"I admit have read this report and from my opinion this report is adequate from it quality and scope in Partial Fulfillment of Requirement for the Degree in Bachelor of Mechanical Engineering (Thermal-Fluids)"

Signature	:
Supervisor	:
Date	:

DEVELOPMENT OF SOLAR COLLECTOR FOR HOT WATER SYSTEM

MUHAMMAD SYIMIR BIN YUSOF

This report for Projek Sarjana Muda is submitted in partial fulfillment for Bachelor of Mechanical Engineering (Thermal-Fluids)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2009

"I hereby, declare the content of this report is the result of my own research except as cited in the reference"

Signature	:
Authors	:
Date	:

For my beloved mother and father and my family

ACKNOWLEDGEMENT

First of all, thank to Allah for His blessing and His Messenger Muhammad S.A.W for his bonds of love in order to allow me undergoing my Projek Sarjana Muda (PSM) and being able to finish it within the time given.

I would like to give my deepest gratitude to my supervisor, Encik Mohamad Firdaus bin Sukri for all his concern and time. He had put up for me to ensure that my PSM finish on time.

Last but not least and not to be forgotten special thanks to my beloved family for the sacrifices they made for me and for staying firmly beside me through many obstacles that I have to face and to all my friends, thank you for the courage and strength you all gave to me since we have been friends.

ABSTRACT

A solar collector system is the main parts of the hot water system which operates by absorb the heat generated from the sun light. There are varieties of solar collector available in the market such as flat plate and evacuated tubes. It is considered to be more environmentally clean alternative to the others energy and reduced the electricity usage. As a result, it can also reduce the cost of living which keeps increase every year. Solar collector has other material attached to it to make the solar collector operates at high efficiency and can heat up the water quickly. This report is made to mainly focus on the investigation on the effect of series and parallel types of solar collector for hot water system. In addition, this report will cover the comparison and analyze the data through several experiments. Besides, this study will recommend the best solution to improve the efficiency of the solar collector. This report also afterwards might be useful in further studies of the hot water system usage and reliability.

ABSTRAK

Sistem penyerap tenaga matahari merupakan satu sistem yang penting dalam sistem pemanasan air yang beroperasi dengan menyerap tenaga dihasilkan dari sinaran cahaya matahari. Terdapat banyak jenis alat penyerap cahaya matahari di pasaran seperti plat rata dan juga tiub vakum. Pengunaan tenaga solar ini merupakan salah satu alternatif untuk menggantikan bahan tenaga sedia ada seperti tenaga elektik. Ini juga akan dapat mengurangkan kos sara hidup yang semakin meningkat. Selain itu, paip pengumpul tenaga solar ini biasanya di tambah dengan bahan lain unuk meningkatkan kecekapan fungsi dan dapat memanaskan air dengan kadar yang cepat. Laporan ini dibuat untuk membezakan kesan pengumpul solar yang mempunyai susunan paip selari dan paip siri dalam sistem pemanasan air. Ia juga merangkumi perbandingan dan analisis data melalui beberapa eksperimen. Selain itu, pembelajaran ini akan mengusulkan cara terbaik untuk meningkatkan kecekapan sistem pemanasan air.

CONTENTS

CHAPTER	ITEMS	PAGES
	Confession	ii
	Dedication	iii
	Acknowledgment	iv
	Abstract	V
	Abstrak	vi
	Content	vii
	List of Table	xii
	List of Figure	xiii
	List of Symbols	XV
	List of appendix	xvii
CHAPTER 1	INTRODUCTION	

1.1	Introduction to solar energy	1
1.2	Background research	3
1.3	Objective	5
1.4	Scope	5
1.5	Problems Statement	5

LITERATURE REVIEW

2.1	Heat transfer	7
2.2	Conduction	8
2.3	Fourier's law	10
2.4	Conductance	10
2.5	Convection	12
2.6	One dimensional Application	13
2.7	Previous research	15
2.8	Previous experiment.	15
2.9	Types of solar collector	17
	2.9.1 Flat-Plate	17
	2.9.2 Evacuated Tube	18
	2.9.3 The efficiency of solar collector tubes	19
2.10	Types of Solar Water Heating Systems	21
	2.10.1 Active Systems	21
	2.10.2 Open-Loop Active Systems	22
	2.10.3 Closed-Loop Active Systems	23
	2.10.4 Advantages of a Closed Loop	24
	2.10.5 Disadvantages of a Closed Loop	25
2.11	PVC Pipes	25
	2.11.1 Thermal effect on PVC pipes	26
	2.11.2 Resistance to biological attack	28
	2.11.3 Weathering resistance	28
	2.11.4 Polyvinyl chloride specification	29
	2.11.5 Benefits of PVC pipes	30
2.12	Flows Formulas	31
	2.12.1 Darcy-Weisbash Equation	31
	2.12.2 Hazen Williams Equation	33

3.1	Methodology of project	36
3.2	Collecting information	39
3.3	Design	39
3.4	Fabrication concept	40
3.5	Part of design	41
	3.5.1 Water storage tank	41
	3.5.2 Parallel and series pipes solar collector	43
	3.5.3 Cut view of hot water system	44
	3.5.4 Pump	45
	3.5.5 Pump specification	46
3.6	Experimental rig	47
3.7	Design and fabrication	48
3.8	Testing	48
3.9	Research and Equipment study	49
3.10	Standard Procedure	50
3.11	Experiment Procedure	51
	3.11.1 Part A	51
	3.11.2 Part B	54
3.12	Experiment table	55

CHAPTER 4 DATA AND ANALYSIS

4.1	Experimental	56
4.2	Specification of PVC pipe	57
4.3	Analysis of series and parallel of solar collector	58
4.4	Experiment data	59
4.5	Calculation for hot water system	66
4.6	The rate of heat transfer	67
	4.6.1 Parallel solar collector system	67
	4.6.2 The series solar collector system	71
	4.6.3 Comparison between two types of solar collector	72

CHAPTER 5 DISCUSSION

5.1	Losses in Pipe networks	73
5.2	Explanation of solar collector types effect	74
5.3	Factor affecting the solar collector types	76
5.4	Problem analysis	77
5.5	Overall performance overview	80

CHAPTER 6 CONCLUSION

6.1	Conclusion for overall project	81
6.2	Recommendation	82

REFERENCES	83
BIBLIOGRAFI	85
APPENDIX A 1	86
APPENDIX A2	87
APPENDIX B	88

LIST OF TABLE

NO.	TITLE	PAGE
2.1	Equation for different heat transfer modes	13
	and their thermal resistance	
2.2	Set of experiments data collected	16
2.3	Solar collector of performance	20
3.1	Polystyrene properties	42
3.2	Table for experimental data	55
4.1	Pump specification	57
4.2	PVC pipe specification	57
4.3	Raw data collected on 4 March 2009	59
4.4	Raw data collected on 7 March 2009	60
4.5	Raw data collected on 18 March 2009	62
4.6	Actual flow rate (parallel solar collector)	66
4.7	Comparison for both types of solar collector	72
5.1	Performance of solar collectors	80

xii

LIST OF FIGURE

NO.	TITLE	PAGE
1.1	Components of hot water system	2
1.2	Flow chart of PSM	4
2.1	Conduction process	9
2.2	Representation of heat flow diagram as a thermal circuit	14
2.3	Sketch of a flat-plate collector	17
2.4	Sketch of a heat pipe collector	18
2.5	Efficiency graph of solar collector performance	19
2.6	The open loop system diagram	22
2.7	Indirect Glycol Closed Loop System	24
2.8	Approximate relationship for 12454 PVC	27
	for PVC pipe strength properties versus temperature	
2.9	Moody diagram (friction factor)	34
2.10	Moody diagram (relative roughness)	35
3.1	Detailed Flow chart for PSM	38
3.2	3D view of water storage tank	41
3.3	Series and parallel solar collector 3D assembly	43
3.4	Parallel solar collector cut view section	44
3.5	Series solar collector cut view section	44
3.6	3D view of pump	45
3.7	Fabrication of solar collector tubes	48
3.8	Thermocouple	49
3.9	Water in polystyrene box	51

3.10	Polystyrene box with pump	51
3.11	Temperature measurement	51
3.12	Closed box	52
3.13	Complete system	52
3.14	Both hot water systems exposed at same location	52
3.15	Front view of system	54
3.16	Top view of system	54
4.1	Graph overview	63
4.2	Graph overview	64
4.3	Graph overview	65
4.4	Parallel solar collector pipe distribution	67
5.1	Direction of water flow in parallel solar collector tube	75
5.2	Direction of water flow in series solar collector tube	75
Fig B1	Hot water system with parallel solar collector	87
Fig B2	Drawing view (Parallel)	88
Fig B3	Parallel solar collector with pump	89
Fig B4	Hot water system with series solar collector	90
Fig B5	Drawing view (Series)	91
Fig B6	Series solar collector with pump	92
Fig B7	Fabricated hot water system (parallel)	93
Fig B8	Fabricated hot water system (series)	93

xiv

LIST OF SYMBOL

- U: Conductance. Flow rate, m^3/s Q: Internal surface area of pipe, m^2 . A: Temperature difference, (°C) ΔT : R: Resistance, Ohm Δx : Distance Ø: Angle of deflection T_{in},: Inlet water temperature (°C) T_{out}, Outlet water temperature (°C) Heat capacity, W/m².k C_p : N_u: Nusselt number R_e: Reynolds number
- P_r: Prandlt number
- T_w : Water temperature, (°C)

XV

T_{su}: Surrounding temperature, (°C) Water in temperature, (°C) T_{in}: Water out temperature, (°C) T_o: Outside surface temperature, (°C) T_{so}: Inside surface temperature, (°C) T_{si}: Heat transfer coefficient, W/m².K h: Thermal conductivity coefficient, W/m.K k_w: Mass flow rate, (kg/s) m:

LIST OF APPENDIX

TITLE	PAGE
Appendix A1	86
Appendix A2	87
Appendix B	88

xvii

CHAPTER 1

INTRODUCTION

1.1 Introduction to solar energy

Solar energy is a clean and abundant energy resource that can be used to supplement many of energy needs. Solar energy can be utilized as a form of heat, such as solar water heating, and as electricity, such as solar photovoltaics.

Water heating is one of the most cost-effective uses of solar energy, providing hot water for showers, dishwashers and clothes washers. Every year, several thousands of new solar water heaters are installed worldwide.

A solar water heater reduces the amount of fuel needed to heat water because it captures the sun's renewable energy to heat up water instead using water heater. This solar water heating systems include storage tanks and solar collectors. There are two types of solar water heating systems: active, which have circulating pumps and controls, and passive. Solar water heaters can also be used in other applications, for example, car washes, hotels and motels, restaurants, swimming pools, and laundry mats.

There are many possible designs for a solar water heater. In general, it consists of three main components:

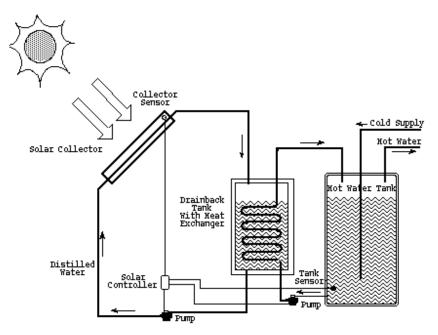


Figure 1.1: Components of hot water system (Source: http://images.google.com, retrieved on 4th August 2008)

- 1. Solar collector, which converts solar radiation into useable heat.
- 2. Heat exchanger/pump module, which transfers the heat from the solar collector into the portable water.
- 3. Storage tank to store the solar heated water.

1.2 Background Research

In order to reduce the waste of energy usage and reduce the air pollution, there are many research about the solar collector have been done by scientist and engineers as an alternative way replacing the used of energy such as electricity, wind and nuclear. The use of solar energy is more economic because it is renewable energy which we can get almost every day in our life.

Many researchers have been done to improve the quality of solar collector tube. This can be done by using good material which can absorb maximum energy generated from the sun. One of the current research is to develop solar collector tube at low cost and it can operates automatic depend on the weather. As a result, this method can save cost of electricity used and also the used of pump system.

For this project, the objective is to investigate the effects of series and parallel types of solar collector for hot water system/thermal energy storage system. In terms of that, two types of solar collector tubes have to be fabricated and also different technique and procedures are being used to investigate the effect of series and parallel solar collector tubes because it is important in energy transfers processes.

The flow for PSM is illustrated below:

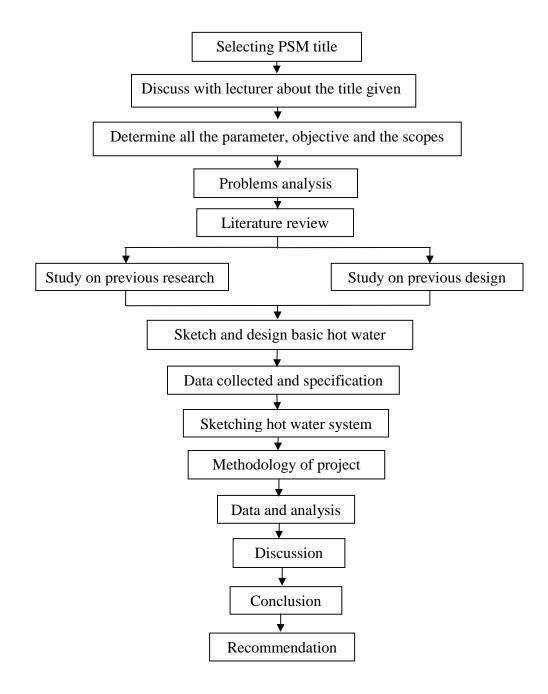


Figure 1.2: Flow chart of PSM

C Universiti Teknikal Malaysia Melaka

1.3 Objective

a. The objective of this project is to investigate the effect of series and parallel types of solar collectors for hot water system or in thermal energy storage system.

1.4 Scopes

- a. Literature review on heat transfer process, solar collector systems, thermal energy storage and etc
- Design and fabrication of series and parallel solar collector systems by using PVC pipe.
- c. Conduct experiments to investigate the difference between both types of solar collector.
- d. Conduct data and analytical analysis to show the difference both types of solar collector.

1.5 Problems statement

This project is to determine the effects of series of parallel tubes solar collector on hot water system. There are many types and variety of solar collector in our markets which use to absorb the heat generated from the sun light and to heat up the water for daily use and it can save living costs. This solar energy also important in other application such as engineering and automotive, but there are a few research conduct on the solar collector tubes which affect the energy absorption and to determine if the original PVC pipes can heat up the water same as the other solar collector in the market which is have more complicated design and have good material. Furthermore, the difference in the pipes arrangement in series or parallel pipe may cause some changes to the heated water. The water flow rate used is constant but the actual flow inside the tubes is depending on the types of solar collector which may cause the head loss or pressure loss in the tube. These losses caused by the internal friction or maybe have some leaking from assembly fitting.

From general equation, the flow of water give great influence on the performance of solar collector whether the flow of water will occupied all tubes area or occupied half of tubes area which can give difference in water temperature. By do this project, the heat transfer rate to the water can be determined and give overall overview about convection process which occurs between pipe surfaces to the water inside tubes.

- a. In the past time, we used electric current to run the water heater. For now, to save cost we have to use solar energy from heat which generated from the sun.
- b. To find the effect of heat absorption between parallel and series of pipes