Panel's Verification

I / We* hereby confirm that I/we have examined and aware of the contents of this report and in my/our opinions that this report qualify to be awarded with Bachelor Degree of Mechanical Engineering (Design & Innovation) due to its reasonable scope and quality.

Signature	:	
First Panel's Name	:	
Date	:	

Signature	:	
Second Panel's Nam	e :	
Date	:	

*Cancel the irrelevant words.

OPTIMIZATION ON MANUFACTURING AND ASSEMBLY OF THE EXISTING OUTDOOR SWING

CHEN SIEW TEEN

This report is used to fulfill part of the requirement in order to be awarded with Bachelor Degree of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2011

"I hereby confirm that this report is solely written by me except those paragraphs and summaries that have been stated with citation"

Signature	:	
Writer	:	CHEN SIEW TEEN
Date	:	16 th MAY 2011

ACKNOWLEDGEMENT

Here, I would like to acknowledge with appreciation to all those people who helped me numerously during completing this project.

In this great opportunity, I would like to convey my sincere thank you to Mr. Mohd Nazim Abdul Rahman, who is my supervisor for giving me a chance to do the final seminar project. Under his guidance and encouragement, I was able to complete my project with successfully. I also feel thankful to Mr. Mohd Nazim Abdul Rahman for sharing his experience and giving me a lot of knowledge more in mechanical engineering subjects especially works for my topic. Thanks for your guidance and cooperation.

Besides that, I would like to express my appreciation to my classmates and housemates for being kind and helpful to me until the project done. They share the journals, books, sources that they get from library and internet; I will appreciate our friendship forever.

Lastly, thanks a lot to my dearest parents and siblings whom had given me encouragement and support me for no reason during I prepared the project. They give me strength to complete the report.

ABSTRACT

This project is purpose to create technical research for undergraduate students which have high potential in technical paper publication. The objective of the final project is to optimize in manufacture and assembly of the existing outdoor swing. Throughout this project, an existing swing will separated each part purpose to do analysis and to critique the assembly point of view. After done the analysis, by using the Boothroyd-Dewhurst method some of the part will eliminate or reduce and redesign remain part as possible and come out with the some conceptual design. To ensure the purpose is achieved, some of the important element must be consider, there are followed the scope of project such as, literature review of the DFMA. In this project, all the design drawing, drawn by using the Solidworks software. Finally, the new design will be compared with the original design from aspect, assembly cost, assembly time, part quantity and design efficiency. Base on calculation, the result had been containing for manual analysis, the percentage of design efficiency is 14 %, and for software analysis, the percentage of design efficiency is 35%. For percentage of part quantity, the result is 29% for both analyses. The result for percentage of assembly time is 52% for manual analysis and 99% for software analysis. Mean while the percentage of assembly cost is 97% for manual analysis and 100% for software analysis. From the overall result, the result obtained in software and manual analysis was not much different. For example, in result of design efficiency, the different values in manual result and software result for concept swing design was not much different. For manual existing design efficiency the result is 28% and for software the result is 26%.

ABSTRAK

Projek ini adalah bertujuan untuk mewujudkan penyelidikan teknikal bagi pelajar yang mempunyai potensi besar untuk penerbitan kertas teknikal. Objektif projek ini adalah untuk mengoptimumkan pengeluaran dan perhimpunan buaian yang telah wujud. Di dalam projek ini, buaian yang berada di pasaran sekarang dipilih dan akan diceraikan satu persatu untuk menjalakan analisis dan memberi sudut pandangan terhadap buaian tersebut. Setelah menjalankan analisa dengan menggunakan kaedah "DFMA", rekabentuk baru dicipta dengan mengeluarkan beberapa konsep rekabentuk untuk mempertingkatkan kos pembuatan dan mengurangkan bilangan pada rekabentuk lama. Untuk memastikan matlamat projek tercapai mengikut ruang lingkup yang bersesuaian, kajian ilmiah yang terdahulu dijadikan sebagai rujukan. Didalam projek ini juga, semua rekabentuk dilukis dengan menggunakan perisian "Solidwork". Pada akhir skali, rekabentuk baru akan dibandingkan dengan rekabentuk sedia ada dari aspek kos pemasangan, kos pembuatan dan kecekapan pemasangan. Berdasarkan analisis yang dijalankan, hasil yang telah diperolehi untuk peratusan kecekapan rekabentuk adalah 14% untuk manual analisis, dan untuk analisis perisian, peratusan kecekapan rekabentuk adalah 35%. Untuk peratusan jumlah bahagian, hasilnya adalah 29% untuk kedua analisis. Keputusan untuk peratusan masa pemasangan adalah 52% untuk analisis manual dan 99% untuk analisis perisian. Sementara peratusan kos pemasangan adalah 97% untuk analisis manual dan 100% untuk analisis perisian. Dari hasil keseluruhan, hasilnya diperolehi dalam perisian dan analisis manual tidak jauh berbeza. Contohnya, dalam keputusan kecekapan rekabentuk, nilai-nilai yang berbeza pada hasil manual dan keputusan perisian untuk rekabentuk yang baru tidak jauh berbeza. Untuk kecekapan rekabentuk manual yang ada hasilnya adalah 28% dan untuk perisian hasilnya adalah 26%.

TABLE OF CONTENT

TITLE

CHAPTER

PAGE

	SUD	EDVISC	D'S VED	IFICATION	i
				IFICATION	
	MID	DLE PA	GE		ii
	DEC	LARAT	TION		iii
	ACK	KNOWL	EDGEME	NT	iv
	ABS	TRACT			v
	ABS	TRAK			vi
	TAB	LE OF	CONTEN	Г	vii
	LIST	Г ОГ ТА	BLE		xi
	LIST	r of fic	GURE		xiii
	LIST	Г OF SY	MBOL		xvii
	LIST	Г OF AB	BREVIA	ΓIONS	xviii
	LIST	Г OF AP	PENDIX		xix
CHAPTER I	INT	RODUC	TION		1
	1.1	Backg	round		1
	1.2	Proble	em Stateme	ent	5
	1.3	Objec	tive		6
	1.4	Scope			6
	1.5	Concl	usion		6
CHAPTER II	LIT	ERATUI	RE REVII	EW	7
	2.1	Outdo	or Swing		7
		2.1.1	Material	s of Outdoor Swing	8
			2.1.1.1	Plastic Swing	9

			2.1.1.2	Metal Swi	ing	9
			2.1.1.3	Wooden S	Swing	10
				2.1.1.3.1	Cedar Swing	11
				2.1.1.3.2	Redwood Swing	11
	2.2	DFMA	L			12
		2.2.1	History o	of DFMA		13
		2.2.2	Principle	and Guidel	ine of DFMA	15
		2.2.3	Benefits	of DFMA		18
		2.2.4	DFM			20
		2.2.5	DFA			22
CHAPTER III	MET	THODOI	LOGY			24
	3.1	Introdu	uction			24
	3.2	Design	Process			25
		3.2.1	Problem	Statement		26
		3.2.2	Needs			26
		3.2.3	Engineer	ing Design	Specification	27
		3.2.4	Conceptu	ual Design		27
		3.2.5	Select th	e Best Desig	gn	28
		3.2.6	Configur	ation Desig	n	29
		3.2.7	Parametr	ric Design		29
		3.2.8	Detail D	esign		29
CHAPTER IV	ENG	INEERI	NG DESI	GN SPECII	FICATION	31
	4.1	Introdu	iction			31
	4.2	Custon	ner Needs			32
		4.2.1	Question	naire Metho	od	33
		4.2.2	Result fr	om Question	nnaire	34
		4.2.3	Custome	r Requirem	ents	36
		4.2.4	Engineer	ing Charact	eristic	38
		4.2.5	House of	f Quality		39
		4.2.6	EDS for	an Outdoor	Swing	41
		4.2.7	Conclusi	on		43

CHAPTER V	CON	NCEPTU	AL DESIGN	44
	5.1	Introd	uction	44
	5.2	Produ	ct Decomposition	45
	5.3	Morpł	nology	46
		5.3.1	First Concept	48
		5.3.2	Second Concept	49
		5.3.3	Third Concept	50
		5.3.4	Fourth Concept	51
		5.3.5	Fifth Concept	52
	5.4	Conce	pt Evaluation	53
		5.4.1	Weighted Rating Method	53
CHAPTER VI	CON	NFIGUR	ATION DESIGN	57
	6.1	Introdu	action	57
	6.2	Produc	et Architecture	59
	6.3	Existin	g Swing Description	60
		6.3.1	Existing Swing Diagram	64
	6.4	Conce	pt Description	65
		6.4.1	Concept Swing Diagram	69
CHAPTER VII	PAR	AMETRIC DESIGN		70
	7.1	Introdu	action	70
	7.2	Solidw	ork Simulation Analysis	71
		7.2.1	Structure Analysis Result	72
		7.2.2	Screw Analysis Result	75
	7.3	Manua	l Calculation	79
	7.4	Compa	arison of Manual and Analysis Result	80
	7.5	DFMA	Manual Analysis for Existing Swing	82
		7.5.1	Assembly flow chart	84
		7.5.2	The Process and Material Selection	85
		7.5.3	Theoretical Part	93
		7.5.4	Alpha and Beta Symmetric	95
		7.5.5	Handling and Insertion Time	96

	7.6	DFMA Software Analysis of Existing Swing	98
		7.6.1 Design for Manufacturing	98
		7.6.2 Design for Assembly	100
	7.7	DFMA Manual Analysis for Concept Swing	103
		7.7.1 Assembly Flow Chart	105
		7.7.2 The Process and Material Selection	106
		7.7.3 Theoretical Part	114
		7.7.4 Alpha and Beta Symmetric	115
		7.7.5 Handling and Insertion Time	116
	7.8	DFMA Software Analysis for Concept Swing	118
		7.8.1 Design for Manufacturing	118
		7.8.2 Design for Assembly	120
	7.9	Result	123
CHAPTER VIII	DETAIL DESIGN		
	8.1	Introduction	126
	8.2	Detail Drawing for Existing Swing	127
	8.3	Detail Drawing for Concept Swing	130
CHAPTER IX	DISC	CUSSION	133
	9.1	Comparison Existing Swing and Concept Swing	133
	9.2	Comparison of DFMA Manual and Software	135
		Analysis	
CHAPTER X	CON	CLUSION AND RECOMMANDATION	136
	10.1	Conclusion	136
	10.2	Recommandation	137
	REF	ERENCES	138
	APP	ENDIX	143

LIST OF TABLE

NO.	TITLE	PAGE
4.2.3	Customer needs for outdoor swings (Source: Karl. T. U. & Steven D. E. 2003)	37
4.2.4	The relative of customer needs and metric for outdoor swings (Source: Karl. T. U. & Steven D. E. 2003)	38
4.2.5	House of quality	40
4.2.6	Engineering design specification for an outdoor swing	41
5.4.1	Weighted decision matrix for an outdoor swing (Source: Chang R. Y. & Niedzwiecki M. E. 1995)	55
6.3	Existing swing description	61
6.4	Concept swing description	66
7.2.1	Structure analysis result apply with 2000N load	72
7.2.2	Screw analysis result apply with 2000N load	76
7.5	Explore view parts for existing swing	82

7.5.3	Theoretical part & non-theoretical part for existing swing	94
7.5.4	Alpha & Beta of existing swing	95
7.5.5	Analyze Handling and Insertion Time for existing swing	97
7.6.1	Total costing per part of each part	99
7.7	Explore view parts for concept swing	103
7.7.3	Theoretical part & non-theoretical part for concept swing	114
7.7.4	Alpha & Beta of concept swing	115
7.7.5	Analyze Handling and Insertion Time for concept swing	117
7.8.1	Totals Costing per part of each part	119
9.2	Comparison of DFMA manual and software analysis	135

LIST OF FIGURE

NO.	TITLE	PAGE
3.2	Design process	25
3.2.4	Design concept = physical concept + part decomposition (Source: Henry W. S., (1999))	27
4.2.2	Histogram of comparison between nursery, customer and playground equipment company	34
5.2	Outdoor swing decomposition part	46
5.3	Morphology chart	47
5.3.1	First concept	48
5.3.2	Second concept	49
5.3.3	Third concept	50
5.3.4	Fourth concept	51
5.3.5	Fifth concept	52
5.4.1	Objective tree for design of an outdoor swing	54

5.4.1	Objective tree for design of an outdoor swing	54
6.3	Existing swing	60
6.3.1	Existing swing diagram	64
6.4	Concept swing	65
6.4.1	Concept swing diagram	69
7.2.1	Stress on the structure	73
7.2.1	Displacement on the structure	74
7.2.1	Strain for the structure	74
7.2.1	Factor of safety for the structure	75
7.2.2	Stress on the screw	77
7.2.2	Displacement on the screw	77
7.2.2	Strain for the screw	78
7.2.2	Factor of safety for the screw	78
7.5	Explore view of existing swing	83
7.5.1	Assembly process flow for existing swing	84
7.5.2	Process flow for rail	86
7.5.2	Process flow for stand	87

7.5.2	Process flow for hanger hole	88
7.5.2	Process flow for hanger	89
7.5.2	Process flow for shackle	90
7.5.2	Process flow for chain	91
7.5.2	Process flow for seat hanger	92
7.5.2	Process flow for seat	93
7.6.1	DFM software concurrent costing totals	98
7.6.2	Executive summary for DFA	100
7.6.2	Total analysis for DFMA	101
7.6.2	DFMA summary result	102
7.7	Explore view of concept swing	104
7.7.1	Assembly process flow for concept swing	105
7.7.2	Process Flow for Structure	107
7.7.2	Process Flow for Hanger Hole	108
7.7.2	Process flow for hanger	109
7.7.2	Process Flow for Shackle	110

7.7.2	Process Flow for Chain	111
7.7.2	Process Flow for Quick Link	112
7.7.2	Process Flow for Seat	113
7.8.1	DFM concurrent costing totals	118
7.8.2	Executive summary for DFA	120
7.8.2	Total analysis for DFMA	121
7.8.2	DFMA summary result	122
8.2	Exploded view for existing swing	128
8.2	Assembly dimension of existing swing	129
8.3	Exploded view for concept swing	131
8.3	Assembly dimension of concept swing	132
9.1	Structure comparison	133
9.1	Seat hanger and quick link comparison	134
9.1	Seat comparison	134

LIST OF SYMBOLS

σ	=	Stress
δ	=	Displacement
М	=	Moment
r	=	Radius
î	=	Radius from the vertex center
R	=	Reaction load
А	=	Area
F	=	Force
e	=	Span length
E	=	Modulus of elasticity
Р	=	Concentrated load
у	=	Distance of axis to extreme fiber
L	=	Length
Ι	=	Moment of Inertial

LIST OF ABBREVIATIONS

=	Design for manufacturing and assembly
=	Design for assembly
=	Design for manufacturing
=	Boothroyd Dewhurst Inc
=	Engineering change notice
=	Concurrent engineering
=	Engineering design specification
=	Product design specification
=	Quality Function Deployment
=	Computer aided design
=	Finite Element Analysis
=	Factor of safety

LIST OF APPENDIX

NO.	TITLE	PAGE
А	Conceptual design references	143
В	Gantt chart for PSM I	146
С	Gantt chart for PSM II	147
D	Rail for existing swing	148
Е	Stand for existing swing	149
F	Hanger for existing and concept swing	150
G	Shackle for existing and concept swing	151
Н	Chain for existing and concept swing	152
Ι	Seat hanger for existing swing	153
J	Seat for existing swing	154
K	Structure for concept swing	155
L	Quick link concept swing	156

М	Seat for concept swing	157
N	Questionnaire for outdoor swing	158

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

The wave of modernization that is prevalent in our lives is also affecting our children's lifestyles, most kids are fascinated with video games and indoor entertainment they are no longer sociable.

This is where children's outdoor swings would fill in the missing link. As a parent one must understand that an outdoor experience is something that will develop the growth of a child's social awareness and behavior. It all starts in interactions with neighbors and classmates for those who are already going to school. However prior to coming to school a child's mind should already be prepared to interact with other children and one way of doing this is to engage your child into outdoor activities. Children's outdoor swings are great for all ages, it is a tool to capture the attention of your children and make them realize the significance of interaction between people.

These tough outdoor play swings great they are carefully crafted by skilled professionals to stay for a lifetime helping you turn your everyday life with kids into memories of fun and entertainment. Over the years there was no successful replacement for children's outdoor swings. There is no virtual substitute for real equipment that

1

encourages or improves social well being. Although everything that happens around us are all dependent on the state of the mind it is important to consider the enjoyment provided of our sense of touch, hearing, and sight. These senses are important and it contributes to the basic requirements of our social development. The virtual entertainment provided by computers, video games and televisions are merely virtual, they are a good motivation to practice our mental state but they are unreal and you cannot feel them, you just see it but it is more like an abstract you would not feel it at all.

The children's outdoor swings will not only entertain but also put your child's cardio vascular system to work; it will become a form of an exercise that your child will appreciate. (Source: <u>http://ezinearticles.com/?Childrens-Outdoor-Play-Sets&id=4053741</u>)

Design for Manufacturing (DFM) and design for assembly (DFA) are the integration of product design and process planning into one common activity. Designing for manufacturing and assembly (DFMA) can define as a process for improving product design for easy to manufacture and low cost assembly, focusing on functionality and on assimilability concurrently.

The goal of DFMA is to design a product that is easily and economically manufacture and assembly. On the other words is to improve the design of the assembly, to reduce the adhesion such as welding operation necessary to end up with a finished product. The most common methods of improvements are reducing the number of times the part has to be reoriented, and eliminating any excess material without sacrifice the product quality (Source: John W. P. & Sanchez J., (2001)).

The importance of design of designing for manufacturing and assembly is underlined by the fact that about 70% of manufacturing cost of a product (cost of materials, processing, and assembly) is determined by design decision, with production decisions (such as process planning or machine tool selection) responsible while decisions made during production only 20%. Further, decisions made of the product's cost, quality and manufacturability characteristics. Designing parts for use in a flexible automation system can have profound results on the overall effectiveness of the system. While simply attempting to automate the assembly of existing designs is possible, the resulting operation is often prone to error and continual failure. More than often, the root of many of the problems can be traced back to the parts and assembly procedures being used.

In the past, design and manufacture tasks have been performed independently. In this scenario, the designer designs a product and "tosses it over the wall" to the manufacturer to produce. There is no interaction between the designer and manufacturer and often what results is a design that is difficult to produce using automation. What is required is collaboration between all aspects of the engineering staff, beginning with product conception all the way through delivery. By tapping into the expertise of all engineering areas (design, automation, manufacturing and etc), an equally functional and high quality design will result, but it will be much easier to reliably manufacture in an automated system. In practice, this approach is often difficult to implement, especially if the product designers are employed by one sub-contractor, the machine builders by another, and the raw components manufactured by a third. However, time spent by all involved parties in mutual consultation at the design phase will far outweigh and inconveniences.

Many times the objections to this approach to manufacturing come from the designers and those in marketing who have a preconceived idea that they will lose control. Their preliminary job function is to produce a product that the consumers will desire. However, this notion is often in error. The knowledge gained into the manufacturing process will far outweigh any ill effects. Making a part more manufacturable does not always mean a complete redesign. Alterations in part designs do not have to be drastic. For example, only a slight redistribution of mass may be necessary to improve the probability of a particular stable rest position, thereby improving flexible feeder throughput. Or a slight shifting of a vision registration fiducially can be sufficient to provide an asymmetry which can be used to determine pose. Or a larger chamfer can vastly improve the reliability of an assembly task. These

types of small changes to a design can have a major impact on the quality and ease of automated manufacture.

Engineering design is a process of developing a system, component, or process to meet desired needs. It is a decision making process in which basic sciences, mathematic, and engineering technologies are applied to convert resources optimally to meet a stated objective. Engineering design had usually been complete purely based on the process-planning department and then to the manufacturing department. These activities were completed in a sequential manner with no feedback given to the designer. Sometimes the designed product is extremely difficult to manufacture and the manufacturing cost is unnecessarily high. To solve this problem, two approaches are used to help the designer reducing the product cost after a design is completed. They are value engineering and producibility engineering. (Source: Boothroyd, G. *et. al.*, (2002))

Value engineering is primarily concerned with product function and costs. Producibility engineering, on the other hand, assures that product specifications can be met with available or potentially available techniques, tooling, and test equipment at costs compatible with the product's selling price. By using value and producibility engineering, design engineers attempt to optimize the design to maximize the profit of accomplishing intended functions. However, three problems are encountered in the traditional manufacturing system using value and producibility engineering. First, such optimization, if not carefully monitored, could be accomplished at the expense of product manufacturability. Second, implement of value engineering is usually stated as a company policy but not strictly followed in a scientific manner; therefore, the most significant savings may not be achieved (Source: John W. P. & Sanchez J., (2001)). Third, although value engineering and producibility engineering are highly valid methods in themselves, they enter into consideration too late in the traditional manufacturing system, i.e. after the product design has been completed. This makes it more expensive to modify the design (at large stage) and it also delays the launch of a new product to the market. A new approach of DFM, integrates the manufacturing considerations into the design process to overcome these shortcomings.