EXPERIMENTAL VALIDATION OF AFTERMARKET FUEL SAVING DEVICE (VOLTAGE STABILIZER)

NOOR AFFANDY BIN ABAS

This thesis is present in partial fulfillment for the award of Degree of Bachelor of Engineering Mechanical (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2010

I have read this thesis and from my opinion this thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Automotive)

Signature	:
Name of Supervisor	: MR. NOREFFENDY BIN TAMALDIN
Date	:

"I admit that this report is on my own work except for summary and quotes that I have stated the source for each of them"

Signature	:
Name of Author	: NOOR AFFANDY BIN ABAS
Date	: MAY 2010

Especially for beloved mom , dad, wife and family

ACKNOWLEDGEMENT

I would like to express my greatest gratitude to **ALLAH S.W.T** for giving me strength and courage to complete this thesis. With HIS blessing and bestowed, I am able to complete this thesis on time.

My special thanks go to my dedicated supervisor, Mr. Noreffendy bin Tamaldin who always provides good supervision, encouragement and critic. I am truly indebt with all the helps that he provide for me during completing this thesis.

My thanks also go to my beloved my loving wife and family that support all through the process of completing this thesis. They have been a wonderful source of support, inspiration, and encouragement throughout my education, and they deserve much credit for where I am today.

Lastly, to all persons that involve directly and indirectly with full willingness of contributing their efforts, time, energy and idea, helping me completed this thesis. There are not exact words that would able to express my feeling of gratitude toward them except thank you.

ABSTRACT

Aftermarket fuel saving devices (voltage stabilizer) manufacturer claim their product will reduce fuel consumption related to fuel economy and increase the engine performance. The functional of this product is to feed constant voltage current to electrical instruments and electronic devices and a combination of all these responses result in less fuel consumption and increase engine performance. This experimental validation has conducted by theory and experimental using one of aftermarket voltage stabilizer. The experimental validation has conducted with using Nissan Grand Livina 1.6L HR16DE 1.6 L with Automatic Transmission. The vehicle has tested before and after the installation voltage stabilizer with Dynomax 2000 Chassis Dynamometer for torque and power performance to determine its effects on fuel economy. The results indicated that the voltage stabilizer device has increase of torque performance about 1.4% begins at 2900 rpm and continuously to 6050 rpm. However, there is no significant effect for the purpose of fuel saving and reducing the cost of fuel consider the behavior of driver and limit speed of this country.

ABSTRAK

Pengeluar produk eksesori penjimat minyak jenis penstabil voltan mengakui bahawa produk mereka dapat meningkatkan kuasa kecekapan pembakaran menjimatkan kadar menggunakaan minyak serta secara tidak lansung petrol dan meningkatkan prestasi injin. Ianya berfungsi dengan mengurangkan gangguan radas elektronik dengan menstabilkan arus elektrik agar semua kendalian peralatan elektronik ditahap yang optimum. Kajian secara teori dan ujikaji telah dilaksanakan terhadap salah satu alat penstabil voltan yang terdapat di pasaran dengan menggunakan alat penguji Dynamometer Kerangka ke atas sebuah kenderaan Grand Livina HR16DE 1.6 L. Hasil ujikaji mendapati terdapat sedikit peningkatan terhadap daya kilas injin selepas pemasangan alatan tersebut sebanyak 1.4 % iaitu bermula dari 2900 psm hingga 6050 psm. Namun demikian, tidak ada kesan penjimatan minyak dari aspek tabiat kebiasaan pemandu dan limitasi kelajuan kenderaan yang ditetapkan di negara ini.

TABLE OF CONTENTS

CHAPTER	CONTENTS	PAGE
	DECLARATION	ii
	DEDICATION	111
	ACKNOWLEDGEMENT	iv
	ABSTRACK	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF GRAPHS	xiii
	ABBREVIATION	XV

CHAPTER	CON	ITENTS	PAGE
CHAPTER 1	INTI	RODUCTION	1
	1.1	Overview	1
	1.2	Aftermarket Voltage Fuel Saving Device	2
	1.3	Problem Statement	4
	1.4	Investigation of Aftermarket Voltage Stabilizer Selection	5
	1.5	Selection Investigation Apparatus	6
	1.6	Objectives	7
	1.7	Experimental Validation Scopes	7
CHAPTER 2	LITI	ERATURE REVIEW	9
	2.1	Overview	9
	2.2	Vehicle Technology Related Factors	9
	2.3	Human Driving Behavior Related Factors	13
	2.4	Electrical Power System Related Factors	14
		2.4.1 Basic electrical system	14
		2.4.2 Voltage Regulator in Vehicle Electrical System	16
	2.5	Aftermarket Voltage Stabilizer	18

CHAPTER 3

28

ix

	2.5.1	VS4 Voltage Stabilizer	20
	2.5.2	VS4 Voltage Stabilizer Features	21
	2.5.3	VS4 Component Devices and Function	23
	2.5.4	VS4 Working Principle	24
2.6	Reseau	ch Article	25
	2.6.1	Research Article 1	25
	2.6.2	Research Article 2	27

3.1	Introdu	action	28
3.2	Experi	mental Apparatus	30
	3.2.1	The Vehicle	30
	3.2.2	Max 2000 Chassis Dyno	33
3.3	Exper Param	imental Procedures and eter	31
	3.3.1	Max 2000 Chassis Dynamometer.	31
	3.3.2	VS4 Voltage Stabilizer.	32
3.4	Mathe	ematical Formulation	33
	3.4.1	Engine Torque	33
	3.4.2	Engine Power	33
	3.4.3	Brake Specific Fuel Consumption	34

EXPERIMENTAL METHODOLOGY

CHAPTER 4	RES	ULTS AND ANALYSIS	36
	4.1	Introduction	36
	4.2	Experimental Result	36
		4.2.1 Torque and Power without VS4	37
		4.2.2 Torque and Power with VS4	41
	4.3	Analysis Torque and Power	45
	4.4	Analysis Brake Specific Fuel Consumption	46
	4.5	Discussion	47
CHAPTER 5	CON	ICLUSION	48
	5.1	Conclusion	48
	5.2	Recommendation for Future Study	49
	REF	ERENCES	50
	BIB	LIOGRAPHY	51
	APP	ENDICES	53

LIST OF TABLES

NO.	TITLE	PAGE
1.1	List Aftermarket Voltage Stabilizer	4
1.2	Nissan Livina Technical Data	6

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Voltage Stabilizer Plug In Type	3
1.2	Voltage Stabilizer Battery Connector Type	3
1.3	Label of Sample Aftermarket Voltage Stabilizer Sampling	5
1.4	Experimental Validation Scope Chart	8
2.1	Energy Flow Rate for Medium Car	12
2.2	Car Electrical System	15
2.3	Lundell Alternator	15
2.4	Voltage Regulator	16
2.5	Claw Pole Alternators Circuit Diagram	17
2.6	Power Control Module Diagram	17
2.7	MOSFET Microcontroller Voltage Stabilizer	18

NO.	TITLE	PAG	GE

2.8	Sample VS1 Electrical Component Devices	19
2.9	Sample VS2 Electrical Component Devices	19
2.10	Sample VS3 Electrical Component Devices	20
2.11	Cutaway View of VS4 Aftermarket Voltage Stabilizer	22
2.12	VS4 Voltage Stabilizer Circuit Diagram	24
2.13	The Measured of Voltage Drop	26
2.14	The Resistance Value of Connecting Grounding System	26
3.1	Experimental Methodology Chart	29
3.2	Chassis Dynamometer Setup	31
3.3	VS4 Voltage Stabilizer Installations	32

LIST OF GRAPHS

NO. TITLE

PAGE

4.1	Engine Torque and HP vs. RPM (run 1 without VS4)	37
4.2	Engine Torque and HP vs. RPM (run 2 without VS4)	38
4.3	Engine Torque and HP vs. RPM (run 3 without VS4)	39
4.4	Torque and Power VS Engine Speed without VS4 (Average)	40
4.5	Vehicle Torque and HP vs. RPM (run 1 with VS4)	41
4.6	Vehicle Torque and HP vs. RPM (run 2 with VS4)	42
4.7	Vehicle Torque and HP vs. RPM (run 3 with VS4)	43
4.8	Torque and Power vs. Engine Speed with VS4 (Average)	44
4.9	Comparison Torque and Power vs. Engine Speed	45
4.10	Comparison BSFC vs. RPM	46
4.11	Comparison BSFC vs. Engine Speed and Engine Speed	47

ABBREVIATION

AC	=	Alternating Current
CDT	=	Cylinder Deactivation Technology
CVT	=	Continuously Variable Transmission
DAC	=	Data Acquisition Control
DC	=	Direct Current
DGEC	=	Dry Gap Water Cooled Eddy Current
DRB	=	Diode Rectifier Bridge
DOHC	=	Double Overhead Cam
ECM	=	Engine Control Module
EPA	=	Environmental Protection Agency
LIVC	=	Late Intake Valve Closing
IC	=	Integrated Circuit
IRS	=	Interference Reducer System
MOSFET	=	Metal Oxide Semiconductor Field Effect Transistor
MPM	=	Mechanical Power Distribution
MVICSA	=	Motor Vehicle Information and Cost Saving Act
PAC	=	Power Acquisition Control
PDM	=	Intelligent Power Distribution Module
VVT	=	Variable Valve Timing Technology

CHAPTER 1

INTRODUCTION

1.1 Overview

Fuel consumption is a very hot topic when fuel prices getting high and seems set to increase. The market has responded with a dozen of fuel saving device sold on the market that claims to improve the fuel economy and possibly improve engine performance of a vehicle. There are several different designs, but many are designed to fit on the air filter or fuel host or battery of a car and purportedly optimize torque and power performance in some way. Most "fuel saving devices" fit this pattern:

a. About a 10 - 15% claimed fuel saving (gas saving / gas mileage improvement)

- b. Claimed reduced emissions
- c. Claimed improved performance

Most aftermarket fuel saving device products not been tested and verify by SIRIM or government approved. There no agency in Malaysia like Environmental Protection Agency (EPA) in United Stated with enforcement under Section 511 of the Motor Vehicle Information and Cost Savings Act (MVICSA) mandatory the manufacturer to submit data to the EPA and apply for EPA testing through the Voluntary Aftermarket Retrofit Device Evaluation Program. Until now only one aftermarket fuel saver device by Sabertec Company have pass following the rigorous EPA 511 Protocol, a test created to evaluate claims to reduce automobile exhaust emissions and improve fuel economy. Most possibility after installing the aftermarket device or changes vehicle's engine, emission system, fuel system, or electrical system have the potential to cause one or more problems like increased emissions, reduced fuel economy, harm vehicle condition, void the manufacturer warranty and environmental hazards.

1.2 Aftermarket Voltage Stabilizer Fuel Saving Device

There are many aftermarket products that claim to improve economy and power via changes to the vehicle electrical system such as voltage stabilizer (VS) and grounding wires (to fit between the engine block and the vehicle body). It is true that vehicle electrical systems are inherently frequency noisy (due to ignition, alternator, etc), and by installing this add-on device could smooth this out. The electrical details of these devices are not specific and kept secret by the manufacturers. Most of voltage stabilizer manufacturer claims the benefits of their device such as:

- a. Better sound for in-car entertainment system.
- b. Smoother idle, especially when switch electrical devices on/off.
- c. Steadier light from headlamps; increased bulb life.
- d. Possibly sharp throttle response, especially from low engine revs and with a nearly flat battery.
- e. Possibly good starting although nearly battery flat.
- f. Increase battery life.

Commonly there are two various type voltage stabilizers for vehicle most popular among the customer depend on installation, price and warranty. First type voltage stabilizer is installation by plug in at cigarette lighter socket and the second type is installation by connection to battery terminal. The voltage stabilizer types are shown in Figure 1.1 and Figure 1.2. Voltage stabilizer can be finding in the market show in Table 1.1.

Figure 1.1: Voltage Stabilizer Plug in Type

Figure 1.2: Voltage Stabilizer Battery Connector Type

Name Product	Туре	Price (RM)
I-Change	Plug In	595.00
E-Charge	Plug In	580.00
Echo Charge	Plug In	576.00
Echo Storm	Plug In	380.00
Oricharge	Plug In	400.00
Hot Enazma Eco	Plug In	400.00
Power8	Plug In	480.00
Max Energy	Plug In	50.00
Pivot Raizin	Battery Connector	240.00
DIY	Battery Connector	99.00
Max Speed	Battery Connector	89.00
Zaptor	Battery Connector	120.00
I-VS	Battery Connector	129.00

 Table 1.1:
 List Aftermarket Voltage Stabilizer

1.3 Problem Statement

From manufacturer advertisements, theirs similar claim that voltage stabilizer can decrease circuit noise and high frequency impedance for more stable voltage current to all electronic device. This will result in increase power, torque, improve fuel economy, and reduce emission and audio quality. For this research the aim is only to investigation the effectives of voltage stabilizer on the manufacturer claim of improving fuel economy and increase the engine performance. The effective of the voltage stabilizer will be validating after the experimental vehicle test with chassis dynamometer. The analyze data and results will approve or disapprove that the installation of voltage stabilizer will reduce the fuel consumption and increase torque and power.

1.4 **Investigation of Aftermarket Voltage Stabilizer Selection**

For the purpose of this thesis, four samples of aftermarket voltage stabilizers are shown in Figure 1.3. Sample VS4 has been selected for this investigation because of transparent design and easy to dismantle for investigation purpose. This investigation will be conducted by theory and experimental for petrol engine. Research on theory will include the working principle of voltage stabilizer and an effective voltage stabilizer for the role of fuel saver and increase engine power and torque performance.

Figure 1.3: Label of Sample Aftermarket Voltage Stabilizer Sampling

1.5 Selection Investigation Apparatus

Selection of apparatus for this investigation only base on validation of increase engine power performance and reduce fuel consumption. The apparatus has been choosing as follow:

a. Vehicle – Grand Livina 1.6L engine HR16DE. Detail technical data shown in Table 1.2

b. Experimental Test Equipment – Max 2000 Chassis Dynamometer.

Table 1.2: Nissan Livina Technical Data

(Source: Nissan Grand Livina User Manual)

Nissan Grand Livina HR16DE 1.6 L			
Engine	DOHC four cylinder		
Displacement	1,598 cc		
Bore X Stroke	(78 x 83.6) mm		
Compression Ratio	9.8 : 1		
Fuel System	ECCS, Electronic fuel injections system		
Max power	77kW @ 5200rpm		
Max torque	150Nm @ 4,400rpm		
Fuel tank capacity	52 liter		
Weight	1245 kg		

1.6 **Objectives**

The objectives of this project are as follow:

a. To investigate the functional and working principle of aftermarket voltage stabilizer.

b. To investigate and validate the effectiveness of voltage stabilizer by experimental test using Chassis Dynamometer to manufacturer claim.

1.6 Experimental Validation Scopes

Investigation methodology chart shown in Fig. 1.6 and explanation as follow:

a. Literature study of working principle and functional voltage stabilizer related to increase torque and power performance and reduce fuel consumption.

b. Literature study on present engine vehicle technology with related power performance and reduce fuel consumption.

c. To identify suitable type of testing required for product validation.

- d. Analyze engine performance data result.
- e. Validation & reporting.

Figure 1.4: Experimental Validation Scope Chart

C Universiti Teknikal Malaysia Melaka