VOICE INTERACTIVE GAME USING SPEECH RECOGNITION

AHMAD ZULFADLI BIN AHMAD NAZARI

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honors

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > May 2008

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk	Projek	: VOIC	CE INTERACTIVE GAME USING SPEECH RECOGNITION
Sesi Pengaj	•	:	2007/2008
Saya	ıı		AHMAD ZULFADLI BIN AHMAD NAZARI
		nbenarkan Lapora an seperti berikut:	n Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
1.	Laporan a	adalah hakmilik U	niversiti Teknikal Malaysia Melaka.
2.	Perpustal	aan dibenarkan m	nembuat salinan untuk tujuan pengajian sahaja.
3.	Perpustal	aan dibenarkan m	nembuat salinan laporan ini sebagai bahan pertukaran antara institusi
1	pengajian	tinggi.	
4.	Sila tanda	akan (√):	
		SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
		TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
		TIDAK TERHAD	
	ī	TANDATANGAN PE	Disahkan oleh: (COP DAN TANDATANGAN PENYELIA)
Ala	amat Tetap:	25-01-05,	MARDIANA BT BIDIN
	•	BANDAR BARU SE	Å
		51000, KUALA LUM	MPUR Universiti Teknikal Malaysia Melaka (UTeM), Karung Berkunci 1200, Ayer Keroh, 75450 Melaka
Tar	rikh:	Mei 2008	Tarikh: 9 Mei 2008

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	· And			
Author	: AHMAD ZULFADLI BIN AHMAD NAZARI			
Date	9 Mei 2008			

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honors."

Signature	. 10.
Supervisor's Name	: MARDIANA BINTI BIDIN
Date	9 Mei 2008

For my lovely mom and dad

ACKNOWLEDGEMENT

First and foremost I would like to thank to Allah the Al-Mighty for His graciousness I am able to finish my Final Year Project successfully. I would also like to thank my project supervisor, Ms. Mardiana Binti Bidin for helping me along the way of completing this project. I would also like express my gratitude to both of my parents for supporting me and also helping me in my studying. My thanks also go to all of the people who have been involved directly or indirectly with this project, only god can repay all of your graciousness.

ABSTRACT

Speech communication refers to the processes associated with the production and perception of sounds used in spoken language. It has been used since the early age of mankind as the medium to communicate and change information with each other. In this Projek Sarjana Muda (PSM) project, a Voice Interactive Game, which is an application where users are able to interact with the game by using the users' voice, is proposed. English words may be hard to pronounce since there are a lot of pronunciation style and some words may sounds very similar. Wrong pronunciation of English words may cause other people to misunderstand what you are saying and may get you into trouble. Voice interactive game is a great way to encourage users especially the youngsters to learn the correct pronunciation of English words which sometimes being pronounce wrongly all the time. For example, the word 'alter' may be wrongly pronounce as 'outer' or 'otter'. Thus, the Voice Interactive Game is proposed for this project. In this project, user will have to provide inputs that are their voice by pronouncing the words provided. The game is targeted for children aged between 7 to 12 years old. Thus, there are only 15 simple words in the system's library. GoldWave 5.06 and MATLAB 7.0 software is used to capture the user's voice and turn it into digital form. The voice signal will be recognized by a recognizer and checked if the pronunciation is correct or not. The recognizer was programmed by using MATLAB 7.0. The results will be shown in the GUI that was also being built by using MATLAB 7.0 software.

ABSTRAK

Komunikasi suara adalah merujuk kepada proses yang berkaitan dengan penghasilan dan persepsi bunyi yang digunakan di dalam bahasa percakapan. Ianya telah digunakan sejak zaman purba lagi sebagai medium untuk berkomunikasi dan bertukartukar maklumat sesama manusia. Untuk Projek Sarjana Muda (PSM) ini, sebuah aplikasi Voice Interactive Game akan dibangunkan. Ianya adalah sebuah aplikasi di mana pengguna boleh berinteraksi dengan aplikasi permainan tersebut dengan menggunakan suara pengguna tersebut. Perkataan-perkataan bahasa Inggeris kebanyakannya adalah susah untuk disebut memandangkan terdapat banyaknya gaya sebutan perkataan dan sesetengah perkataan berbunyi seakan-akan sama sebutannya. Sebutan perkataan yang salah boleh menyebabkan orang lain salah faham maksud percakapan anda dan mungkin juga akan membawa kepada masalah. Voice Interactive Game adalah satu cara yang baik untuk mendorong pengguna terutamanya kanak-kanak untuk belajar sebutan perkataan bahasa Inggeris dengan betul di samping berhibur. Di dalam projek ini, pengguna akan memberikan input suara mereka dengan menyebut perkataan yang disediakan. Aplikasi permainan ini disasarkan kepada kanak-kanak berumur antara 7 hingga 12 tahun. Oleh itu, hanya 15 perkataan ringkas sahaja yang telah disimpan di dalam sistem ini. Perisian GoldWave 5.06 dan juga MATLAB 7.0 digunakan untuk merekod suara pengguna dan menukarkannya kepada bentuk digital. Sistem pengecaman suara pula telah dibangunkan dengan menggunakan perisian MATLAB 7.0. Paparan aplikasi permainan ini juga telah dibangunkan dengan menggunakan perisian MATLAB 7.0.

CONTENTS

CHAPTER	TIT	LE	PAGE
	PRO	DJECT TITLE	i
	DEC	CLARATION	iii
	DED	DICATION	v
	ACK	KNOWLEDGEMENT	vi
	ABS	TRACT	vii
	ABS	TRAK	viii
	CON	TENTS	ix
	LIST	T OF TABLES	xiii
	LIST	T OF FIGURES	xiv
	LIST	T OF ABBREVIATIONS	xvi
I	INT	RODUCTION	
	1.1	Problems Statement	1
	1.2	Objectives	2
	1.3	Scope of Work	3
п	I ITI	ERATURE REVIEW	
11	LIII	ERATURE REVIEW	
	2.1	Speech Recognition	4
	2.2	Speech Recognition Technology	5
		2.2.1 Isolated Speech Recognition	5

		2.2.2	Continuous Speech Recognition	6
		2.2.3	Discreet Speech Recognition	6
	2.3	Speech	h Recognition Handling Mode	6
		2.3.1	Speaker Dependent	6
		2.3.2	Speaker Independent	7
	2.4	Model	of Speech Recognition System	7
	2.5	Speech	h Recognition Approach	8
		2.5.1	Dynamic Time Warping	9
		2.5.2	Hidden Markov Model	10
		2.5.3	Mel Frequency Ceptrum	
			Coefficient	11
	2.6	Graph	ical User Interface (GUI)	12
		2.6.1	Introduction of GUI	12
		2.6.2	How a Graphical User	
			Interface works	12
		2.6.3	How to build user interface in	
			MATLAB 7.0	13
Ш	PRO	JECT M	IETHODOLGY	
	3.1	Introd	uction	14
	3.2	Flowc	hart of Project Methodology	15
	3.3	Softwa	are development	16
	3.4	Develo	opment of Voice Interactive Game	16
		3.4.1	GUI Development	16
			3.4.1.1 The Introduction page	17
			3.4.1.2 The Selection page	22
			3.4.1.3 The Game's Main Page	29
		3.4.2	Voice recording using "train.m"	44
		3.4.3	Voice Recording Using	
			GoldWave 5.06	47

IV RESULTS AND ANALYSES

4.1	Introduction		
4.2	Accur	racy of the recognition system	48
	4.2.1	Accuracy of recognition for one	
		syllable word	49
	4.2.2	Accuracy of recognition for two	
		syllables word	50
	4.2.3	Accuracy of recognition for three	
		syllables word	51
	4.2.4	Analysis summary for accuracy	
		of recognition	52
4.3	Test ti	ime	53
	4.3.1	Test time for database training	53
		4.3.1.1 3 seconds test time for	
		database training	54
		4.3.1.2 5 seconds test time for	
		database training	55
		4.3.1.3 7 seconds test time for	
		database training	56
	4.3.2	Test time for recognition process	57
	4.3.3	Analysis summary for Time Test	58
4.4	Proble	ems	59
	4.4.1	Environmental noise	59
	4.4.2	Low quality voice data	59
	4.4.3	Low quality microphone	59
	4.4.4	MATLAB programming	60

V CONCLUSION

5.1 Introduction 61

5.2	Sugge	61	
	5.2.1	Improve the accuracy of the	
		speech recognition	62
	5.2.2	A better microphone	62
	5.2.3	More words in the database	62
	5.2.4	The GUI	62
5.3	Concl	usion	63
REFERENCES			64

LIST OF TABLES

NO	TITLE	PAGE
2.1	Comparison of performance between DTW and HMM.	11
4.1	One syllable word test	49
4.2	Two syllables word test	50
4.3	Three syllables word test	51

LIST OF FIGURES

NO	TITLE	PAGE
2.1	Speech recognition system model	7
2.2	The structure of DTW	9
2.3	Example of comparison between two signals	10
2.4	The Flow of Process in MFCC	11
3.1	The flowchart of the voice interactive game operation	15
3.2	Window layout for the Introduction Page	17
3.3	Welcoming text in the layout for the Introduction Page	18
3.4	'Start' button in the layout for the Introduction Page	19
3.5	The complete GUI for the Introduction Page	20
3.6	The first layout for the Selection Page	22
3.7	The buttons layout for the Selection Page	23
3.8	GUI of the Selection page	26
3.9	Window layout for the game's main page	29
3.10	The 'Your word is:' text	30
3.11	The text boxes	31
3.12	The list box	32
3.13	Example of the selected animal's picture	33
3.14	The five buttons of the game's main page	35
3.15	The 'Listen!' button	36
3.16	The 'Say it !' button	37

3.17	The 'Instruction' button	40
3.18	The 'Instruction' page	41
3.19	The 'Back' button	42
3.20	The 'Exit' Button	43
3.21	Dialog box for 'Exit' button	43
3.22	GUI for voice data training	46
3.23	The GoldWave 5.06 interface	47
4.1	Signal for 3 seconds test	54
4.2	Signal for 5 seconds test	55
4.3	Signal for 7 seconds test	56

LIST OF ABBREVIATIONS

ADC - Analog-Digital Converter

DTW - Dynamic Time Warping

GUI - Graphical User Interface

GUIDE - GUI Development Environment

HMM - Hidden Markov Model

LPC - Line Prediction Coding

MFCC - Mel Frequency Ceptrum Coefficient

CHAPTER I

INTRODUCTION

1.1 Problems statement

There is still no educational software system that is fully interactive with the users available in the market right now, that is can give examples of the correct pronunciation of the words and can detect whether the pronunciation of the users are correct or incorrect. The development of Voice Interactive Game based from speech recognition system will bring a whole new dimension to the educational software with two way interactions.

Since English language is the mother tongue of the world, it is important for us to learn how to speak in English. While we learn and try to speak, we may wrongly pronounce the English words because some words may have similar pronunciation and do not have recognizable differential. For example, the word 'alter' may be wrongly pronounced as 'outer' or 'otter' since there are similarities between those words. And pronouncing the English words wrongly may get us into troubles especially when what we said offended other people.

Although speech recognition system has been around for about 80 years, it is not being utilized into the educational software systems. Many of the educational software have one way interactions with the user which sometimes can be quite boring and user will lose their interest. So with the development of this Voice Interactive Game, it is hoped that educational software will be an interesting application to use and improves the educational level.

1.2 Objectives

For developing the Voice Interactive Game, there are four objectives listed as below:

- To create an interactive application that is fun to use and at the same time educational.
- 2. To expose to the mass about the speech recognition system and its technology.
- 3. To improve pronunciation in English.
- 4. To implement Digital Signal Processing as the speech recognizer.

1.3 Scope of work

Since the Voice Interactive Game that is going to be developed is a simple game application, the target user for this application will be targeted for the children between the ages of 7 to 12 years old. The reason I chose this range of children age is that in Malaysia, children from the age of 7 years old will be attending the primary school and finished their study in the primary school at the age of 12. So it is good to start early in their age and train them to pronounce the English words correctly.

The project is still in its research period. According to that, the system library will contain only 15 words as the reference words. And the available words will consist of simple words that are not hard for the children to pronounce it.

This project involves no circuit development at all since this is only a software application. The software involved in this project is GoldWave 5.06 and MATLAB 7.0. The reasons I chose these software because they are easily available, easy to understand and use, have a lot of references either on books or the internet and suitable for speech recognition system.

CHAPTER II

LITERATURE REVIEW

2.1 **Speech Recognition**

What is speech recognition? Speech recognition is the process of converting a speech signal to a sequence of words, by means of an algorithm implemented as a computer program. Speech recognition applications that have emerged over the last few years include voice dialing, call routing, simple data entry, preparation of structured documents, domotic appliances control and content-based spoken audio search.

The performance of a speech recognition system is usually specified in terms of accuracy and speed. Accuracy is measured with the word error rate, whereas speed is measured with the real time factor.

Most speech recognition users would tend to agree that dictation machines can achieve very high performance in controlled conditions. Part of the confusion mainly comes from the mixed usage of the terms "speech recognition" and "dictation".

Speaker-dependent dictation systems requiring a short period of training can capture continuous speech with a large vocabulary at normal pace with a very high accuracy. Most commercial companies claim that recognition software can achieve between 98% to 99% accuracy (getting one to two words out of one hundred wrong) if operated under optimal conditions. These optimal conditions usually mean the test subjects have:

- matching speaker characteristics with the training data,
- · proper speaker adaptation, and
- clean environment (e.g. office space).

This explains why some users, especially those whose speech is heavily accented, might actually perceive the recognition rate to be much lower than the expected 98% to 99%.

Limited vocabulary systems, requiring no training, can recognize a small number of words (for instance, the ten digits) as spoken by most speakers. Such systems are popular for routing incoming phone calls to their destinations in large organizations.

2.2 Speech Recognition Technology

Generally, a speech recognition technology use data processing application in the computer to recognize human's voice. Speech recognition can be categorized to several types:

2.2.1 Isolated speech recognition

Speech recognition system that is consists of only one word being spoken in one recognition process. The speaker speaks the words in order to train and test the system.

2.2.2 Continuous Speech Recognition

Speech recognition system that is consists of continuously and clearly spoken words. The words spoken may be spoken more than one word where the words must be spoken clearly one by one. One of the applications that is using this type of speech recognition is saying the sequence of password for bank account for security measure.

2.2.3 Discreet Speech Recognition

Speech recognition system that is consists of naturally spoken words where there is not much gap between the words.

2.3 Speech recognition handling mode

Speech recognition system has two handling mode, where each of the mode consists of different training system.

2.3.1 Speaker dependent

This system is trained by several speakers and only be able to recognize the speech by the speakers. This speaker dependent handling mode is used in order to achieve the system accuracy in recognizing the words spoken by the speaker.

2.3.2 Speaker independent

This system is able to recognize speech not specifically to the speaker only, but also to other users even though there is no speaker's voice sample in the trained system. At this stage, the system can be used as an application for educational software because of its ability to build a global template to match the user's voice and the trained voice.

2.4 Model of speech recognition system

To understand how speech recognition system works, below is the block diagram of the flow of the speech recognition system.

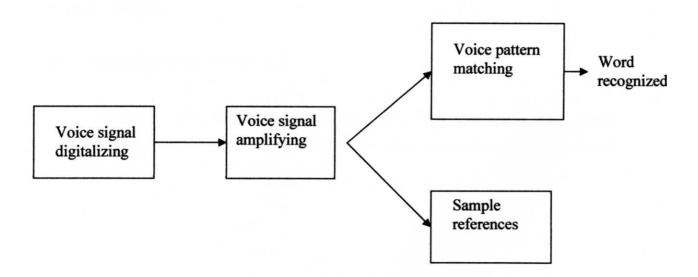


Figure 2.1: Speech recognition system model

Firstly, the input of the user's voice must be converted into digital form. This will allow the voice signal being processed by the computer. It can be done by using a microphone to record the speech and then the speech signal will be converted by

Analog-Digital Converter (ADC) and now we have data representation for every level of discreet time.

After that, the converted voice signal will be processed by using the method of digital signal processing. Form-extracting is a process of taking out as many information that are not related and representing a data that is relevant into a meaningful form. The methods that can be used to form-extract are Fourier transform, Linear Prediction Coding (LPC) and cepstrum. These methods are usually used to produce an array of useful vector form at the pattern-matching section.

Speech recognition system usually needs training process to train the system to recognize certain voice signal. For that purpose, a word will be said over and over again. The voice signal will then be processed and the voice form will be stored as the reference sample.

2.5 Speech recognition approach

Nowadays, there are a lot of products being developed based from speech recognition system. There are two main methods that are use as the approach in speech recognition.