movement, mobility, navigation and purpose [5].

1.2 Robot Arms

The simplest arm is the pick-and-place type. In this case the parts are moved from one location to another without caring how the part is picked up or down. However, these days robot arms are designed to manipulate objects having complicated shapes and fragile in nature. These may be used to assemble parts or fit them into clamps and fixture. This is possible due to high accuracy attainable in robot's arm [1].

1.3 Introduction of Project

This final project is about design robotic arm control using MATLAB. It is the robot that will make movement and grip something then put to another place. The project focuses on programming that use to move the robotic arm. The objective of this project is developing a program that can control robotic arm using MATLAB. To make the movement for robotic arm, 3 servo motor is used as a joints. In this particular project, PIC microcontroller is programmed into the instructions to control the servo motor. This project used the MATLAB software to create the program of robotic arm. This software emulator of the microcontroller will always suffer limited simulation from the combination device interaction with the circuit.

1.4 **Objectives of Projects**

PSM is a subject that require student to make their own project based on what they learn. The main core of this project is to develop a program that can control robotic arm using MATLAB. The system will be developing using MATLAB and PIC based circuit. Other than that, we also able to program the movement of servo motor.

1.5 Problem Statements

In the industry at this time were used for the robot arm as a tool to facilitate the work. There are many problems that arise in the existing robot arm:

- i. Difficult to control and time consuming to control.
- Getting securities using MATLAB is very rarely used in industry as such a system will be developed using MATLAB to control the robotic arm.

1.6 Scope of project

In order to achieve the objective of the project, there are several scope had been outlined. The scope of this project includes using PICBASIC PRO programming to program microcontroller PIC16F877A, build PIC microcontroller circuit and robotic arm for the system, and interface the microcontroller to computer by using RS232 serial port communication. Servo motors are also used for robotic arm and control by MATLAB. MATLAB is used to control PIC microcontroller which is connected to robotic arm. Robotic arm movement can be done by moving to the left or right to take and put things in different places.

1.7 Thesis Organization

This thesis consists of five chapters including this chapter. The contents of each chapter are outlined as follows, Chapter 2 contains a detailed description each part of project. It will explain about the robot arm, PIC Microcontroller, servo motor, RS232 serial port, servo motor, PICBASIC PRO Compiler and MATLAB GUIDE. Chapter 3 includes the project methodology. This will explain how the project is organized and the flow of the process in completing this project. Chapter 4 presents the expected result of simulation runs using MATLAB GUIDE and the analysis of the project. Finally the conclusions for this project are presented in Chapter 5.

1.8 Methodology

Figure 1.1: Flow chart for whole project

C Universiti Teknikal Malaysia Melaka

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter will describe about the knowledge of robotic arm or the literature review which is as a reference before develop this project, literature is one of the important part need to be consider before develop new project because it can be a good reference which is give a lot of information, theories, design and idea about the project develops. Literature review can be an article, journal, statement, research and the previous thesis done by others. Below show a few literature review referred before develop this project.

2.2 Robotic Arm

Reference is to build a robotic arm similar to this project. This robot quite simply, a robot to lift objects. More specifically, this is a robot arm with shoulder, elbow and wrist joints.