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ABSTRAK 

 

 

 

Prosess mesinan telah mengalami berkembangan yang mendadak dari masa ke masa 

untuk menyesuaikan diri terhadap peningkatan permintaan dalam kelajuan, ketepatan 

dan kecekapan. Perubanhan mahupun peningkatan paradigma ini telah menghasilkan 

satu cabaran yang baru malah kritikal. Projek ini bertujuan untuk menangani 

beberapa isu seperti yang dinyatakan, iaitu penyelarasan terhadap kesan geseran pada 

ketepatan prosess mesinan.   

 

Masalah tentang kesan geseran dalam prosess mesinan telahpun dikaji dengan 

banyaknya di masa dulu dan pelbagai teknik mahupun idea telah dicadangkan dan 

dikesahkan.  Teknik kawalan linier yang sederhana seperti PI, PID atau kawalan riam 

bersendirian adalah tidak mencukupi untuk  menyelaraskan perilaku geseran yang 

tidak linier. Dengan ini, suatu teknik kawalan yang kuat iaitu “sliding mode 

controller (SMC)” telah dicadangkan sebagai teknik kawalan dalam projek ini, dalam 

menyelaraskan geseran semasa gerakan pembalikan suatu sistem drive untuk 

meningkatkan ketepatan sistem itu. Prestasi kawalan dalam penyelarasan dinilai 

berdasarkan kebesaran “quadrant glitches”, iaitu satu produk daripada perilaku 

kompleks yang sangat tidak linier atas titik dimana pergerakan pembalikan motor 

berlaku dan ia  ditandakan atas kehadiran “paku” di dalam setiap sukuan bulatan. 

Akhir sekali, kebolehan alat kawalan SMC dalam geseran penyelarasan 

dibandingkan dengan kebolehan alat kawalan PID. 
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ABSTRACT 

 

 

 

Machining processes have evolved significantly over time in order to adapt to the 

increasing demand for speed, accuracy, and efficiency. This evolution or paradigm 

shift has created new and highly critical challenges. This project aims at addressing 

some of these issues, namely the compensation of the effect of friction forces on the 

accuracy of the machining process. 

 

Issues regarding friction effects in machining process have been studied extensively 

in the past and various techniques and ideas have been proposed and validated. 

Simple linear feedback control techniques such as PI, PID, or cascade control alone 

are insufficient to compensate the nonlinear friction behavior. Hereby, a robust 

controller, namely sliding mode controller (SMC) is proposed as control technique in 

this project in compensating friction force during motion reversal of a drive system 

in order to increase the system’s accuracy. The controller’s compensation 

performance is measured based on the magnitude of quadrant glitches, a product of 

highly non-linear complex behavior at the point of motor reversal motion and it is 

characterized by the presence of “spike” in each quadrant of circle. Lastly, the 

controller’s performance is compared with the performance of PID controller in 

compensating friction forces. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Project’s title: Sliding Mode Control (SMC) in Friction 

Compensation 

 

1.2 Background 

 

Nowadays, control systems contribute significantly in almost every aspect of our 

modern society with widespread applications in home environment and the industry. 

In industry, there is significant demand for high speed and high accuracy machine 

tools. These demands will translate to good performance. In a drive‟s system, one 

factor that contributes its performance is the influence of friction forces. Friction is 

an undesired nonlinear phenomenon that reduces the positioning and tracking 

accuracy in mechanical systems. An occurrence that is caused by friction is known as 

“spike” that is visible at quadrant locations during circular motion. These spikes are 

generally known as quadrant glitches, which is the product of complex nonlinear 

behavior of friction at motion reversal or near zero velocity on each axis of a motion 

system. This project focuses on the development of control technique to compensate 

friction force during motion reversal of a drive system in order to increase the 

system‟s accuracy. 

 

 

1.3 Problem Statement 

 

Friction is an undesired nonlinear phenomenon, which reduces positioning and 

tracking accuracy in a drive system. By studying the behavior of friction and the 

friction models, friction forces can be compensated. Several methods exist in 
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literature for friction compensation. A nonlinear controller in this project, Sliding 

Mode Control (SMC) is applied and designed as compensator necessary to improve 

tracking performance of a drive system.  

 

 

1.4 Objective 

 

There are several objectives outlined for the project. The objectives are: 

 

i. Study the behavior of friction  

ii. Study the friction models and 

iii. Develop a control technique (SMC) to compensate friction 

 

 

1.5 Scope 

 

The scopes of this project are: 

i. Study and apply the Generalized Maxwell-Slip (GMS) friction model based 

on actual friction‟s behavior extended from previous work of Jamaludin 

(2008). 

ii. Design of sliding mode controller for friction compensation using 

MATLAB/Simulink. 

 

 

1.6 Outline 

 

This research and project report consists of several chapters. The following Chapter 

2 introduces literature review on friction behavior, several friction models and 

techniques of compensation. The minimization of the effect of friction forces on the 

system position and tracking performance requires precise knowledge and complete 

understanding of the characteristics of this disturbance forces. Chapter 3 discuss the 

overall flow of conducting this research project from the beginning of the studying of 

Generalized Maxwell-Slip (GMS) friction model until the design of sliding mode 
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control (SMC) for friction compensation. Chapter 4 discuss on the result based on 

the flow presented in previous chapter and the performance of compensation on 

friction forces on tracking performance is analyzed. Chapter 5 discuss on the 

discussion based on the result obtained and lastly Chapter 6 discuss on the 

conclusion of this research project and the further work of this project. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

In high precision positioning applications, the effects of friction present in the system 

can lead to significant positioning error. An unambiguous phenomenon which is 

caused by friction is known as “spike” at quadrant position during circular motion or 

most commonly known as quadrant glitches (refer to figure 2.1). These quadrant 

glitches are the product of complex nonlinear behavior at motion reversal of a motion 

system that can critically affected the tracking performance (Jamaludin, 2008). In 

order to compensate the error due to frictional forces, an effective control strategy is 

a prerequisite. This requires a deep understanding and knowledge regarding on the 

friction behavior and friction characteristic as well. This chapter covered on the 

understanding, characterization and modeling of friction behavior. Generalized 

Maxwell-Slip model (GMS) is adapted to sliding mode control (SMC) in this project 

and will be further validate through simulation. The parameters of GMS model is 

obviously not be enclosed in this chapter but will be covered in the coming result 

chapter.  
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only and hence are dependent on the sliding velocity v. The considered static friction 

model incorporates Coulomb, viscous, and Stribeck friction as described in equation 

(2.1).  

 ( )  {   (     )     [ |
 

  
|
 

]    | |}      ( )                                     (   )    

 

Where  ,   and   represent the Coulomb, static, and viscous friction coefficients 

respectively. The Stribeck effect represents a decreasing effect of friction forces with 

increasing velocity. The Stribeck friction model parameters are the Stribeck velocity 

   and the Stribeck shape factor δ. 

 

The Dahl model is covered in the following session. 

 

 

2.2.2 The Dahl Model 

 

The development of the Dahl model is purposely for simulating control systems with 

friction. This model has been used for adaptive friction compensation. Dahl‟s starting 

point was several experiments on friction in servo systems with ball bearings which 

indicate that there are metal contacts between the surfaces. One of his findings was 

that bearing friction behaved very similar to solid friction. Dahl is then developed a 

comparatively simple model that was used extensively to simulate systems with ball 

bearing friction (Olsson et al. 1997). The model is an extension to the classic 

Coulomb friction, with smooth transitions around the critical zero velocity regions. A 

generalized first order differential equation of the position that is a function of the 

sign of the velocity v, approximates the hysteresis at pre-sliding regime as shown in 

equation (2.2) below (Jamaludin, 2008). 

 

   

  
   |  

  

  
   ( )|

  

   (  
  

  
   ( ))                                                     (   ) 
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Where    and    are the total friction force and the static friction force respectively 

with    is the initial stiffness of the contact at velocity reversal, and    determines 

the shape of the hysteresis.  

 

 The LuGre friction model, which is the improvement as well as the extension from 

the Dahl model that combines the pre-sliding friction behavior of the Dahl model 

with the steady-state friction characteristic of the sliding regime, will be covered in 

the following section. 

 

 

2.2.3 The LuGre Model 

 

The LuGre model is a dynamic friction model and friction is modeled as the average 

deflection force of elastic springs. When a tangential force is applied the bristles will 

deflect like springs. If the deflection is sufficiently large the bristles start to slip. The 

average bristle deflection for a steady state motion is determined by the velocity. It is 

lower at low velocities, which implies that the steady state deflection decreases with 

increasing velocity. This models the phenomenon that the surfaces are pushed apart 

by the lubricant, and models the Stribeck effect (Olsson et al., 1997). 

 

The model is based on the concept of averaging deformation of the contact asperities. 

The friction force is defined as: 

 

         

  

  
                                                                                                         (   ) 

 

   ,  , and    are the asperity stiffness, micro-viscous friction coefficient, and 

viscous friction coefficient respectively. The state variable z represents the average 

deflection of the asperities and v is the velocity. 
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 ( )
                                                                                                               (   ) 

 ( ) is the Stribeck curve, that is, a decreasing function for increasing velocity with 

upper limit and lower limit bounds corresponding to the static friction force   and 

Coulomb friction force    respectively (see section 2.1.1).    is the Stribeck velocity 

and δ is the Stribeck shape factor. 

 

 ( )     ( ) [   (     ) 
 |

 
  

|
 

]                                                                          (   ) 

 

However, the LuGre model fails to describe the hysteresis nonlocal memory 

behavior of friction force in pre-sliding regime which is then bring to the 

development of the generalized Maxwell-slip (GMS) model, proposed by Al Bender 

et al. (2005) which addressed this limitation.  

 

The Generalized Maxwell-slip (GMS) friction model will be discussed in the next 

section. 

 

 

2.2.4 The Generalized Maxwell-Slip Model (GMS) 

 

Lampaert et al. (2003) proposed the GMS friction model that incorporates the 

components of: the Stribeck curve for constant velocity, the hysteresis function with 

non-local memory for the pre-sliding regime, and the frictional memory for the 

sliding regime. The structure of this model is similar to the Maxwell-slip structure, 

that is, it consists of a parallel connection of   different elementary slip-blocks and 

springs (see figure 2.4). Each block represents a generalized asperity of the contact 

surface that can either stick or slip and each element   has a common input  , an 

elementary stiffness    , a state variable    that describes the element position, a 

maximum elementary Coulomb force    and a friction output    . A new state 

equation that characterizes sliding dynamics of each elementary slip-block replaces 
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