

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FINITE ELEMENT ANALYSIS OF TYRE USING EULERIAN APPROACH

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Mechanical Engineering (Automotive) with Honours.

By

KONG LEARN FEI

FACULTY OF MECHANICAL ENGINEERING 2011

SUPERVISORS DECLARATION

"I hereby, declare that I have read this report and in my opinion, this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)"

:

:

:

:

:

:

Signature	
1 st Supervisor's Name	
Date	

n'

DR. MUHAMMAD ZAHIR HASSAN 16 MAY 2011

Signature	
2 nd Supervisor's Name	
Date	

DR. NOREFFENDY BIN TAMALDIN 16 MAY 2011

DECLARATION

I hereby, declared this report entitled "Finite Element Analysis of Tire Using Eulerian Approach" is the results of my own research except as cited in references.

Signature : The Date

Student's Name : KONG LEARN FEI : 16 MAY 2011

ABSTRACT

Automotive pneumatic tyre plays an important role for vehicle suspension system. Development process of tyre involved experiments which are time consuming and expensive, hence increase the tyre development cost. In order to overcome this problem, many other methods have been implemented. One of these methods is Finite Element Analysis. This aims of this project are to develop a simplified 185/70 R14 pneumatic tyre model to study road/ tyre interaction using Finite Element Method by using ABAQUS software. This project started with 2D axisymmetric tyre modeling to perform rim mounting and inflation analysis followed by 3D tyre model by revolving the 2D mesh developed. The footprint and steady state rolling analysis are performed to study the behavior of tyre when in contact with the road surface during loaded and rolling condition where this analysis is very complicated that involved high experiment cost. Instead of carry out experiment, the computational method is used to study the tyre behavior. Real tyre components are considered in this project which included one carcass, two belts and rubber matrix. In axisymmetric model, element group of CGAX3H and CGAX4H from ABAQUS are used to define the element for rubber matrix and the tyre reinforcement are represented as rebar in surface elements, SFMGAX1 are embedded into the continuum elements. After the analysis of tyre using CAE, the results are validated with result from previous research.

ABSTRAK

Tayar pneumatikOtomotif memainkan peranan yang penting dalam suspensi kenderaan. Proses pembangunan tayar melibatkan percubaan eksperimen yang memakan masa dan mahal, lalu meningkatkan kos pembangunan tayar. Untuk mengatasi masalah ini, banyak kaedah lain telah dilaksanakan dan dicuba. Salah satu daripada kaedah tersebut adalah Analisis Elemen Hingga. Tujuan projek ini adalah untuk menyediakan model tayar 185/70 R14 yang diringkaskan untuk mengkaji interaksi tayar dengan permukaan jalan dengan Kaedah Elemen Hingga menggunakan software ABAQUS. Projek ini dimula dengan membentuk model asimetrik 2D untuk melakukan mounting dan analisis inflasi dan akhirnya model 3D tayar dibentuk dengan memutarkan mesh daripada mesh model 2D. Analisis tapak permukaan tayar and analisi putaran tayar dalam keadaan mantap dilakukan untuk mempelajari perilaku permukaan jalan dengan tayar di mana tayar dalam keadaan dimuat, disi dengan angin and analisis putaran tayar atas permukaan jalan sangat rumit dan melibatkan kos eksperimen yang tinggi. Dari menggunakan kaedah eksperimen, kaedah analisi menggunakan komputer digunakan untuk mengkaji perilaku tayar. Sifat komponen tayar yang sebenar digunakan dalam projek ini. Ia termasuklah salah satu carcass, dua steel belts dan getah matriks. Dalam model axisimmetrik, elemen kumpulan CGAX3H dan CGAX4H dari ABAQUS digunakan untuk mendefinisikan unsur untuk getah matriks dan penguat tayar yang merupakan sebagai Rebar pada unsur permukaan, SFMGAX1 di mana akan tertanam ke dalam elemen kontinum. Setelah analisis ban menggunakan CAE, hasil analisis dibukti dengan percubaan eksperimen yang dimudahkan.

DEDICATION

This report is dedicate for my beloved family who never failed to give me financial and moral support, for giving all my need during the time I developed my system and for teaching me that even the largest task can be accomplished if it is done one step at a time.

I also want to send this message to my soul mate who always give moral support during hard time.

TABLE OF CONTENTS

SUPERVISORS DECLARATION	i
DECLARATION	ii
ABSTRACT	iii
ABSTRAK	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxiv

1.	CHAPTER 1: INTRODUCTION	1
1.1	Overview	1
1.2	Problem Statements	2
1.3	Objectives	2
1.4	Scope and Limitations of Study	3
1.5	Organization of Thesis	4

2. CHAPTER 2: LITERATURE REVIEW

	ŀ		
		1	
			,

2.1	Tire	7
2.2	History of Tire	7
2.3	Tire components	9
2.4	Tire Designation	11
2.5	Tire Classification	13
2.5.1	Radial Ply Tire	13
2.5.2	Non Radial Ply Tire	14
2.5.3	Differences in the dynamics of radial and non-radial tires	14
2.6	Theory Research	15
2.6.1	Non Linear Finite Element Analysis	15
2.6.2	Arbitary Lagrangian-Eulerian	16
2.6.2.1	Lagrangian Method	16
2.6.2.2	Eulerian Method	17
2.6.3	Characterization of material constants based on synthetic biaxial data	19
2.7	Application and Field of Tire Finite Elements Analyses	20
2.8	Tire Model	22
2.9	Tire Rubber Matrix	24
2.10	Reinforcement	27
2.11	2D Tire Model Discretization	27
2.12	3D Tire Modeling	28
2.13	Rim	29
2.14	Loading Steps and Analyses	27
2.14.1	Load Deflection Validation	31
2.15	Steady State Free Rolling Of Tire	32

2.16	Tyre Modal Analysis	36
2.17	Summary	37
3.	CHAPTER 3: METHODOLOGY	39
3.1	Introduction of Theory and Tire Finite Elements	39
3.2	Geometry of the 2 Dimensional Tire	42
3.3	Tire Components Material	45
3.3.1	Rubber properties	45
3.3.2	Reinforcement Material	47
3.4	Element for 2 Dimensional Tire Model	50
3.4.1	Rim contact and tread area meshing element	50
3.4.2	Boundary Conditions	51
3.4.2.1	Rim	51
3.4.2.2	Symmetric Point	51
3.4.3	Constraints	51
3.4.3.1	Embedded Elements	51
3.4.4	Axisymmetric Rim Mounting and Inflation	52
3.4.4.1	Rim Constraints	52
3.4.4.2	Loading Step	52
3.4.4.3	Inflation Analysis	52
3.4.4.4	Field of Interest for 2 D Inflation Analyses - Field Output request	53
3.5	Axisymmetric 2 D Full Tire Model	53
3.6.1	3D Modelling for Footprint Analyses	56
3.6.1.0	Geometry of Present Study Tyre Model (185/70R14)	57
3.6.1.1	Symmetric Result Transfer and Symmetric Geometrical Transfer	59

3.6.1.2	Boundary Conditions	59
3.6.1.3	Boundary Condition for Step 0 of the Simulation	60
3.6.1.4	Boundary Condition for Step 1 of the Simulation	62
3.6.1.5	Boundary Condition for Step 2 of the Simulation	62
3.6.1.6	Boundary Condition for Step 3 of the Simulation	62
3.6.1.7	Loading Steps	62
3.6.1.8	Symmetric Result Transfer And Symmetric Geometrical Transfer	63
3.7	Steady State Rolling Analyses	65
3.7.1	Steady-State Rolling Analysis, Full Braking and Traction Analysis	65
3.7.2	Steady-State Rolling Analysis, Braking Analysis	67
3.7.3	Steady State Rolling Analyses, Traction Analysis	67
4.	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES	69
4. 4.1	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses	69 69
4. 4.1 4.1.1	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment	69 69 69
4. 4.1 4.1.1 4.1.2	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment Assumption Made	69 69 69 70
4. 4.1 4.1.1 4.1.2 4.1.3	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment Assumption Made Rim Mounting Process	69 69 70 70
4. 4.1 4.1.1 4.1.2 4.1.3 4.2	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment Assumption Made Rim Mounting Process Two Dimensional Axisymmetric Half Tire Model Inflation Analysis	69 69 70 70 71
 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment Assumption Made Rim Mounting Process Two Dimensional Axisymmetric Half Tire Model Inflation Analysis Stress Result of Finite Element Analysis	 69 69 70 70 71 71
 4. 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment Assumption Made Rim Mounting Process Two Dimensional Axisymmetric Half Tire Model Inflation Analysis Stress Result of Finite Element Analysis Deformed Magnitude through Finite Element Analysis	 69 69 69 70 70 71 71 71 72
 4. 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 4.2.3 	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES 2D Tyre inflation and Rim Mounting Analyses 2D Tyre inflation and Rim Mounting Analyses Inflation Analysis and Bead Fitment Assumption Made Assumption Made Rim Mounting Process Two Dimensional Axisymmetric Half Tire Model Inflation Analysis Stress Result of Finite Element Analysis Deformed Magnitude through Finite Element Analysis Deformed Direction Through Finite Element Analysis	 69 69 70 70 71 71 72 72
 4. 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 4.2.3 4.3 	CHAPTER 4: 2D TYRE INFLATION AND RIM MOUNTING ANALYSES2D Tyre inflation and Rim Mounting AnalysesInflation Analysis and Bead FitmentAssumption MadeRim Mounting ProcessTwo Dimensional Axisymmetric Half Tire Model Inflation AnalysisStress Result of Finite Element AnalysisDeformed Magnitude through Finite Element AnalysisDeformed Direction Through Finite Element AnalysisTwo Dimensional Axisymmetric Full Tyre Model Inflation Analyses	 69 69 70 70 71 71 72 72 76

4.3.2	Deformed Magnitude through Finite Elements Analyses	77
4.3.3	Deformed Direction through Finite Elements Analyses (2D Axisymmetric Full Tyre Model)	80
4.3.4	Computational Cost for Half 2D Axisymmetric Tyre Model Analyses	80
4.4	Discussion	81
5.	CHAPTER 5: FREE-FREE MODAL ANALYSIS	84
5.1	Introduction	84
5.2	Finite Element Analysis of Tyre Free-free Modal	85
5.2.1	FEA Solution Strategy	86
5.3	Result of Finite Element Analysis (1,0) mode	87
5.4	Summary	89
6.	CHAPTER 6: PARTIAL 3D TYRE FOOTPRINT ANALYSIS	90
6.1	Partial 3D tyre footprint analysis	90
6.1.1	Introduction	90
6.2	Partial 3D Tyre Model Description	91
6.2.1	Meshing	91
6.2.2	Boundary Condition	91
6.3	Assumption for Partial 3D Footprint Analysis	92
6.4	Deformation of partial 3D tyre after footprint analysis with load of 1650N	93
6.5	Stress Distribution of Partial 3D Tyre After Footprint Analysis With Load of 1650N	95
6.5.1	Stress Distribution of Tyre Steel Belt Member 1	95

 6.5.3 Stress Distribution of Tyre Carcass 6.5.4 Stress Distribution of Tyre Rubber Matrix 6.6 Shear Stress Distribution in Plane 6.7 Footprint Contact Path Analysis 6.7.1 Consideration in Contact Path Analysis in ABAQUS 6.8 Elements Type and Number of Elements in Partial 3D Tyre Footprint Analysis 	96 97 98 99 100 101
6.5.4Stress Distribution of Tyre Rubber Matrix6.6Shear Stress Distribution in Plane6.7Footprint Contact Path Analysis6.7.1Consideration in Contact Path Analysis in ABAQUS6.8Elements Type and Number of Elements in Partial 3D Tyre Footprint Analysis	97 98 99 100 101
 6.6 Shear Stress Distribution in Plane 6.7 Footprint Contact Path Analysis 6.7.1 Consideration in Contact Path Analysis in ABAQUS 6.8 Elements Type and Number of Elements in Partial 3D Tyre Footprint Analysis 	98 99 100 101
 6.7 Footprint Contact Path Analysis 6.7.1 Consideration in Contact Path Analysis in ABAQUS 6.8 Elements Type and Number of Elements in Partial 3D Tyre Footprint Analysis 	99 100 101
 6.7.1 Consideration in Contact Path Analysis in ABAQUS 6.8 Elements Type and Number of Elements in Partial 3D Tyre Footprint Analysis 	100 101
6.8 Elements Type and Number of Elements in Partial 3D Tyre Footprint Analysis	101
	101
6.9 Summary of Result of Partial 3D Tyre Footprint Analysis	102
6.10 Comparison Of Present Research Model with Koishi, et.al 1998 Model	103
7. CHAPTER 7: FULL 3D TYRE FOOTPRINT ANALYSIS	105
7.1 Full 3D Tyre Footprint Analysis	105
7.1.1 Introduction	105
7.2 Partial 3D Tyre Model Description	105
7.2.1 Model Meshing	105
7.2.2 Boundary Conditions	106
7.3Assumption for Full 3D Footprint Analysis	106
 7.3 Assumption for Full 3D Footprint Analysis 7.4 Deformation of Full 3D Tyre Footprint analysis 	106 107
 7.3 Assumption for Full 3D Footprint Analysis 7.4 Deformation of Full 3D Tyre Footprint analysis 7.5 Stress Distribution of Full 3D Tyre Footprint Analysis 	106 107 109
 7.3 Assumption for Full 3D Footprint Analysis 7.4 Deformation of Full 3D Tyre Footprint analysis 7.5 Stress Distribution of Full 3D Tyre Footprint Analysis 7.5.1 Stress Distribution of Steel Belt Member 1 	106 107 109 109
 7.3 Assumption for Full 3D Footprint Analysis 7.4 Deformation of Full 3D Tyre Footprint analysis 7.5 Stress Distribution of Full 3D Tyre Footprint Analysis 7.5.1 Stress Distribution of Steel Belt Member 1 7.5.2 Stress Distribution of Steel Belt Member 2 	106 107 109 109 110
 7.3 Assumption for Full 3D Footprint Analysis 7.4 Deformation of Full 3D Tyre Footprint analysis 7.5 Stress Distribution of Full 3D Tyre Footprint Analysis 7.5.1 Stress Distribution of Steel Belt Member 1 7.5.2 Stress Distribution of Steel Belt Member 2 7.5.3 Stress Distribution of Tyre Carcass 	106 107 109 109 110 110
 7.3 Assumption for Full 3D Footprint Analysis 7.4 Deformation of Full 3D Tyre Footprint analysis 7.5 Stress Distribution of Full 3D Tyre Footprint Analysis 7.5.1 Stress Distribution of Steel Belt Member 1 7.5.2 Stress Distribution of Steel Belt Member 2 7.5.3 Stress Distribution of Tyre Carcass 7.6 Discussion 	106 107 109 109 110 110 111

7.8	Comparison of Result from Partial 3D Tyre and Full 3D Tyre Modal Footprint Analysis	113
7.9	Elements Type and Number of Elements in Full 3D Tyre Footprint Analysis	114
7.10	Summary of Result of Full 3D Tyre Footprint Analysis	114
8.	CHAPTER 8: STEADY- STATE ROLLING ANALYSIS	116
8.1	Steady-State Rolling Analysis	116
8.1.1	Introduction	116
8.2	3D Tyre Modal Description	117
8.2.1	Meshing	117
8.3	Boundary Conditions	117
8.3.1	Straight Line Rolling, Full Braking Condition	117
8.4	Assumptions Made	118
8.5	Full 3D Tyre Contact Pressure of Steady –state Rolling Analysis	118
8.5.1	Tyre Contact Pressure of Steady State Rolling Analysis with Time, Full Braking	118
8.5.2	Tyre Contact Pressure of steady state rolling analysis with time, full traction	119
8.6	Full 3D Tyre Contact Shear Stress of Steady –State Rolling Analysis	120
8.6.1	Tyre Contact Shear Stress of Steady State Rolling Analysis, Full Braking	120
8.6.2	Tyre Contact Shear Stress of Steady State Rolling Analysis, Full Traction	121
8.7	Full 3D Tyre Deformation of Steady –State Rolling Analysis	123
8.7.1	Tyre deformation at Steady State Rolling Analysis, Full braking	123

8.7.2	Tyre deformation at Steady State Rolling Analysis, Full Traction	125
8.8	Stress Distribution in Tyre Reinforced Members	127
8.8.1	Stress in Tyre Belt Member during Braking	127
8.8.2	Stress Distribution in Tyre Belt Member 1 during Traction Step with Time	127
8.8.3	Stress Distribution in Tyre Belt Member 2 during Braking	129
8.8.4	Stress Distribution in Tyre Belt Member 2 during Traction Step with Time	129
8.8.5	Stress Distribution in Tyre Carcass Rolling Analysis	131
9.	CHAPTER 9: CONCLUSION AND	132
	RECOMMENDATION	
9.1	Conclusion	132
9.2	Recommendation	135
REFERENC	CES	136
APPENDIX	I	141
APPENDIX	II	143

APPENDIX III	144
--------------	-----

LIST OF TABLES

Table 2.9	Material information for Mooney-Rivlin rubber model	26			
Table3.1	Tyre rubber matrix properties 45				
Table3.2	Density				
Table3.3	Material Properties for Mooney-Rivlin material model				
Table3.4	Material Properties for Polynomial, N=1 material model				
Table3.5	Density 4				
Table3.6	Marlow, Uniaxial Test Data	46			
Table3.7	Carcass material information	47			
Table3.8	Rebar layer 4				
Table3.9	Belt material Information 4				
Table3.10	Rebar layer				
Table4.1	Comparison of stress analyses for 2D tyre model analyses				
Table4.2	Comparison of deformed magnitude for 2D tyre model analyses	82			
Table4.3	Comparison of computational cost for 2D tyre model analyses	83			
Table5.1	Material properties of tyre model for free-free modal analysis				
Table5.2	Meshing of the full 3D tyre model for the finite element free-free modal analysis	87			
Table6.8	Number of Element and Element Type in Partial 3D Tyre Footprint Analysis				

Table6.9	Maximum Von Mises Stress in Tyre Components102			
Table6.10	Maximum Deformation in Tyre Components			
Table6.11	Tyre contact path after loading of 1650N 10			
Table6.12	Comparison of simulation results from Koishi, et.al. 1998 model with present research model			
Table7.7	Comparison of simulation results of partial 3D tyre1footprint analysis and full 3D tyre footprint analysis			
Table7.9	Number of Element and Element Type in Full 3D1Tyre Footprint Analysis			
Table7.10	Maximum Von Mises Stress in Tyre Components 11			
Table7.11	Maximum Deformation in Tyre Components 11			
Table7.12	Tyre contact path after loading of 1650N 11			
Table8.1	Tyre contact shear stress distribution during steady state rolling analysis, full braking condition			
Table8.2	Summarized result full 3D tyre Contact Shear Stress during full traction step with time.			
Table8.3	Summary of longitudinal deformation of tyre footprint area during full braking step	124		
Table8.4	Summary of longitudinal deformation of tyre footprint area during full traction step	126		

LIST OF FIGURES

Figure 2.1	Flow Chart of Literature Review6			
Figure2.3	Components of radial tires (Gent (2007))			
Figure2.4	Tire designation 1			
Figure2.5	Cross section of a tire on a rim with tire height and 1 width			
Figure2.6	Construction of radial tire			
Figure2.7	Example of non-radial tire interior 14			
Figure2.8	Ground sticking behaviour of radial and non-radial 1 tires in the presence of a lateral force.			
Figure 2.9	The creation of FE model based on curves and2surfaces exported from CAD model			
Figure2.10	CAD Tread pattern modeling technique			
Figure2.11	Specimens and additional equipment used to obtain2material data for purely rubber structural2components of tires.2			
Figure2.12	3D tire model for vertical loading analysis	30		
Figure2.13	Dial gauges arrangement for measure deflection 3			
Figure2.14	The correlation between longitudinal force and angular speed			
Figure2.15	Determination of angular velocity at free rolling by 3. fine increment around initial value, obtained from straight line rolling analysis.			

Figure2.16	Oscillograph image of single point of tyre. (Image 34 from Pottinger, M.G, 2006)		
Figure2.17	Normal stress isometric for a radial medium duty (TBR) truck tire rolling at zero slip and inclination angle. (Tyre Science and Technology, vol.27, No.3, 1999 with Tyre Society)		
Figure2.18	Deformation of tyre during static and rolling condition (Tire Science and Technology, Vol.20, No.1, 1992)		
Figure3.1	Flow for the tire finite element analyses.	40	
Figure3.2	Flow chart of finite element analysis of present research		
Figure3.3	The two dimensional tire modeling by using axisymmetric approach		
Figure3.4	The steps for the 2 dimensional tire modeling		
Figure3.5	2D reinforce modeling technique		
Figure3.6	Orientation of carcass and $\pm 20^{\circ}$ of belts	48	
Figure3.7	Orientation of Steel Belt Member 1 of Present Research Model		
Figure3.8	Orientation of Steel Belt Member 1 of Present Research Model		
Figure3.9	The sharp edges of the tire profile are discretized with triangular hybrid element with twist.	50	
Figure3.10	The other areas of the tire are discretized with tetrahedral hybrid elements that give lower computational cost compared to quadrilateral element.	50	

xviii

Figure3.11	The symmetric point of the half 2 dimensional tires are discard after the tire geometry is reflected using mirror option in ABAQUS.			
Figure3.12	The carcass and the belt are embedded into the rubber matrix of tire			
Figure3.12a	The algorithm of 2 dimensional full tire inflation analyses			
Figure3.13	2D axisymmetric half tire model is reflected using 55 mirror option in ABAQUS/ CAE			
Figure3.14	The process of performing 3 dimensional footprint analyses			
Figure3.15	Geometrical Dimension of present study tyre	57		
Figure3.16	Element control for partial 3D tyre modelling	58		
Figure3.17	Node sets created for anti-symmetry boundary conditions, ASYMA and ASYMC	60		
Figure3.18	Node sets created for anti-symmetry boundary conditions, ASYMA	60		
Figure3.19	Node sets created for anti-symmetry boundary conditions, ASYMC	60		
Figure3.20	Node sets created for anti-symmetry boundary conditions, ASYMB and ASYMD	61		
Figure3.21	Node sets created for anti-symmetry boundary conditions, ASYMB	61		
Figure3.22	Node sets created for anti-symmetry boundary conditions, ASYMD	61		
Figure3.23	Node sets created and defined as SYM	62		
Figure3.24	Node sets created and defined as SYM1	62		

Figure3.25	Equation of defining anti-symmetry boundary condition	62			
Figure 3.26	Key coding of the SMG and SRT in ABAQUS				
Figure 3.27	Flow of the Steady-State Rolling Analysis				
Figure 3.28	Vehicle Translational Speed and Tyre Rotation Speed				
Figure 3.29	Vehicle Translational Speed and Tyre Rotation Speed	67			
Figure4.1	Area with maximum Misses stress	71			
Figure 4.2	Area with maximum Misses stress.	71			
Figure 4.3	Area with maximum pressure	72			
Figure 4.4	Deformation magnitude of tire after inflation	73			
Figure 4.5	Deformed direction of 2D axisymmetric half tire model after inflation	74			
Figure 4.6	Total time used to perform job for 2D axisymmetric half tyre model	75			
Figure 4.7	Total time for a complete 2D axisymmetric half tyre model analyses	75			
Figure 4.8	Area with maximum Misses stress	76			
Figure 4.9	Area with maximum principal stress	76			
Figure 4.10	Area with maximum pressure	77			
Figure 4.11	Magnitude of deformed full 2D axisymmetric tyre	78			
Figure 4.12	Magnitude of deformed full 2D axisymmetric tyre in U1 direction.	78			

Figure 4.13	Magnitude of deformed full 2D axisymmetric tyre 77 in U2 direction.	
Figure 4.14	Magnitude of deformed full 2D axisymmetric tyre in U3 direction.	
Figure 4.15	Magnitude of deformed full 2D axisymmetric tyre	80
Figure 4.16	Total time used to perform job for 2D axisymmetric full tyre model	
Figure 4.17	Total time for a complete 2D axisymmetric full tyre model analyses	81
Figure 5.1	Overview of free-free modal analysis	85
Figure 5.3	Result of tyre free-free modal analysis of (1,0) mode: Mode shape and natural frequency	
Figure 6.1	Initial contact of road surface with tread surface	92
Figure 6.2	Deformation of partial 3D tyre model after footprint analysis displacement control step	92
Figure 6.3	Deformation magnitude of partial 3D tyre after footprint analysis with a loading of 1650N.	93
Figure 6.4	Deformation direction and location of Partial 3D Tyre Footprint Analysis	94
Figure 6.5	Stress distribution of tyre reinforced cord, belt member 1	95
Figure 6.6	Stress distribution of tyre reinforced cord, belt member 2	95
Figure 6.7	Stress distribution of tyre reinforced cord, carcass	96
Figure 6.8	Stress distribution of tyre rubber matrix	97
Figure 6.9	Shearing stress distribution of tyre in 1,2 plane	98

Figure 6.10	Shearing stress distribution of tyre in 1,3 plane98		
Figure 6.11	Shearing stress distribution of tyre in 2,3 plane 98		
Figure 6.12	Partial 3D tyre footprint contact nodal area 99		
Figure 6.13	Partial 3D tyre footprint contact normal force	99	
Figure 6.14	Partial 3D tyre footprint contact pressure	99	
Figure 7.1	Deformation contour of full 3D tyremodel	107	
Figure 7.2	Deformation direction and location of Full 3D Tyre Footprint Analysis	108	
Figure 7.3	Stress distribution of tyre reinforced cord, belt member 1	109	
Figure 7.4	Stress distribution of tyre reinforced cord, belt member 2	110	
Figure 7.5	Stress distribution of tyre reinforced cord, carcass	110	
Figure 7.6	Full 3D tyrefootprint contact nodal area11		
Figure 7.7	Full 3D tyrefootprint contact normal force11		
Figure 7.8	Full 3D tyrefootprint contact pressure1		
Figure 8.1	Definition of tyre entering and leaving curvature	116	
Figure 8.2	Tyre contact path pressure distribution and shifting during steady state rolling analysis, full braking condition.	118	
Figure 8.3	Tyre contact path pressure distribution and shifting during steady state rolling analysis, full traction condition.	119	

Figure 8.4	Tyre contact shear stress distribution during steady state rolling analysis, full braking condition	120
Figure 8.5	Tyre contact shear stress distribution during steady state rolling analysis, full traction condition	
Figure 8.6	Deformation of Tyre in longitudinal direction during steady state rolling analysis, full braking condition	123
Figure 8.7	Deformation of Tyre in longitudinal direction during steady state rolling analysis, full traction condition	125
Figure 8.8	Stress distribution of tyre belts member 1 during steady state rolling analysis, full braking condition	127
Figure 8.9	Stress distribution on steel belt member 1 during full traction	128
Figure 8.10	Stress distribution of tyre belts member 2 during steady state rolling analysis, full braking condition	129
Figure 8.11	Stress distribution on steel belt member 1 during full traction	130
Figure 8.12	Stress distribution in tyre carcass during rolling	131
Figure 8.13	Stress distribution in tyre during rolling	131

xxiii

LIST OF ABBREVIATIONS

2-D	-	Two- dimensional
3-D	-	Three-dimensional
axi	-	axisymmetric
BEM	-	Boundary element Method
CAD	-	Computer aided design
CAE	-	Computer aided engineering
CGAX3H	-	Continuum axisymmetric triangular hybrid element with twist
CGAX4H	-	Continuum axisymmetric tetrahedral hybrid element with twist
FE	-	Finite element
FEA	-	Finite element analysis
kPa	-	Kilo Pascal
SMG	-	Symmetric model generation
SRT	-	Symmetric result transfer

xxiv