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ABSTRACT 

 

 

 

The research involved experimental works of axial compression of 

aluminium hollow square tube and bamboo-filled under quasi-static loading 

condition.  The main purpose of the research is to compare the energy absorption 

between hollow tube and bamboo-filled tube.  Initially, related journals and articles 

were obtained through any resources.  Total of eighteen specimens of aluminium 

with different cross-section dimension were cut off with 300mm in length (9 

specimens) and 150mm (9 specimens).  The cut area is ensured flat and 

perpendicular to the length of the tube.  Bamboo specimens are all oven-dry.  After 

bamboo specimens had been oven-dry, it is cut into slides.  Six specimens with 

length of 150mm are filled in with slides bamboo.  All the specimens (empty tube 

and bamboo-filled tube) were then subjected to compression load by using 

INSTRON Universal Testing Mesin Model 5585.  The rate of compression is 10mm 

per minute.  Throughout the compression period, photos are taken with every 

increment and decrement of the load-displacement curve.  Videos were recorded 

throughout entire compression process.  This is to obtain the fold formation of the 

compressed tube.  After compression, data and results of the compression test were 

obtained and load-displacement graphs are drawn to determine the total energy 

absorption of the tube (area under curve). 
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ABSTRAK 

 

 

 

Tajuk penelitian eksperimental melibatkan mampatan axial pembebanan 

kuasi-statik balang aluminium persegi berongga dan buluh diisi.  Tujuan utama 

penelitian ini adalah untuk membandingkan penyerapan tenaga antara balang hampa 

dan balang buluh diisi.  Pada permulaaan, jurnal dan artikel yang berkaitan 

diperolehi melalui sumber maklumat.  Lapan belas spesimen dari aluminium dengan 

dimensi penampang yang berbeza dipotong dengan panjang 300mm (9 spesimen), 

dan 150mm (9 spesimen).  Kawasan memotong dipastikan datar dan bersudut tegak 

terhadap panjang balang. Semua buluh spesimen dioven-keringkan.  Setelah 

spesimen buluh telah dioven-keringkan, buluh tersebut dipotong.  Seterusnya, enam 

spesimen dengan panjang 150mm diisikan dengan buluh yang telah dipotong.  

Kemudiannya, semua spesimen (balang kosong dan balang berisi buluh) mengalami 

mampatan pada mesin mampatan Instron Universal Testing Mesin Model 5585.  

Kadar mampatan ditetapkan pada 10mm setiap minit.  Seluruh tempoh mampatan, 

foto diambil dengan setiap peningkatan dan penurunan dari graph beban-perpindahan.  

Video dirakam  sepanjang proses mampatan dijalankan.  Ini adalah untuk  

mendapatkan pembentukan lipatan balang dibuka. Selepas process mampatan, data 

hasil kompresi diperolehi dan beban-perpindahan grafik dilukis untuk menentukan 

jumlah penyerapan tenaga pada baling hampa dan baling berisi buluh (kawasan di 

bawah lengkung).   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Based on reference [1], the axial crush response of thin-wall, ductile metallic 

alloy components (specific geometry and material combination) have been 

extensively studied for irreversible directional energy absorption capability.  It had 

been studied by Coppa [2], Ezra and Fay [3], Johnson and Reid [4], and finally Reid 

and Reddy [5].  Due to the significant energy can be absorbed by plastic deformation 

during the progressive fold formation process that is characteristic of this response, 

axial crush has many important engineering safety applications in areas including 

crashworthiness and blast-resistant design of structures. 

 

In early time, an example of the symmetric axial crush response mode by 

Abramowicz and Jones for an AISI 304 stainless steel, welded square box 

component tube specimen is shown in Figure 1.1.  A crush specimen showing the 

fold formation and an undeformed tube specimen are shown in Figure 1.1(a).  The 

corresponding axial load-axial displacement curve (subsequently referred to as the 

load–displacement curve) is shown in Figure 1.1(b) and (c).  As also mentioned in 

reference [1], the axial crush response can be considered to consist of phases or 

stages.  The type of response shown in Figure 1.1 is divided into an „initial‟ phase 

and a „secondary‟ phase.  The initial phase phase includes the pre-collapse response 

prior to the occurrence of the peak or maximum load, the change from axial to 

bending load-resistance in the sidewalls, and the formation of the first few interior 
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and exterior folds on sets of opposite sidewalls with corresponding increases and 

decreases in the load–displacement curve.  The secondary folding phase consists of 

the „„steady state‟‟ fold formation process and the adjacent sidewall interactions and 

contacting of folds produce subsequent fold formations of constant wavelength along 

the remaining length of the specimen. Therefore, a cycle in the curve (Figure 1.1(b)) 

corresponds to the formation of one exterior or one interior fold on both sets of 

opposite sidewalls with load magnitudes fluctuating between minimum and 

maximum values.  The cycles can be further divided into sections with each section 

represents the formation of an exterior fold on a specific set of opposite sidewalls 

and the corresponding formation of an interior fold on the other opposite sidewall 

pair. 

 

For axial crush response, investigators have used or defined „„crush 

characteristics‟‟, also called indicators or parameters, to evaluate and compare the 

performance of components.  These characteristics include both direct data and 

derived quantities.  The emphasis of the current investigation is on the direct data 

quantities from the load–displacement curve. The characteristics of interest are 

shown in Figure 1.1(c) for the square box component and include: the initial phase 

peak load, Pmax (or P02); maximum and minimum loads, Pij; mean or average loads, 

Pmeani; energy absorptions, EAi; and axial displacements, 𝛿𝑖 .  The subscript i refers to 

the initial phase if i = 0 and the ith cycle in the secondary phase for i = 1, 2, etc.  The 

subscript j is a sequential number indicator for the maximum and minimum loads in 

the initial phase or in an ith cycle.  In general, an energy absorption quantity, EAi, is 

the area under the load–displacement curve, and 𝑃𝑚𝑒𝑎𝑛 𝑖
is equal to the energy 

absorption divided by the axial displacement, 𝛿𝑖  for the initial phase or the ith cycle. 

 

The axial crush response has been investigated with respect to types of 

response modes, geometry-material design criteria for components, crush 

characteristics to evaluate performance, methods to initiate or modify response, and 

rate and temperature effects.  The effects of material type, material alloying, and 

process parameters were also investigated on the axial crush response of metallic 

alloy components.  The results shown response mode changes from ductile fold 

formation to fracture, differences in mode response and crush characteristic 

magnitudes in the fold formation process. 
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The analyses involved peak load and overall crush displacement and energy 

absorption quantities. Secondary folding phase characteristics and details of the 

materials undergoing severe plastic deformation could not be evaluated because of 

significant differences in the fold formation process and the load–displacement curve 

shapes for specimens within each individual study. 

 

 

 

 

Figure 1.1: Symmetric axial crush response mode – ductile metallic alloy, square box 

component: (a) axial crush and undeformed tube specimens, (b) curve sections and (c) 

crush characteristics. 

(Source: Dipaolo and Tom, 2006) 

 

 

The term „„configuration response‟‟ was introduced in previous research 

involving AISI 304 stainless steel square box components by DiPaolo [1].  For the 

symmetric axial crush mode, a specific „„configuration response‟‟ refers to the 

combination of a specific fold formation process (verified by fold appearance) and 

the shape of the corresponding load–displacement curve.  An example of fold 

formation and the corresponding load–displacement curve of an AISI 304 stainless 

steel tube specimen for the „„Configuration A‟‟ response that was studied in the 
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previous research [1] is given in Figure 1.2.  The results of the research showed that 

there were several configuration responses of the symmetric axial crush mode and 

that these configuration responses differed in stationary fold-line locations and 

traveling fold-line paths for right-circular cylindrical polyvinyl chloride specimens, 

idealized models, plastic „„hinge lines‟‟, and for right-circular cylindrical and square 

specimens.  Therefore, there were differed in load magnitudes, energy absorption 

processes and material performance requirements. 

 

It had demonstrated that axial crush response could be controlled and 

restricted to a specific configuration response for tube specimens with constant 

geometry and material and, also, for tube specimens with constant geometry and of 

the same alloy, but having different uniaxial tensile strength levels.  

 

This capability is important not only for the practical application of axial 

crush response, but also because it provides the ability to research the influence of 

material parameters on axial crush characteristic magnitudes and to study details of 

material behavior such as microstructural evolution and deformation mechanisms 

during severe plastic deformation. 

 

 

 

 

 

 

Figure 1.2: Configuration A response – prototype specimen S1-18: fold formation 

and load–displacement curve. 

(Source: Dipaolo and Tom, 2006) 

 



5 
 

1.2 Objective 

 

The main objective of this research is focused on the capability of the 

bamboo-filled and hollow empty square aluminium tube to absorb energy during 

compression.  Different cross-section with constant wall thickness and length were 

studied and tested to compare the behavior of its capability in energy absorption. 

 

In order to achieve the above goal, each tube was investigated its peak and 

mean loads, plastic folding and energy absorbed of bamboo-filled hollow empty 

aluminium tube subjected to axial compression.  In additional, the study also 

compared empty and bamboo-filled tube with respect to energy absorption. 

 

 

 

1.3 Scope 

 

Aluminium thin-walled tube is selected as the experiment specimen.  For 

comparison among the empty tubes, the tube had three different cross section 

dimensions but had same thickness and length of 1.5mm and 300mm.  While for 

comparison between empty and bamboo-filled tubes, the length of the tube is 

decrease to 150mm.  The type of bamboo chosen is Dendrocalamus Asper.  All 

specimens subjected quasi-static loading with compression speed of 10mm per 

minute.  The characteristic of the empty tube for each cross section is determine 

through its‟ peak and mean loads, number of plastic folding, and capability of energy 

absorbed.  As for the characteristic between empty tube and bamboo-filled tube, the 

specimen‟s peak and mean loads, and the capability of energy absorbed are also been 

determine.  No simulation work performed in this particular task. 
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