TEMPERATURE MONITORING SYSTEM

HASLINA BINTI ZAKARIA

This Report Is Submitted In Partial Fulfillment Of Requirement For The Bachelor of Electronic Engineering (Telecommunication Electronic)

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

MAY 2011

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek : TEMPERATURE MONITORING SYSTEM
Sesi
Pengajian : 1 0 / 1 1
Saya HASLINA BINTI ZAKARIA (HURUF BESAR) mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- syarat kegunaan seperti berikut:
1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
4. Sila tandakan ($$):
SULIT* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) TERUART **(Mengandungi maklumat terhad yang telah ditentukan oleh
TERHAD** (Wengandung maxima ternat yang telah dichudah oleh organisasi/badan di mana penyelidikan dijalankan)
√ TIDAK TERHAD
Disahkan oleh:
(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENUELIA)
NUR ALISA BINTI ALI Pensyarah Fakulti Kejuruteraan Elektronik dan Kejuruteraan Kemeuter Universiti Teknikal Malaysia Melaka (UTEM) Karung Berkunci No 1752 Pejabat Pos Durian Tunggal 76109 Durian Tunggal, Melaka.
Tarikh: 02/05/2011 Tarikh: 2/5/ 2011

"I hereby declare that this report is result of my own effort except for quotes as cited in the references."

Signature	:
Name	: HASLINA BINTI ZAKARIA
Date	: 02 MAY 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronic)."

Signature	:
Supervisor''s Name	: PUAN NUR ALISA BINTI ALI
Date	: 02 MAY 2011

Dedicated to my beloved parent;

Zakaria Bin Hj. Md Rani

&

Fatimah Binti Jasim

Thank you for your support and love to guide me through this thesis.

My Supervisor;

Puan Nur Alisa Binti Ali Thank you for your loving and taught me that even the largest task can be accomplished if it is done one step at a time.

My siblings;

My brothers Mohd Hilmi Bin Zakaria & My sisters Zahirah Binti Zakaria Hoping that you will be successful in whatever field you are involved in and may Allah bless all of you.

All My friends in university;

Without you and your strength this project would not be completed. I appreciate all support and confidence I gained and I learned from you all.

It may not be enough to contain the words of thanksgiving, it may not capture the endearing love that we have for all of you but now we are making this compilation to let the world know that your place is a place of love, generosity, and peace.

ACKNOWLEDGEMENT

First of all, I would like to thank to Allah S.W.T for helping and blessing me through all the obstacles that I faced during the work of this project. As my individual project, this project would not have been possible without considerable guidance and support. I would like to knowledge those who have enable me to complete this work and my years of graduate study.

In the first place I would like to record my gratitude to Puan Nur Alisa Binti Ali for her supervision, advice, and guidance from the very early stage of this research as well as giving me extraordinary experiences throughout the work. Above all and the most needed, she provided me unflinching encouragement and support in various ways.

I gratefully acknowledge to my friends for his advice, supervision, and crucial contribution, which made they a backbone of this project to become successfully. Thank you for lending hands during progress of the project. Your contributions are highly appreciated.

To the family, thank for giving me a blessing and moral support. I was extraordinarily fortunate to having all of them as my family. Without their support, I might not be able to complete this project. Lastly, it is a pleasure to express my gratitude wholeheartedly to lecturers, classmates and friends who contributed in this project directly and indirectly.

ABSTRACT

This project will describe about Temperature Monitoring System. This project can utilize in factory because it can improve system by monitoring and control machine temperature to avoid machine breakdown thus can improve productivity. Temperature Monitoring System will be use to monitor temperature data. Temperature Monitoring System will also allow the worker to know about the condition of a system. In this project, Visual Basic 6 will be use as the interface to display the temperature data For this project, it will use two circuit that is Temperature Control System using LM 35 with Serial Interface Circuit . The main component in Temperature Control System using LM 35 consists of PIC Microcontroller which will be used to control the operation of the circuit, Temperature Sensor to sense the temperature, LCD display that will display the temperature that has been sense by the Temperature Sensor. The Serial interface circuit will consists of IC MAX 232. This circuit connect between PIC with the PC by using serial cable RS232. At PC, by using Visual Basic 6 the temperature will display temperature data and this can be used to monitor. The data also will be store for further action and also as the reference to make a maintenance and to know the machine performance from time to time.

ABSTRAK

Project ini menerangkan tentang system pemantauan secara terus ataupun secara langsung. Project ini boleh digunakan di kilang kerana ia boleh memperbaiki system dan juga mengawal suhu mesin untuk mengelakkan mesin dari mengalami kerosakan dan meningkatkan produktiviti. Sistem pemantauan secara terus untuk suhu ini akan digunakan untuk memantau data suhu. Sistem pemantauan secara terus untuk suhu juga membolehkan pekerja untuk mengetahui keadaan sebenar sesuatu sistem itu. Dalam projek ini, Visual Basic 6 akan digunakan sebagai pemapar maklumat untuk memaparkan data suhu. Untuk projek ini, ia akan menggunakan 2 litar iaitu Temperature Control System menggunakan sensor LM 35 bersama Serial Interface Circuit. Komponen utama dalam litar Temperature Control System menggunakan sensor LM 35 ialah PIC Microcontroller yang akan digunakan untuk mengawal operasi litar. Sensor suhu digunakan untuk mengesan suhu, LCD untuk memaparkan data yang telah dikesan oleh sensor suhu. Serial Interface Circuit mengandungi IC MAX 232. Litar ini akan menjadi penghubung antara PIC dengan computer menggunakan kabel serial RS 232. Di komputer, dengan menggunakan Visual Basic 6, suhu boleh dipaparkan dan ini boleh digunakan untuk memantau suhu. Manakala data suhu akan disimpan untuk tindakan selanjutnya dan juga menjadi rujukan sekiranya ingin membuat baik pulih dan mengetahui prestasi mesin dari masa ke semasa.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	Project Title	i
	Declaration	ii
	Dedication	iv
	Acknowledgment	V
	Abstract	vi
	Abstrak	vii
	Table of Content	viii
	List of Tables	xi
	List of Figures	xii
	List of Abbreviation	XV
	List of Appendix	xvi
CHAPTER 1	INTRODUCTION	1-4
	1.1 Introduction	1
	1.2 Advantages of Project	2
	1.3 Problem Statement	2
	1.4 Objective	2
	1.5 Scope of Project	3
	1.5.1 Temperature Control Circuit	3
	1.5.2 Serial Communication Interface Circuit	4
CHAPTER 2	LITERATURE REVIEW	5-16
	2.1 Introduction	5
	2.2 Temperature Control System Circuit	5
	2.2.1 Temperature Sensor	5

	2.2.2 Integrated Circuit Temperature Sensors	7
	2.2.3 Temperature Sensor using LM35	8
	2.3 PIC 16F877A Microcontroller	10
	2.4 Assembly Language (ASM)	12
	2.5 Serial Port	13
	2.6 RS 232	14
	2.7 Visual Basic	16
CHAPTER 3	METHODOLOGY	17-32
	3.1 Introduction	17
	3.2 Project Flow Chart	17
	3.3 Project Planning Using Gantt chart	19
	3.4 The Hardware Project Process	20
	3.5 Etching Process to Printed Circuit Board	21
	3.6 Writing Visual Basic Project	22
	3.6.1 The Three-Step Process	22
	3.6.1.1 Planning	22
	3.6.1.2 Programming	22
	3.6.2 Visual Basic Environment	23
	3.7 Component Selection	24
	3.7.1 Temperature Sensor LM 35 DZ	24
	3.7.2 Microcontroller	25
	3.7.2.1 Choosing PIC Device	26
	3.7.2.2 PIC 16F877A (Microcontroller)	27
	3.7.3 USART	31
	3.7.4 RS-232	32
CHAPTER 4	DEVELOPMENT PROCESS	34-61
	4.1 Introduction	34
	4.2 Block Diagram for Overall Project	34
	4.3 Hardware	35

	4.3.1 Temperature Control System with LM35	35
	4.3.2 Description of Selected Components	36
	4.3.3 LCD Display Pin Connection	37
	4.3.4 Microcontroller PIC 16F877A	39
	4.3.5 Schematic	40
	4.3.5.1 Temperature Control Circuit	40
	4.3.5.2 LM 7805 Voltage Regulator	42
	4.3.5.3 Relay Driver Circuit	43
	4.3.5.4 LM 35 Sensor Circuit	44
	4.3.5.5 Serial Interface Circuit	45
	4.4 Software	46
	4.4.1 Introduction	46
	4.4.2 Flowchart	47
	4.4.3 Microcontroller Programming Concept	49
	4.4.4 PIC Design Concept	50
	4.4.5 PIC 16F877A Programming	51
	4.4.6 Visual Basic 6.0 Programming	57
CHAPTER 5	RESULTS AND DISCUSSION	62-73
	5.1 Introduction	62
	5.2 Hardware	62
	5.2.1 Hardware results	65
	5.3 Software	67
	5.3.1 Software results	70
	5.4 Results discussion	73
CHAPTER 6	CONCLUSION AND RECOMMENDATION	74-75
	6.1 Conclusion	74
	6.2 Further Work	75
	REFERENCES	76-77

LIST OF TABLE

NO. TITLE

PAGE

2.0	LM 35 Voltage output temperature sensors	9
2.1	9-pin serial port pin outs, male	15
3.0	PIC Common Tasks and Features Needed PIC	27
3.1	PIC 16F877A I/O Port	28
3.2	RS-232 specifications	32
4.0	LCD Display pin connection	38
4.1	PIC 16F877A pin configuration	47
4.2	Comparison Assembly and Others Language	49
5.0	Temperature Range	65

LIST OF FIGURES

NO. TITLE

PAGE

2.0	PIC 16F877A and its pin out	11
2.1	The speeds at which most computers' serial port	13
2.2	DB9 RS 232	14
2.3	DB25 RS232	15
2.4	9-pin male socket	15
3.0	Process Project Flow Chart	18
3.1	Gantt Chart	19
3.2	Flow chart of Hardware Process	20
3.3	Step for Etching Process	21
3.4	Visual Basic window	23
3.5	LM 35 DZ is a 3-pin sensors	24
3.6	Block Diagram for Microcontroller	25
3.7	USART circuit	31
4.0	Block Diagram for Overall Project	34
4.1	Temperature control circuit with LM35	35
4.2	LCD JHC 16X2	37
4.3	Pin configuration of PIC 16F877A	40
4.4	Overall circuit for Temperature control	40
4.5	Overall circuit for Temperature control PCB Board	41
4.6	LM 7805 Voltage Regulator Circuit and IC LM 7805	42
4.7	Relay driver circuit	43
4.8	(a) Bottom view of LM 35 (b) LM 35 Temperature Sensor	44
4.9	LM 35 Sensor Circuit	44

4.10	Serial Interface Circuit	45
4.11	Serial Interface Circuit PCB board	46
4.12	Flow Chart of PIC process	48
4.13	Microcontroller programming concept	49
4.14	PIC Design Concept	50
4.15	Programming to declare PIC name	51
4.16	Programming to declare the variable that use inside the program	51
4.17	Topic inside programming	52
4.18	Subtopic inside the programming	53
4.19	Explanation figure for move data	53
4.20	Check Temperature Data	54
4.21	Temperature Confirmation	55
4.22	Temperature Normal	55
4.23	Temperature Warning	56
4.24	Temperature OFF	56
4.25	Explanation figure (programming operation)	57
4.26	VB 6 form	58
4.27	Copy data from notepad	58
4.28	To check Com Port	59
4.29	Receive Serial Data	60
4.30	To show status, date and time	60
4.31	Status Display	61
4.32	Update event, update temperature and update status	61
5.0	Complete system	63
5.1	Temperature control system circuit	63
5.2	Temperature control system board	64
5.3	Serial interface circuit PC circuit	64
5.4	Serial interface circuit PCB board	64
5.5	LCD Display	65

5.6	Temperature condition 1	66
5.7	Temperature condition 2	66
5.8	Temperature condition 3	67
5.9	Visual Basic Temperature Monitoring System	67
5.10	Super TermV2.21.exe icon software	68
5.11	Super Term window	68
5.12	Connect and Select Port box	69
5.13	Super Term (make connection and display data)	69
5.14	Visual Basic Window	70
5.15	VB Temperature Monitoring System Window (Not Connected)	70
5.16	Error Box	71
5.17	VB Temperature Monitoring System Window (Connected)	71
5.18	VB Temperature Monitoring System Window (Data display)	71
5.19	VB Temperature Monitoring System Window (Data display)	72
5.20	TemLog file (Notepad-store data)	72
5.21	VB Temperature Monitoring System Window (Data display)	73

LIST OF ABBREVIATION

ASM	-	Assembly Language
CU	-	Control Unit
CPU	-	Central Processing Unit
GUI	-	Graphical User Interface
IC	-	Integrated Circuit
I/O	-	Input/ Output
LCD	-	Liquid Crystal Diode
LED	-	Light Emitting Diode
PC	-	Personal Computer
PIC	-	Programmable Integrated Circuit
RTD	-	Resistive Temperature Device
VB	_	Visual Basic

LIST OF APPENDIX

<i>NO</i> .	TITLE	PAGE	
А	PIC Main Programming		78
В	VB Terminal Programming		82

CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays, temperature is an important element to be monitored. Human monitor the temperature of world's climate, server room and house to predict the environment climate, to prevent server from overheated and to provide a comfortable room. That's the reason why temperature monitoring system is important. The main issues in a temperature monitoring system are how the system communicates with the user if the temperature is beyond the stable temperature defined by the user. The readings accuracy must be as accurate as the real environment temperature.

This project will focus on the first issues regarding the communication between system and user. It is a system that is applied to detect temperature and display the value of temperature and take action to give alarm when the temperature condition is exceeded from what has been set. While the monitoring system use a computer system to monitoring the temperature data.

"Temperature Monitoring System", is a system that can be used in an industrial like factory or inside the main distribution frame room for telecommunication company. In this project it will consists of hardware and software.

As for hardware part, it will use Temperature Control Circuit that use temperature sensor LM 35 as the input. Microcontroller PIC (Programmable Integrated Circuit) will be used to control the operations for this circuit. For software, it will consist of VB 6. VB 6 is use as the interface for this project. VB 6 will display the temperature data that sense by the temperature sensor. While VB6 display the data, at the same time data will be store inside other windows program that is Notepad.

"Temperature Monitoring System" will work by relationship between Temperature Control Circuit using temperature sensor LM 35, Microcontroller PIC, VB 6 (interface). Most control actions are performed automatically by PIC. Data collections begin at the PIC level that are communicated.

1.2 Advantages of Project

For Temperature Monitoring System, there are several advantages that people will get when use this project. The first advantage that when temperature is detected to exceed the limit that has been set up, it will give warning to the worker and instant action can be taken to accordingly to the situation. Second advantage is when there are section that is affected, the worker will be provided with instant information and in addition the engineers will be able to examine the problem for planning and improving system performance.

1.3 Problem Statement

Many companies in this world have problem to know the actual condition of the machine. The reason to know the condition of the machine is to make prevention and to avoid the machine from breakdown. Beside that, the readout of the majority of data collection in environmental or industrial is not true. It is because occur some adjustment to correct the data especially in down time problem. So, this project is developing to monitor temperature sensor system by serial communication and to avoid incorrect data collection and to automate the solution when a problem occurs.

1.4 Objective

The main objective of this project is to design Temperature Monitoring System and using VB6 as the interface to display the temperature data.

1.5 Scope of Project

Temperature Monitoring System consists of two part which are hardware and software part. For Hardware part, this section will have 2 circuit that connected with each other, that is "temperature control circuit" and "serial communication interface circuit"

1.5.1 Temperature Control Circuit

This sensor is used to measure the surrounding temperature and then send the measured values to the microcontroller. The chosen of the right temperature sensor is importance in order to provide the accurate measurement. This is because the temperature is the most significant element in temperature sensor system.

This section is development of system that will control a temperature that will apply for system. It will have the temperature sensor LM 35 as an input while LCD display, LED, Buzzer and Cooling Fan as its output. This system will be control by PIC 16F877A.

1.5.2 Serial Communication Interface Circuit

The meaning of serial communication interface is where the section of transferring data from Temperature controls system with LM35 to the PC or in other word, this equipment will allow PIC communicates with PC.

For Software part, this section will provide an information for item that are use in this project .

This project is about PIC programming of the temperature monitoring system .Visual Basic 6 will use as interface in this project. This project also use Notepad to store data from the Visual Basic 6. Basically, the idea is to connect output devices to the pc via serial port. Then, a software used monitor the system by using Visual Basic 6 software. Thus, the Visual Basic is used to monitor the temperature data.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The major components consist is temperature control system circuit using LM 35 Temperature Sensor, PIC Microcontroller, Serial Interface RS 232, Visual Basic 6. From this major component, the project will detect temperature using temperature sensor LM 35 with PIC that will control the operation of the circuit. Serial Communication Interface MAX 232 by using serial cable RS 232 is used to send data from PIC to Personal Computer (PC) and thus the Visual Basic 6 is used to display the temperature data.

2.2 Temperature Control System Circuit

2.2.1 Temperature Sensor

According to Dogan Ibrahim (2001)^[1], temperature measurement and control is one of the most common applications of microcontroller-based acquisition systems. Four types of sensors are commonly used to measure temperature in commercial and industry applications. These are thermocouples, resistive temperature devices (RTDs), thermistors and integrated circuit (IC) temperature sensors. Each sensors has unique advantages and disadvantages and by understanding how these sensors works, and what type of signal conditioning are required, we can make more accurate and reliable temperature measurement, monitoring and control.

Sensor is transducer that detect or measurement a physical quantity. A traducer is a device that converts physical quantity from one form to another. The different between sensor and traducer is sensor performs the traducer action but transducer sense some physical quantity.

According to Dogan Ibrahim (2001)^[1] thermocouples are inexpensive sensors which have a wide range of temperature range. Thermocouples work on the principle that when two dissimilar metals are combined, a voltage response across the junction between the metals. By measuring this voltage, we can get temperature reading. Different combinations of metal create different thermocouple voltages and there is a wide range of thermocouple available for different applications. Thermocouple have non-linear relationship to the measured temperature and as a results of this it is necessary either to linearize the characteristics or to use look-up tables to obtain the actual temperature from the measured voltage. Analogue to digital converter devices are required to connect the thermocouples to computer-based equipment.

Dogan Ibrahim $(2001)^{[1]}$ also state that a RTDs is a resistor with its resistance changing with temperature. The most popular type of RTD is made of platinum and has a resistance of 100 Ω at 0°C. This is because RTDs are resistive devices, a current must pass through the RTD to produce a voltage that can be measured. the change in resistance is very small (about 0.4 Ω /°C) and special circuitry is generally needed to measure the small changes in temperature. One of the drawbacks of RTDs is their non-linear change in resistance with temperature. RTDs are analogue devices and analogue to digital converters are required to interface these devices to computers.

Temperature is a measure of heat intensity. Thermistors are inexpensive, easily obtainable temperature sensors. They are easy to use and adaptable. Circuits with thermistors can have reasonable output voltages. Because of these qualities, thermistors are widely used for simple temperature measurements. They're not used for high temperatures, but in the temperature ranges where they work they are widely used.

According to Dogan Ibrahim (2001)^{[1],} Thermistors are metal oxide semiconductor devices whose resistance changes with temperature. One of the advantages of thermistors is their fast response and high sensitivity. Like RTD's a current is passed through a thermistors and the voltage across the thermistors is measured, thermistors are very non-linear devices and look-up tables are usually used to convert the measured voltage to temperature. Thermistors can be said as a small devices and one downside of this that they can be self-heating under a large excitation current. This of course will increase the temperature of the device and also give erroneous results. Thermistors are analogue sensors and analog to digital converters are required to interface these sensors to computer-based equipment.

Dogan Ibrahim $(2001)^{[1]}$ state that an integrated circuit temperature sensors are usually will have 3 – 8 pin active devices which require a power supply in order to operate. Thus it will give out a voltage which is directly proportional to the temperature. There are basically two types of IC temperature sensors that is analogue sensors are usually 3-pin devices and they give out an analogue voltage of typically 10 mV/°C which is directly proportional to the temperature and the other one is digital temperature sensors provide 8-9 bit serial digit output data which is directly proportional to the temperature.

2.2.2 Integrated Circuit Temperature Sensors

According to Dogan Ibrahim (2002)^[2], Integrated Circuit Temperature Sensors are semiconductor devices fabricated in a similar way to other semiconductor devices such as microcontrollers. These are no generic types like RTDs but some popular devices are manufactured by more than one manufacturer.