

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Design and Development of Shimless Pump Footing System

Report submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka for the Bachelor Degree of Manufacturing Engineering in Manufacturing Process

By

Mohd Faiz Haji Abdul Haji

Faculty of Manufacturing Engineering

25 March 08

MA	LAYSIA ME
KNIN	FLAKA
IT TE	
LISTAN	n

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM			
JUDUL: <u>An Experimental Study of The Impact of Surface Grinding Parameter</u> <u>On Flatness</u>			
SESI	PENGAJIAN: <u>Semester</u>	2 2007/2008	
Saya <u>Mohd Faiz Abdul Haji</u> mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:			
 Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. *Sila tandakan (√) SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) 			
TERHAD			
/ TIDAK TERHAI)		
(TANDATANGAN PE Alamat Tetap DT 84, Bukit Ba 76100 Durian Tun Melaka.	iai,	(TANDATANGAN PENYELIA) Cop Rasmi:	
		Tarikh:	
* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.			

DECLARATION

I hereby, declare this report entitled "Design and Development of Shimless Pump Footing System" is the results of my own research except as cited in references.

Signature	:
Author's name	:Mohd Faiz Haji Abdul Haji
Date	:

APPROVAL

This PSM submitted to the senate of UTeM and has been as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process). The member of the supervisory committee is as follow:

.....

Mr. Mohd Shahir Kasim Project Supervisor Faculty of Manufacturing Engineering

ABSTRACT

This project proposes the design of shimless footing system to overcome the misalignment arise from the soft foot. Then, an analysis of the effectiveness of the shimless unit will be compared to conventional shim in rectifying misalignment problem. The soft foot happened when there is a gap between a machine foot and the foundation. The machine frame will actually distort from its resting position as the hold- down bolts are tighten to secure the machine in place. Soft foot also creates stress lines in the frame as a short foot is pinned to the foundation by the hold-down bolt. A classic example of the soft foot is; bar table with one short leg; which occurs when the machine naturally rests on three legs and the fourth leg is short. If it does properly corrected before beginning the actual alignment, it is difficult or impossible to achieve acceptable results. A shimless footing system will be design in order to overcome the soft foot problem. Solidwork were used in the designing stage. By using SolidWork, a shimless system can be easily developed and observed to make sure that it will able to overcome the soft foot problem. The system should be able to provide a new foundation that does not relies on shims in alignment machinery. Then, after a system has been designed, an analysis done to study the effect on soft foot during the alignment process. It will observe whether the system is effective by comparing to the conventional shim. The design should make the alignment process easier and overcome the soft foot problem from arise. There are two basic methods to identified soft foot, which are frame distortion index and the laser soft foot locator. It is predicted that the soft foot problem can be eliminated as the misalignment will not happen again.

ABSTRAK

Projek ini bertujuan untuk mengkaji masalah 'soft foot' yang menyebabkan susunan system pam mesin menjadi tidak lurus. Setelah itu, sebuah rekaan sistem kaki yang tidak ber'shim' akan direka untuk mengatasi masalah 'soft foot' ini. 'Soft foot' ini terjadi apabila ada jarak di antara kaki pam mesin dan tapak asasnya. Pam mesin ini akan bergerak dari kedudukan asalnya walaupun nat telah diketatkan untuk mengelakkannya. 'Soft foot' juga menghasilkan garis tekanan pada mesin kerana kaki yang pendek diikat pada tapak asa dengan menggunakan nat. sekiranya ia tidak diperbaiki, hasil yang dihasilkan menjadi tidak berkualiti. Proses rekaan ini akan menggunakan CAD, iaitu Solidwork. Dengan menggunakan perisian ini, sistem tidak ber'shim' ini dapat dihasilkan dan diperhatikan untuk memastikan ia boleh mengatasi 'soft foot'. Sistem ini juga perlu mempunyai tapak asas supaya ia tidak lagi bergantung pada 'shim' untuk meluruskan system pam mesin. Rekaan ini memudahkan proses pelurusan dan masalah 'soft foot' dapat dikurangkan. Kemudian, selepas system ini telah reka, ia akan di analisis untuk mengkaji kesannya ke atas 'soft foot' ketika proses meluruskan. Pemerhatian akan dibuat sama ada system ini berkesan ataupun tidak dibandingkan dengan 'shim' biasa. Ada dua cara asas untuk mengesan 'soft foot' akan digunakan iaitu 'frame distortion index' and 'the laser soft foot locator'. Ia meramalkan yang masalah 'soft foot' boleh dihapuskan dimana 'misalingment' tidak akan berlaku lagi.

DEDICATION

My parents,

Haji Abdul Haji Md Dangi Hajah Sarah Abd Wahab

My beloved sibling, Lily Harnisa Abdul Haji Hanis Yusri Abdul Haji Hairul Faizi Abdul Haji Norazizi Abdul Haji

ACKNOWLEDGEMENTS

First of all, Alhamdulillah, praise to Allah as I have completed my PSM 1 and 2. First and foremost, I would like to thank my beloved parent, Haji Abdul Haji Md Dangi and Hajah Sarah Abd Wahab for their full concern, encouragement and considerate. As well, I would like to state thankfulness to Encik Mohd Shahir Kasim, my PSM Supervisor, for his assistance and custody, together with training that I had learned. Besides, I want to thank to all lecturers of Faculty of Manufacturing Engineering, UTeM and staffs.

Secondly, my appreciation goes to those who have helped me during this thesis for their involvement, especially to Encik Fendi, technician of CNC Laboratory his assistance. Not forgotten, to my friend, Ahmad Anwar Hamdan for being helpful during the designation process.

Last but not least, for my course mate, BMFP 04-08, who are being supportive, helpful and sharing during studying in UTeM.

Wassalam,

Mohd Faiz Abdul Haji

TABLE OF CONTENT

Declaration	i
Approval	ii
Abstract	iii
Dedication	V
Acknowledgement	vi
Table of content	vii
List of Figures	xii
List of Table	xiv

1.0 INTRODUCTION

1.1 Introduction	1
1.2 Objective	2
1.3 Scope of Stud	y2
1.4 Report Organi	ization
1.5 Flow Chart	3
1.6 Gantt Chart	5
1.7 Problem state	ment
1.7.1	The effect of Soft Foot on Alignment7
1.7.2	The minimum thickness shimless for soft foot8
1.7.3	Difficulties in performing alignment
1.7.4	Cost of Alignment11
1.7.5	Material11
1.8 Overview.	
1.8.1	The relation between soft foot and shaft alignment12
1.8.2	Software selection for the project (SolidWorks)13

2.0 LITERATURE REVIEW

2.1 Introduction.		14
2.2 Types of soft	foot	15
2.2.1	Deflection and damage cause by soft foot	17
2.2.2	Soft foot Checks and Corrections	19
	2.2.2.1 Soft Foot Checks	19
	2.2.2.2 Soft Foot Corrections	21
2.2.3	Other method to Check Soft Foot	23
	2.2.3.1 Frame distortion index	23
	2.2.3.2 Laser soft foot locator	24
2.3 Vibration		
2.4 Shaft Alignm	ent	29
2.4.1	Basic of shaft alignment	29
2.4.2	Shaft alignment procedure	
2.4.3	Importance of alignment	31
	2.4.3.1 Rough soft foot correction	31
	2.4.3.2 Rough alignment	32
	2.4.3.3 Final soft foot correction	32
	2.4.3.4 Final alignment	32
	2.4.3.5 Problem arising from poor alignment	
2.4.3	Offset alignment	34
2.4.4	Angular alignment	
2.4.5	Harmonic force	37
2.4.6	Bearing life	
2.5 Pump		
2.6 The shim.		
2.6.1	Application of shim	41
2.6.2	Limitation / Disadvantage of Shim	43
2.7 Design m	atrix	45
2.8 CAD and	CAM software	45

2.8.1	The SolidWorks approach	46
2.9 Mild steel		.48

3.0 METHODOLOGY

3.1 Methodol	logy	53
3.2 Design		54
3.3 Method u	sed for the project	55
3.3.1	Project planning	56
3.3.2	Design analysis	57
3.3.3	Conceptual design	
	3.3.3.1 Concept 1	58
	3.3.3.2 Concept 2	59
	3.3.3.3 Concept 3	60
3.3.4	Design selection	61
3.3.5	Selection material	61
3.4 Software	CAD (SolidWorks)	62
3.5 Process F	low	63
3.5.1	Material preparation	63
3.5.2	EDM Machine	67

4.0 RESULT

4.1 Result		72
4.2 Part 1		73
4.2.1	Design analysis Part 1	74
4.3 Part 2		79
4.3.1	Design analysis Part 2	80
4.4 Part 3		84
4.4.1	Design analysis Part 3	85

4.5 Assembly		
4.6 Calculatio	n movement	
4.6.1	Vertical and horizontal movement.	

5.0 DISCUSSION

5.1 Introduction	
5.2 Design	
5.3 Material	94
5.4 Calculation	94
5.5 Vibration	95
5.6 Machining	95
5.7 Advantage	96

6.0 CONCLUSION

6.1	Conclusion	97
6.2	Recommendation	

REFERENCE	
APPENDIX A	

LIST OF FIGURES

1.1	Process flowchart	4
1.2	Show the reading on of the pump	7
1.3	Show the angular misalignment	9
1.4	Effect on shaft caused by misalignment	10
2.1	Common Types of Soft Foot	15
2.2	Types of soft foot	16
2.3	Soft foot remedies	17
2.4	An example of preload on the bearings	18
2.5	Parallel Soft Foot	19
2.6	Angular Soft Foot	19
2.7	Reading dial indicator	20
2.8	Measure soft foot with feeler gauge and fill gap completely	21
2.9	Checking for softfoot	22
2.10	Step shimming	22
2.11	Measurement of vertical shift	24
2.12	Before the loosening sequence	27
2.13	After the loosening sequence	27
2.14	Phase relationship can show differences between vertical measurements of	on the bolt,
machi	ne foot, base plate or base	28
2.15	Flow chart for shaft alignment process	30
2.16	Soft foot to be corrected	32
2.17	Offset misalignment	35
2.18	Example of an acceptable misalignment for an 1800 rpm machine	36
2.19	Angular misalignment	37
2.20	A, B, C. D size shims	40

2.21	Stainless steel precut shim packs	41
2.22	Relief valve	42
2.23	Shim mounting	43
2.24	Baseplate Grouting	44
2.25	Screen shot captured from a SolidWorks top down design approach	47

3.1	High-level problem solving during early design	54
3.2	Flow chart important steps in design	56
3.3	The importance of material selection in product development	61
3.4	Final design	63
3.5	Before cutting	63
3.6	Machine set up according to dimension	64
3.7	The workpiece was clamped properly	64
3.8	Control the speed rate	65
3.9	Cutting the length of workpiece	65
3.10	Finished workpiece	66
3.11	Cutting the width of workpiece	66
3.12	Oiling the material	67
3.13	EDM Machine	67
4.1	Isometric drawing	73
4.2	Isometric drawing	74
4.3	Front view	75
4.4	Right view	76
4.5	Top view	76
4.6	Bottom view	77
4.7	Isometric view	78
4.8	Isometric drawing	79
4.9	Isometric drawing	80

4.10	Front view	81
4.11	Right view	81
4.12	Top view	82
4.13	Bottom view	82
4.14	Isometric view	83
4.15	Isometric drawing	84
4.16	Isometric drawing	85
4.17	Front view	86
4.18	Right view	86
4.19	Top view	87
4.20	Bottom view	87
4.21	Isometric view	88
4.22	Isometric view	89
4.23	Front view	90
4.24	Right view	90
4.25	Top view	91
4.26	Bottom view	91

LIST OF TABLES

1.1	Gantt chart	5
2.1	Laser Soft Foot Locator Results	25
2.2	Table of Maximum Allowable Offset	35
2.3	Maximum Allowable Angularity	37
3.1	Characteristic of design	57

CHAPTER 1 INTRODUCTION

1.1 Introduction

In theory, machine alignment is a straightforward process, but in real world applications, it is often compounded by structural faults such as soft foot, piping strain, induced frame distortion, excessive bearing clearance or shaft rubs.

For this project, it will examine how to eliminate soft foot which is some of the typical reasons why alignments are unsuccessful. In theory, machine alignment is a very straightforward process. With some type of measuring device extended across the coupling, the shafts are rotated to several positions (at least three) to determine the relative position between them (Skeirik R. D., 1997). Since alignment is an iterative process, which meaning that the misalignment should continuously decrease with each machine move, it is theoretically only a matter of sufficiently repeating alignment corrections until an acceptable solution is achieved.

Soft foot poses a challenge for plant operations and maintenance personnel. The common term for machine frame distortion, soft foot is caused when one or more feet of a machine are shorter, longer or angle some way different than the rest of the feet (Hamnernick I., 2006). This non-uniformity causes stress on the machinery when the foot is force into place by tightening the hold-down bolt.

In fact, quality alignment is not dependent on the type of measurement system used but dependent on how to solve problems happen in the alignment. Any good dial indicator set or laser system should be sufficient method to perform quality alignments.

To prevent any soft foot problems occur, the installed of the shim must done by personnel that has enough trained in mechanical seal installation practices. The other definitely limitation or disadvantages of shim such as material properties that using to construct the shim. Regarding to material properties, influence corrosion factor is very important to keep up the material strength in good condition. Stated that not all type of materials can be used for shimmed the pump. Although the steel materials are very strong but there are some type of steels can be easily become corrosion. This can limit the performance function for shim (Goulds Pumps (2002)).

1.2 Objective

- a) Analyse effect on softfoot during alignment process.
- b) Study and develop shimless system that can overcome the problem.

1.3 Scope of study

There are many problems can occur during alignment process. Firstly in this project, the main scope of study is to study the problem of softfoot and effect on alignment to understand the concept of shaft alignment. In other words, the important steps in design and develop shimless footing system that must be recognise and identify the problems that may arise during the constructions of the shimless footing system. Finally, to

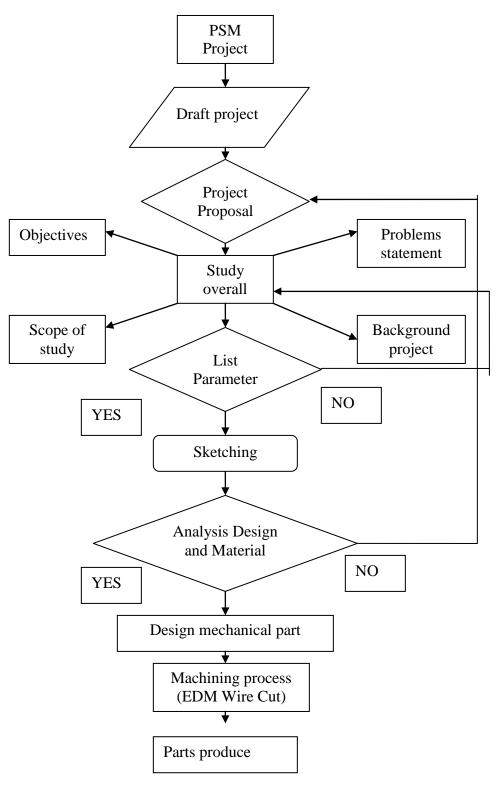
analyse the effectiveness of shimless unit compare to conventional shim in rectifiying misalignment problem.

1.4 Report Organization

This thesis consists of six chapters:

Chapter 1: Introduces of Shaft Alignment, the effect of soft foot on alignment, problem arises in industry which drive to develop the better shimless, objective and scope of this project.

Chapter 2: Literature review from journal, books and internet. The area covered including principle for shaft alignment, method in alignment, procedures, tolerance etc.


Chapter 3: Describes methodology to develop the system, the requirement to ensure the design of shimless, selection material etc.

Chapter 4: Result of design that has been obtained.

Chapter 5: Discussion on reliability of product design and improvement.

Chapter 6: Conclusion for the whole project and recommendation for future work.

1.5 Flow Chart

Figure 1.1: Process flowchart

1.6 Gantt Chart

Table 1.1 Gantt Chart

						PS	MI										PSM II															
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Search journals																																E
Start logbook																																E
Abstract																																E
Introduction																																
Literature Review																																
Methodology																																
Finalised PSM I																																
Submit PSM I																																
Presentation PSM 1																																
Ordering material																																
redesign																																
Analyzing linal design																																-
Draw using CAD																																
Fabricating																																
Discusion																																
Conclusion																																
Finalised PSM II																																
Submit PSM II																																
Presentation PSM II																																
																								pla	n		act	tual				

1.7 Problem Statement

1.7.1 The Effect of Soft Foot on Alignment

The soft foot in one of the problems and challenges for plant operations and maintenance personnel. It is the common term for machine frame distortion, soft foot is caused when one or more feet of machine are shorter, longer or angled someway different than the rest of the feet. This non-uniformity causes stress on the machinery when the foot is forced into place by tightening the hold-down bolt (Hamernick I., 2006). The missing shims under a foot, a bend foot, or deteriorating base plate or foundation can cause this condition.

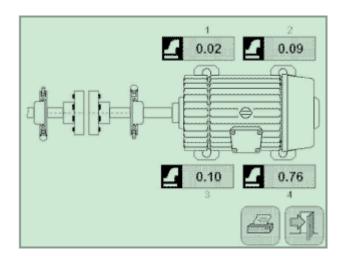


Figure 1.2: Show the reading on of the pump (McNally Institute (2005)

Besides that, the soft foot condition also can causes many of the failed bearings, broken shafts, and high vibration readings associated with misalignment.

1.7.2 The minimum thickness shimless for soft foot

The bottoms of the machine feet shall rest on the base or foundation with 90 percent contact of the footprint (Wowk V., 2000). A 0.003 inch thick shim shall not penetrate under any foot with all hold down bolts loose. This is an unforeseen condition and will require more time to correct (Wowk V., 2000). Resonant foundations or bases are dynamic structural defects. This will cause high vibration at specific speeds. Resonances are not detectable during static alignment measurements.

A dial indicator, or other measuring devices, shall be fixture to measure the vertical rise at each foot as the hold down bolt is loosened. According to Wowk V. (2000), all other bolts shall remain tight. A rise of less than 0.002 inch is acceptable. A rise of more than 0.002 inch shall be corrected by adding shims. After shim changes are made, the above test shall be repeated at all feet until less than 0.002 inch rise is measured at each foot. If shim changes cannot adjust the rise, then the base will need to be ground or machined.

1.7.3 Difficulties in performing alignment

The shaft-to-shaft residual misalignment is acceptable when the intersection point of the two shafts is within the coupling area and the included angle between the shaft centerlines is small. These two criteria must be applied in two orthogonal directions, typically horizontal and vertical for convenience, and normalized to speed. That is, slow-speed machines are allowed a larger tolerance. High-speed machines are required to be better aligned (Wowk V., 2000). The intersection point of the two shafts is considered to be within the coupling area when the separation of the shaft centerlines at the center of the coupling is less than the tolerance values.