DEVELOPMENT OF AN EMBEDDED CONTROLLER FOR STEPPER MOTORS APPLICATION

NG POO HENG

MAY 2008

"I hereby declared that I have read through this report and found that it has comply the partial fulfilment for awarding the degree of Bachelor of Electrical Engineering (Power Electronic and Drive)"

Signature	:
Supervisor's Name	:
Date	:

DEVELOPMENT OF AN EMBEDDED CONTROLLER FOR STEPPER MOTORS APPLICATION

NG POO HENG

This Report Is Submitted In Partial Fulfilment of Requirement for the Degree of Bachelor in Electrical Engineering (Power Electronic and Drive)

> Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

> > MAY 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature	:
Name	:
Date	:

ii

To beloved father and mother

ACKNOWLEDGEMENT

In submitting this report, I would like to thanks my supervisor Projek Sarjana Muda (PSM) - Professor Madya Dr. Zulkifilie bin Ibrahim, for his guidance and participation in conducting my project. His knowledge and insights were invaluable in identifying the ways to solve my problems regarding to my project.

I also would like to thanks Puan Maaspaliza binti Azri and Professor Madya Dr. Ismadi bin Bugis and En. Ahmad Fairuz bin Muhammad Amin as my panels for the PSM. They shared out their time to attend my presentation PSM. Besides, they also give their opinions, advice and provide me good idea and knowledge to complete my final Project Sarjana Muda.

ABSTRACT

The project is titled as "**Development of an embedded controller for stepper motors application**". In this project, the embedded controller developed is based on Rabbit microprocessor and its core module model RCM 2000. This project is to design and develop variable speed controlled stepper motor drive using rabbit microprocessor. The control method implemented in this project is variable speed controller method. Instead of using assembly language to compile the variable speed; this controller will use Dynamic C programming language to develop the algorithm.

The goal of the project is to design and develop a laboratory scale functioning prototype in order to demonstrate the interfacing between the variable speed algorithm in Rabbit microprocessor and the stepper motor speed drive. The Rabbit microprocessor based variable speed controller is able to generate pulse wave signal. The desired pulse wave signal generated is an input signal for stepper motor speed drive in order to control the speed of stepper motor.

The major hardware implementation in this project is Rabbit microprocessor. Rabbit microprocessor is chosen due to its specification features of high speed, easydesign hardware system and low power consumption. Besides, variable speed driver also need to be developed to operate with two units of stepper motors or more.

ABSTRAK

Projek ini bertajuk "Pembangunan pengawal padat dan komplek untuk aplikasi motor stepper dengan menggunakan mikropemproses Rabbit." Dalam projek ini, satu pengawal padat yang dibangunkan adalah berteraskan mikropemproses Rabbit dan modul terasnya RCM 2000. Pengaturcara yang digunakan dalam projek ini adalah pengawalan perbezaan kelajuan. Satu algoritma kawalan kelajuan perlu dibangunkan dan dikompil ke dalam mikropemproses Rabbit agar dapat memberikan isyarat kawalan yang tepat kepada pemacu kelajuan motor stepper. Daripada menggunakan bahasa himpunan, pengawal yang akan direkacipta ini menggunakan bahasa pengaturcaraan Dynamic-C yang dikhaskan untuk mikropemproses Rabbit.

Matlamat projek ini adalah untuk merekacipta dan membangunkan satu prototaip berskala makmal. Prototaip ini diharapkan dapat mendemonstrasikan pengantaraan yang baik antara algoritma kawalan kelajuan yang dibangunkan dalam mikropemproses Rabbit, dengan pemacu kelajuan motor stepper. Pengawal laju asas mikropemproses Rabbit mampu menjanakan isyarat Pulse Wave. Isyarat Pulse Wave yang terjana akan dijadikan isyarat masukan untuk pemacu dan seterusnya pemacu kelajuan dapat mengawal kelajuan motor stepper.

Mikropemproses Rabbit dipilih sebagai perkakasan yang utama adalah disebabkan kelajuan yang tinggi, perekaan perkakasan yang mudah serta peresapan kuasa yang sedikit yang ditampilkan olehnya. Selain itu, satu pemaju perlu dibangunkan untuk beroperasi bersama dua atau lebih motor stepper supaya mendapat kelajuan yang berbeza untuk menjalankan tugas yang lain dalam pelbagai bidang.

CONTENTS

CHAPTER	TOP	IC		PAGE
	ACK	NOWLE	EDGEMENT	Ι
	ABS	TRACT		II
	CON	TENTS		IV
	LIST	OF FIG	URES	VII
	LIST	OF TAE	BLE	Х
	LIST	OF LIST	Γ OF ABBREVIATIONS	XI
	LIST	OF APP	PENDICES	XII
1	INTI	RODUCT	TION	1
	1.1	Object	ives of the Project	1
	1.2	Scope	of the Project	1
	1.3	Proble	m Statement	2
2	LITE	ERATUR	E REVIEW	3
	2.1	Embed	ded Systems	3
	2.2	Steppe	r Motors	5
		2.2.1	Unipolar Stepper Motors	8
		2.2.2	Bipolar Stepper Motors	10
		2.2.3	Advantages of Stepper Motors	11
		2.2.4	Applications of Stepper Motors	12
	2.3	Pulse V	Wave	12
	2.4	User Ir	nterface	13
	2.5	Types	of Control Method for Stepper Motors Nowadays	14
		2.5.1	LF2407 DSP	14
		2.5.2	The Implementation of Stepper Motor Control	14

System	Using	the	LF2407	DSP
by stem	Obing	une	LI 2107	

3

2.5.3	KIM-1 Microcomputer Speed Control of Stepper	16
	Motor	

MET	HODOL	OGY		18
3.0	Projec	t Implem	entation Flow Chart	18
3.1	Projec	t Planning	g Grant Chart	19
	3.1.1	Project	Overall Flow	20
	3.1.2	Equipm	nent Used	20
	3.1.3	Project	Description	23
		3.1.3.1	Summary of RCM 2000 Configuration	24
3.2	Hardwa	are Part P	rocess	25
	3.2.1	Rabbit	Microprocessor Rabbit 2000	25
		3.2.1.1	Features and Specifications	26
		3.2.1.2	Parallel I/O	29
		3.2.1.3	Parallel Port C	30
		3.2.1.4	Parallel Port D	31
		3.2.1.5	Initializing Parallel Ports by using Dynamic C	35
		3.2.1.6	Memory Mapping	38
	3.2.2	Rabbit	Core Module, RCM 2000	40
		3.2.2.1	Rabbit Core Module 2000 Feature	41
		3.2.2.2	RCM 2000 Prototype Board	43
	3.2.3	Centent	Micro-Step Drive Dive CNO 143	44
		3.2.3.1	Specifications	45
	3.2.4	Bipolar	Stepper Motor Driver L6208N	46
		3.2.4.1	Circuit Description	47
	3.2.5	Stepper	Motors	53
		3.2.5.1	Specifications	53
		3.2.5.2	Principle of Stepper Motors	54
3.3	Softwa	are part p	rocess	56
	3.3.1	Introduc	ction to Dynamic C	56

	3.4	Procedures to Activate Stepper Motor	57
4	RESU	JLTS	63
	4.1	Experimental Setup	63
	4.2	Experimental Procedures	65
	4.3	Software Development	67
	4.4	Interfacing among Hardware and Software	69
		4.4.1 Results Analysis	74
	4.5	Discussion on the Results	76
5	CON	CLUSION	78
	5.1	Future Recommendation	78
	5.2	Conclusion	78
	REFE	ERENCE	80
	APPE	ENDICES	82

LIST OF FIGURES

FIGURE TOPIC

PAGE

2.1	Embedded circuit	4
2.2a	The top electromagnet (1) is charged, attracting the top most four teeth of a sprocket	6
2.2b	The top electromagnet (1) is turned off, and the right electromagnet (2) is charged	7
2.2c	The bottom electromagnet (3) is charged; another 3.6° rotation occurs.	7
2.2d	The left electromagnet (4) is enabled	8
2.3	Unipolar stepper motor	8
2.4	Bipolar stepper motor	10
2.5	Waveform of pulse wave	13
2.6	DSP interface	14
2.7	Flowchart of the stepper motor control algorithm	15
2.8	Motor driving circuit	17
3.1	Project Implementation Flow Chart	18
3.2	Block Diagram of Overall Project	20
3.3	Digital multimeter	20
3.4	AC-DC adapter	21
3.5	Oscilloscope	22
3.6	Laboratory DC power supply	23
3.7	Block diagram of the Rabbit microprocessor	28
3.8	Cascaded output registers for Parallel Ports D and E	29
3.9	Parallel Port D block diagram	33
3.10	Parallel port initializing	36
3.11	Address configuration	37

3.12	Memory addresses accessing in 16-bit logical address space to 20- bit physical address space by MMU.	39
3.13	RCM 2000 connector pin outs	40
3.14	Rabbit Core Module 2000	41
3.15	RCM 2000 subsystem	42
3.16	Rabbit Core Module 2000 prototype board	43
3.17	Centent micro-step drive CNO 143	45
3.18	Typical application L6208N IC type bipolar stepper motor driver	46
3.19	Diagram half drive mode	47
3.20	Diagram normal drive mode	48
3.21	Diagram wave drive mode	49
3.22	Charge pump Circuit	50
3.23	Fast decay mode output stage configurations	51
3.24	Slow decay mode output stage configurations	51
3.25	Diagram of pins connection L6208N driver	52
3.26	Diagram switching characteristic	52
3.27	Sanyo Denki bipolar stepper motor	53
3.28a	Internal structure of stepper motor	54
3.28b	Rotation clock-wise of stepper motor	55
3.28c	Rotation counter clock-wise of stepper motor	55
3.29	Activate stepper motor via function generator and Centent CNO 143 driver	57
3.30	Activate stepper motor via RCM 2000 controller and L6208N driver	58
3.31	Block diagram of stepper motors via RCM 2000 controller	59
3.32	Stepper motors control flow chart	61
3.33	State diagram of the stepper motors speed performances	62
4.1	Connect Programming Cable to RCM 2000.	64
4.2	Software Dynamic C opens the new project	67
4.3	Software Dynamic C selects the project option.	68
4.4	Project option in communication and targetless.	68
4.5	Desire pulse wave programming	69
4.6	L6208N bipolar stepper motor driver with it circuit	70

4.7	Diagram of connection L6208N driver circuit	70
4.8	Control panel circuit	71
4.9	Integration between Rabbit Core Module (RCM 2000) with speed control panel box	71
4.10	Diagram of integration between RCM 2000 parallel ports with control panel circuit	72
4.11	Integration of the stepper motor, driver, prototype board and Rabbit Core Module (RCM 2000)	73
4.12	Diagram of integration stepper motors, drivers, prototype board and Rabbit Core Module (RCM 2000)	73
4.13	500Hz pulse wave	74
4.14	Approximately 600Hz pulse wave	74
4.15	Approximately 1000Hz pulse wave	75
4.16	Approximately 1500Hz pulse wave	75

IX

LIST OF TABLES

TABLE TOPIC

PAGE

3.1	Project planning Grant chart	19
3.2	Summary of RCM 2000 Configuration	24
3.3	Summary of port inputs and port outputs	25
3.4	Parallel Port C register	30
3.5	Parallel Port C data register and functions register	31
3.6	Parallel Port D registers	32
3.7	Parallel Port D data registers	34
3.8	Parallel Port D Control Register	34
3.9	Description pins for the Centent micro-step drive CNO 143	46
3.10	Electrical characteristic of L6208N driver	52
3.11	Specification 103Z710-1 Sanyo Denki bipolar stepper motor	53
3.12a	Clock-wise rotating table	55
3.12b	Counter clock-wise rotating table	55
4.1	Examples of frequencies motors with its related cycles need	66

LIST OF ABBREVIATIONS

- AC Alternating Current
- RCM Rabbit Core Module
- PC Personal Computer
- I/O Input/ Output
- RAM Random Access Memory
- DC Direct Current

LIST OF APPENDICES

NO	TITLE	PAGE
1	Datasheet of L6208N Bipolar Stepper Motors Driver	83
2	Programming Source Code of Variable Speed Control Stepper Motors	110

XII

CHAPTER 1

INTRODUCTION

1.1 **Objectives**

- To generated desire *pulse wave* signal as an input signal for stepper motor speed drive in order to control the speed of stepper motors by using *Rabbit Microprocessor*.
- To develop a user interface (push buttons, on-off switches) programming to interface with multi-stepper motors.

1.2 Scope

- Develop a speed control algorithm to drive the stepper motors.
- Develop the desire pulse waves by using Dynamic C programming.
- Develop an IC type stepper motor driver.
- Develop a programming to interface with multi-stepper motors.
- Develop a user interface (push buttons, on-off switches) variable speed stepper motors.

1.3 Problem Statement

Nowadays, the conventional controller of stepper motors speed mostly based on Digital Signal Processor (DSP), Programmable Logic Controller (PLC) or PC-based controller. Furthermore, these controllers might be costly and difficult to be reprogrammed. Hereby, on the terms of cost effective and easy to program, a controller with minimize number of components need to de developed by using 8 bits Rabbit microprocessor.

The main objective is to design and develop variable speed stepper motor by using rabbit microprocessor. The desired pulse waves are creating to generate the variable speed stepper motor by using Rabbit Core Module (RCM 2000) prototyping board. Examples for the application of stepper motors are X-Y plotters, electric typewriters, and control of disk drives, robots, and numerical control of machine tools.

The variable speed drive will be designed to interface with the stepper motor. Hence, by using Dynamic C language known as high level programming language will be develop to compile into the memory system of Rabbit Microprocessor. Then, the rabbit microprocessor of RCM 2000 will be integrating with the stepper motors in order to run in real time and debug for variable speed.

CHAPTER 2

LITERATURE REVIEW

2.1 Embedded Systems

Basically an embedded system consists of:

- Microcontroller, digital signal processor (DSP)
- Random access memory (RAM), disk on chip
- Flash memory
- Power consumption 3V-12V
- Microprocessor based 32 bits- 64 bits
- Peripheral input and output (I/O)
- Operating system (OS)
 - i. Disk operating system (DOS)
 - ii. Window CE
 - iii. Linux

3

An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming. Since the embedded system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product, or increasing the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale. [1]

Physically, an embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

In general, "embedded system" is not an exactly defined term, as many systems have some element of programmability. For example, Handheld computers share some elements with embedded systems - such as the operating systems and microprocessors which power them - but are not truly embedded systems, because they allow different applications to be loaded and peripherals to be connected.

Figure 2.1: Embedded circuit

(C) Universiti Teknikal Malaysia Melaka

2.2 Stepper Motors

Stepper motor is a permanent magnet or variable reluctance dc motor that has the following performance characteristics:

- 1. Rotation in both directions,
- 2. Precision angular incremental changes,
- 3. Repetition of accurate motion or velocity profiles,
- 4. A holding torque at zero speed, and
- 5. Capability for digital control.

Commonly the stepper motors can be divided in two types:

- Unipolar stepper motors
- **Bipolar stepper motors**

A stepper motor is an electric machine that rotates in discrete angular increments or steps. Stepper motors are operated by applying current pulses of a specific frequency to the inputs of the motor. Each pulse applied to the motor causes its shaft to move a certain angle of rotation, called a stepping angle. [2]

The stepper motor also possesses drawbacks such as the possibility of losing synchronism, harmonic resonance, and small oscillations at the end of each step. With the above parameters in mind, the stepper motor is used in applications such as printers, plotters, X-Y tables, facsimile machines, barcode scanners, image scanners, copiers, medical apparatus, and other devices. The stepper motor has salient poles on both the stator and the rotor, and normally only the stator poles hold the poly-phase windings called the control windings. Usually stepper motors are classified as

- Active rotor (permanent magnet rotor)
- Reactive rotor (reluctance type)
- Hybrid motors (combining the operating principles of the permanent magnet (PM) and reluctance stepper motor)

While each of these types of stepper motors has merit, hybrid stepper motors are becoming more popular in industrial applications. In this chapter, we focus on the principles and implementation of a hybrid stepper motor control system using the LF2407 DSP controller.

A stepper motor can move in accurate angular increments know as steps in response to the application of digital pulses to an electric drive circuit from a digital controller. The number and rate of the pulses control the position and speed of the motor shaft. Generally, stepper motors are manufactured with steps per revolution of 12, 24, 72, 144, 180, and 200, resulting in shaft increments of 30, 15, 5, 2.5, 2, and 1.8 degrees per step.

Stepper motors are either bipolar, requiring two power sources or a switchable polarity power source, or unipolar, requiring only one power source. They are powered by dc current sources and require digital circuitry to produce the coil energizing sequences for rotation of the motor. Feedback is not always required for control, but the use of an encoder or other position sensor can ensure accuracy when it is essential. The advantage of operating without feedback is that a closed loop control system is not required. Generally, stepper motors produce less than 1 horsepower (746W) and are therefore frequently used in low-power position control applications.

Figure 2.2a: The top electromagnet (1) is charged, attracting the top most four teeth of a sprocket.

(C) Universiti Teknikal Malaysia Melaka

Figure 2.2b: The top electromagnet (1) is turned off, and the right electromagnet(2) is charged, pulling the nearest four teeth to the right. This results in a rotation of 3.6 °.

Figure 2.2c: The bottom electromagnet (3) is charged; another 3.6° rotation occurs.