PERFORMANCE EVALUATION OF HYBRID RAMAN AND ERBIUM DOPED FIBER AMPLIFIERS (HFAs)

CHAI SEN SHIN

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honors

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > May 2011

HALAYSIA MALAYSIA MARIANA	UN FAKULTI KEJU	IIVERSTI TEKNIKAL MALAYSIA MELAKA RUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek Sesi Pengajian	: Performan Amplifiers : 1 0	ace Evaluation of Hybrid Raman and Erbium Doped Fiber s (HFAs)
 Saya CHAI SEN Perpustakaan deng 1. Laporan adala 2. Perpustakaan o 3. Perpustakaan o pengajian ting 4. Sila tandakan 	SHIN mengaku m gan syarat-syarat k h hakmilik Unive dibenarkan memb dibenarkan memb gi. ():	nembenarkan Laporan Projek Sarjana Muda ini disimpan di egunaan seperti berikut: rsiti Teknikal Malaysia Melaka. uat salinan untuk tujuan pengajian sahaja. uat salinan laporan ini sebagai bahan pertukaran antara institusi
SU	LIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TE	CRHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
ТП	DAK TERHAD	
		Disahkan oleh:
(TANE	DATANGAN PENUL	IS) (COP DAN TANDATANGAN PENYELIA)
ALAMAT TETAP:	LC 634, KAMPUNG MALIM NAWAR,PI	BARU, 31700 ERAK.
Tarikh: 02 MAY 20)11	Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the references"

Signature	:
Author	: CHAI SEN SHIN
Date	: 02 MAY 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms scope and quality the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honors"

Signature	:
Name	: PUAN ZAITON BINTI ABDUL MUTALIP
Date	: 02 MAY 2011

Dedicated to my father, Chai Ming Aon and my beloved late mother, Loh Siew Kim.

ACKNOWLEDGEMENTS

First and foremost, I would like to convey my sincere appreciation to my supervisor Puan Zaiton Binti Abdul Mutalip for her patience, concern, invaluable guidance and also encouragement throughout the preparation of this thesis.

Besides that, I would like to dedicated my deepest thank to my beloved family members for their moral and financial support while completing my tertiary education. Thanks to all the lecturers, friends, and fellow course mate for their cooperation and sharing.

Last but not least, my thanks to the technician and librarians of Universiti Teknikal Malaysia Melaka for their valuable resources providing in completing my thesis.

ABSTRACT

This report explores how to evaluate the performance of Hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) which are a technology for future dense wavelength-division-multiplexing (DWDM) multiterabit systems. The fundamental objective is to provide a design parameter for maximum reachable transmission distance in optical transmission system using the Hybrid Raman and Erbium Doped Fiber Amplifiers. All the basic parameter and fundamental theory are described in detail. The simulation result will be revealed and discussed.

ABSTRAK

Laporan ini menghuraikan bagaimana prestasi penguat "*Hybrid Raman dan Erbium Doped Fiber*" dapat dinilai. Ianya merupakan teknologi "*dense wavelength- division-multiplexing (DWDM)*" sistem multiterabit untuk masa depan. Tujuan utama projek ini adalah untuk mereka bentuk parameter untuk mendapatkan jarak penghantaran maksimum dapat dicapai bagi sistem penghantaran optik yang menggunakan penguat "*Hybrid Raman dan Erbium Doped Fiber*". Semua parameter dan teori asas dijelaskan secara terperinci. Keputusan simulasi juga dinyatakan dan dibahas.

CONTENTS

CHAPTER TITLE PAGES

PROJECT TITLE	
STATUS REPORT FORM	ii
STUDENT DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENT	ix
LIST OF TABLE	xiii
LIST OF FIGURE	xi
LIST OF ABBREVIATIONS	xi

I INTRODUCTION

1.1 Overview of Project	1
1.2 Objectives	2
1.3 Problem Statement	2
1.4 Scope	3
1.5 Project Outcomes	4
1.6 Methodology	4
1.7 Thesis Structure	5

II LITERATURE REVIEW

2.1 Optical Amplifiers	6
2.1.1 Semiconductor Optical Amplifiers	7
2.1.2 Erbium Doped Fiber	8
Amplifiers(EDFA)	
2.1.3 Raman Optical Amplifier	10
2.1.4 Hybrid Raman and Erbium-Do	ped 11
Fiber Amplifier (HFAs)	
2.2 Performance of optical amplifier	12
2.2.1 Gain	12
2.2.2 Noise	13
2.2.3 Signal-to-Noise Ratio	13
2.2.4 Bit Error Rate	14
2.2.5 Eye-Pattern	14
2.3 Optical fiber	15
2.3.1 Single Mode Fiber (SMF)	16
2.3.2 Chromatic Dispersion	16
2.3.3 Dispersion-compensating fiber (DC)	F) 17
2.3.4 Multimode Fiber vs. Single-mode Fi	iber 17

III METHODOLOGY

3.1 Project Flow Chart	20
3.2 Project Block Diagram	20

VI RESULT AND DISCUSSION

4.1 Design parameter choosing for Erbium Doped	22
Fiber Amplifier (EDFA)	
4.2 Design parameter choosing for Raman Amplifier	24
4.3 Gain, Noise Figure, and Output OSNR	27
comparison between EDFA, Raman amplifier, and	
Hybrid Raman and Erbium-Doped Fiber Amplifiers	
with 0dBm, -10dBm, and - 20dBm input signal	
4.3.1 Gain comparison between EDFA, Raman,	27
and Hybrid Raman and Erbium-Doped Fiber	
amplifiers with 0dBm input signal	
4.3.2 Gain comparison between EDFA, Raman	29
amplifier, and Hybrid Raman and Erbium-	
Doped Fiber amplifiers with -10dBm input	
signal	
4.3.3 Gain comparison between EDFA, Raman	32
amplifier, and Hybrid Raman and Erbium-	
Doped Fiber amplifiers with -20dBm input	
signal	
4.3.4 BER comparison between EDFA, Raman	34
amplifier, and Hybrid Raman and Erbium-	
Doped Fiber amplifiers with 0dBm input signal	
4.3.5 BER comparison between EDFA, Raman	37
amplifier, and Hybrid Raman and Erbium-	
Doped Fiber amplifiers with -10dBm input	
signal	
4.3.6 BER comparison between EDFA, Raman	39
amplifier, and Hybrid Raman and Erbium-	
Doped Fiber amplifiers with -20dBm input	
signal	

4.3.7 OSNR comparison between EDFA,	41
Raman amplifier, and Hybrid Raman and	
Erbium-Doped Fiber amplifiers with 0dBm	
input signal	
4.3.8 OSNR comparison between EDFA,	42
Raman amplifier, and Hybrid Raman and	
Erbium-Doped Fiber amplifiers with -10dBm	
input signal	
4.3.9 OSNR comparison between EDFA,	43
Raman amplifier, and Hybrid Raman and	
Erbium-Doped Fiber amplifiers with -20dBm	
input signal	
4.4 Hybrid Raman and Erbium-Doped Fiber	44
amplifiers amplifier's gain with -20dBm, -10dBm,	
and OdBm input signal power	
4.5 Hybrid Raman and Erbium-Doped Fiber	45
amplifiers amplifier's BER with -20dBm, -10dBm,	
and OdBm input signal power	
4.6 Hybrid Raman and Erbium-Doped Fiber	46
amplifiers amplifier's OSNR with -20dBm, -10dBm,	
and 0dBm input signal power	
4.7 Different wavelength of pump power for EDFA	47
and Raman amplifier in Hybrid Raman and Erbium-	
Doped Fiber amplifiers	
4.7.1 All pump power with wavelength 980nm	47
4.7.2 All pump power with wavelength 1480nm	48
4.7.3 EDFA with pump power of wavelength	50
1480nm and Raman amplifier with pump power	
of wavelength 980nm	
4.8 Raman amplifier followed by EDFA in Hybrid	51

Raman and Erbium-Doped Fiber amplifiers with -10dBm input signal

V CONCLUSION & RECOMMENDATION

5.1 Conclusion	53
5.2 Recommendation	54
REFERENCES	56
APPENDIX	58

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Multimode Fiber vs. Single-mode Fiber	18
4.1	Gain, Noise Figure, and Output OSNR for EDFA from 1m	24
	to 10m with -10dBm input signal	
4.2	Gain, Noise Figure, and Output OSNR for Raman amplifier from 1km to 25km with -10dBm input signal	26
4.3	Gain comparison between EDFA, Raman amplifier, and	28
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with	
	0dBm input signal	
4.4	Gain comparison between EDFA, Raman amplifier, and	30
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	10dBm input signal	
4.5	Gain comparison between EDFA, Raman amplifier, and	32
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	20dBm input signal	
4.6	BER comparison between EDFA, Raman amplifier, and	35
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with	
	OdBm input signal	
4.7	BER comparison between EDFA, Raman amplifier, and	37
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	10dBm input signal	
4.8	BER comparison between EDFA, Raman amplifier, and	39

Hybrid Raman and Erbium-Doped Fiber Amplifiers with - 20dBm input signal

4.9	Gain, Noise Figure, Output OSNR and BER for all pump	47
	power with wavelength 980nm with -10dBm input signal	
	in Hybrid Raman and Erbium-Doped Fiber amplifiers	
4.10	Gain, Noise Figure, Output OSNR, and BER for all pump	49
	power with wavelength 1480nm with -10dBm input signal	
	in Hybrid Raman and Erbium-Doped Fiber amplifiers	
4.11	Gain, Noise Figure, Output OSNR and BER for EDFA	50
	with pump power of wavelength 1480nm and Raman	
	amplifier with pump power of wavelength 980nm with -	
	10dBm input signal in Hybrid Raman and Erbium-Doped	
	Fiber amplifiers	
4.12	Gain, Noise Figure, Output OSNR and BER for Raman	52
	amplifier followed by EDFA in Hybrid Raman and	

Erbium-Doped Fiber amplifiers with -10dBm input signal

LIST OF FIGURES

FIGURE TITLE

PAGE

2.1	Semiconductor Optical Amplifier [1]	8		
2.2	Simplified energy level of Er3+ ions in Erbium-doped fiber [2]			
2.3	Experimental configurations for the three types of single pump,	11		
	hybrid Raman and Erbium Doped Fiber Amplifier (HFAs) [6]			
2.4	Example of eye pattern at receiver [8]	15		
2.5	Light Transmitted through Single-Mode Fiber [8]	16		
2.6	Output Wavelengths of Laser Source [9]			
3.1	Project Flow Chart	20		
3.2	Project block diagram	21		
4.1	The schematic diagram of single EDFA with -10dBm input	23		
	signal			
4.2	The schematic diagram of single Raman amplifier with -	25		
	10dBm input signal			
4.3	Gain comparison between EDFA, Raman amplifier, and	29		
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with			
	0dBm input signal			
4.4	Gain comparison between EDFA, Raman amplifier, and	31		
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -			
	10dBm input signal			
4.5	Gain comparison between EDFA, Raman amplifier, and	33		
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -			
	20dBm input signal			

4.6	The schematic diagram of Hybrid Raman and Erbium Doped	34
	Fiber Amplifiers with 0dBm input signal	
4.7	BER comparison between EDFA, Raman amplifier, and	36
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with	
	0dBm input signal	
4.8	BER comparison between EDFA, Raman amplifier, and	38
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	10dBm input signal	
4.9	BER comparison between EDFA, Raman amplifier, and	40
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	20dBm input signal	
4.10	OSNR comparison between EDFA, Raman amplifier, and	41
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with	
	0dBm input signal	
4.11	OSNR comparison between EDFA, Raman amplifier, and	42
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	10dBm input signal	
4.12	OSNR comparison between EDFA, Raman amplifier, and	43
	Hybrid Raman and Erbium-Doped Fiber Amplifiers with -	
	20dBm input signal	
4.13	Hybrid Raman and Erbium-Doped Fiber amplifiers amplifier's	44
	gain with -20dBm, -10dBm, and 0dBm input signal power	
4.14	Hybrid Raman and Erbium-Doped Fiber amplifiers amplifier's	45
	BER with -20dBm, -10dBm, and 0dBm input signal power	
4.15	Hybrid Raman and Erbium-Doped Fiber amplifiers amplifier's	46
	OSNR with -20dBm, -10dBm, and 0dBm input signal power	

LIST OF ABBREVIATIONS

ASE	- Amplified Spontaneous Emission
BER	- Bit Error Rate
DCF	- Dispersion Compensation Fiber
DFB	- Distributed Feedback Laser
DWDM	- Dense Wavelength Division Multiplexing
EDFA	- Erbium Doped Fiber Amplifier
FP	- Fabry-Perot Laser
HFAs	- Hybrid Raman and Erbium Doped Fiber Amplifiers
MMF	- Multimode Fiber
NF	- Noise Figure
OSNR	- Optical Signal Noise Ratio
SMF	- Single Mode Fiber

SNR	- Signal Noise Ratio
SOA	- Semiconductor Optical Amplifier
VSCEL	- Vertical-Cavity Surface-Emitting Laser
WDM	- Wavelength Division Multiplexing

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Overview of Project

Hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) are a technology for future dense wavelength-division-multiplexing (DWDM) multiterabit systems. HFAs are designed in order to maximize the transmission length and to minimize the impairments of fiber nonlinearities, and to enhance the bandwidth of Erbium Doped Fiber Amplifiers (EDFAs).

This project simulates and evaluates the performance of hybrid Raman and Erbium-Doped Fiber Amplifiers in optical transmission systems using Optisystem software. Since the performance of the amplifier is influenced by the parameter of Optical Signal-to-Noise Ratio (OSNR), Bit Error Rate (BER), and Noise Figure (NF), the problem encounter in this project is to find the best design parameter for maximum reachable transmission distance using the hybrid amplifiers.

Optisystem software is used as the simulation tools for the whole project. Optisystem software is based on realistic modeling of fiber optic communications systems and serves a wide range of applications, thus it is an ideal simulation tools for this project.

1.2 Objectives

The objectives of the project are:

- to design hybrid Raman and Erbium Doped Fiber Amplifiers using Optisystem software.
- to provide a design parameter for maximum reachable transmission distance in optical transmission system using the hybrid Raman and Erbium Doped Fiber Amplifiers.
- to evaluate the performance of the Hybrid Raman and Erbium Doped Fiber Amplifiers based on the amplifier's gain, Optical Signal-to-Noise Ratio (OSNR), Bit Error Rate (BER), Noise Figure (NF), and etc.
- 4) to analyze the simulated data obtained from Optisystem software.

1.3 Problem Statement

Optical amplifiers have become a necessary component in long-haul fiber optic systems due to the demand for longer transmission lengths. The effects of dispersion and attenuation can be minimized in long-haul optical systems due to the invention of Semiconductor optical amplifiers (<u>SOAs</u>), Erbium Doped Fiber Amplifiers (<u>EDFAs</u>), and <u>Raman optical amplifiers</u>.

One of the shortcomings of EDFAs is their non flat-gain characteristics across a given optical spectrum. In particular, the gain level is substantially less at the end of the L-band between about 1600 nm and 1620 nm. Fortunately, the gain level of such amplifiers can be rendered substantially flat across the L-band window by the use of gain flattening filters which are optically coupled between

the coils of erbium doped fiber. However, the use of such filters results in a higher NF in the channels having wavelengths in the 1600-1620 nm range. The substantially higher NF in the 1600-1620 nm range lowers the usable bandwidth available from such EDFA amplifiers.

Raman amplifiers likewise have non-flat gain characteristics. A typical Raman gain level curve has minimum gains at about 1570 nm, 1595 nm, and 1620 nm, and maximums at 1585 nm and 1610 nm. A gain flattening filter can be applied to reduce this variation but will only be optimized at a single operating gain value. Additionally, there is the desire to minimize the number of gain flattering filters in the system and the loss they incur.

Clearly, there is a need to reduce the maximum NF in EDFA gain, as well as to further flatten the gain curve in Raman-type amplifiers in order to reduce signal losses throughout the network.

The invention is a hybrid optical signal amplifier that reduces the maximum NF of an EDFA while flattening the gain of a Raman amplifier without compromising laser pump efficiency.

Therefore, this project simulates and evaluates the performance of hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) in optical transmission systems to provide a design parameter for maximum reachable transmission distance using the hybrid amplifiers.

1.4 Scope

This project will focus primarily on the simulation of hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) using Optisystem software. The performance of the amplifier will be evaluated depend on amplifier's gain, Optical Signal-to-Noise Ratio (OSNR), Bit Error Rate (BER), and Noise Figure (NF) obtained from the simulation of a single mode fiber transmission link. The fabrication or development of hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) will not be covered in this project.

1.5 Project Outcomes

It is expected that at the end of the project, a design parameter for maximum reachable transmission distance using the hybrid amplifiers can be obtained.

1.6 Methodology

This project starts with the searching of source and information regard hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs). The source and information are acquired from journal, reference books, e-Books, magazine and internet. The circuit schematic diagram of hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) is determined from the journal and simulate using Optisystem software. All the parameter likes amplifier's gain, Optical Signal-to-Noise Ratio (OSNR), Bit Error Rate (BER), and Noise Figure (NF) that determines the performance of the HFAs is analyzed. The simulation process is repeated until the design parameter for maximum reachable transmission distance using the hybrid amplifiers can be obtained.

1.7 Thesis Structure

- Chapter 1: The first chapter provides a general inspiration for the project. It includes the overview of project; the objectives of project, problem statement, scope of the project and project outcomes.
- Chapter 2: Project's background is illustrated in this chapter. Generally, this chapter summaries the literature review that have been studied. The concept and theory of the circuit schematic diagram of hybrid Raman and Erbium Doped Fiber Amplifiers (HFAs) that is used for simulation will be explained in this chapter.
- Chapter 3: The third chapter is discussed about the methodology of the project. The method, materials and procedures used to conduct the project in achieving the objectives of the project is explained in details.
- Chapter 4: The chapter four will present all the simulation result from the Optisystem software. All the graphs and tables obtained from the simulation will be discussed in details.
- Chapter 5: The last chapter will conclude all the findings and results obtained throughout the project. The results will be evaluated based on the findings and the objectives of the project. Recommendations for future studies also will be included in this chapter.