DESIGN AND ANALYSIS OF THE DRIVETRAIN SYSTEM FOR FORMULA SAE RACE CAR

FARIZZAMZAM BIN NASRUDDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF THE DRIVETRAIN SYSTEM FOR FORMULA SAE RACE CAR

FARIZZAMZAM BIN NASRUDDIN

This dissertation is submitted as partial fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

APRIL 2009

C Universiti Teknikal Malaysia Melaka

APPROVAL OF SUPERVISOR

"I hereby declared that I have read through this report and I found that it has comply the partial fulfilment for awarding the degree in Bachelor of Mechanical Engineering (Automotive)"

Signature	:
Supervisor	1: Mr. Wan Mohd. Zailimi Bin Wan Abdullah
Date	·

"I declare that this report is done by my own exclude the citation with the mentioned references for each"

Signature: Author : Farizzamzam Bin Nasruddin Date : 10th April 2009 Dedication

This book is especially dedicated to my loving parents, my supervisor, all respective UTeM staffs and friends for their undivided help and guidance in enabling me to gain experience and knowledge in making my final year project a success.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah s.w.t. the most gracious, the most merciful. Thank you for giving me the strength and spirit for me to complete this research on design and analysis of the drivetrain system for Formula SAE race car. I would have never completed this final year project if not for the help by some people.

Throughout 2 Semester in completion this project, I am very grateful with the co-operation from lecturer and friends. My highly appreciation to Mr. Wan Mohd Zailimi Bin Wan Abdullah as my supervisor that always guide me in this technical report writing and shared his knowledge and concerned towards my project. Without his guidance, assistance, encouragement and patience, I don't think I can manage to complete this project on time. Not forgotten to my second supervisor Mr. Hambali Bin Boejang who gives me a brilliant idea to improve my project. Thank you so much sir.

I also want to express the highest gratitude to my parents and family for giving me the moral support when I really need one. Thank you very much and I will always love you. Last but not least, I would like to thank to all my friends for their encouragement and support when we face any difficulty in completing this final year project. Words just cannot illustrate how much I thank all of you.

ABSTRACT

The drivetrain system is a part in powertrain system that associate together to describe the way the power transmitted from engine to wheel. This project aims is to design and develop the drivetrain system for formula SAE race car and the design that used for the car must fulfill the standard regulation that made by SAE for Formula SAE competition. A research has been conducted with several different types of drivetrain system and components to gain knowledge and understanding required to select an appropriate system for the race car. Then, the different designs of drivetrain system were analyzed for comparison. A design that been choose to be developed for the drivetrain and the detail analysis of the design is conducted. The analysis for the drivetrain is more on determining the final gearing that affects the performance parameter such as torque, acceleration and top speed. Besides that, the load of the axle also been determine to get the maximum torque applied using three different approached that are engine performance, tire friction, and predicted acceleration and cornering force acting on the race car.

ABSTRAK

Sistem Penghantar adalah sebahagian daripada Sistem Kuasa Kenderaan yang saling berkaitan untuk menggambarkan bagaimana kuasa dapat disalurkan melalui enjin hingga ke roda. Matlamat utama projek adalah untuk mereka bentuk serta membangunkan Sistem Penghantar untuk kereta lumba Formula SAE. Reka bentuk yang akan digunakan mestilah memenuhi peraturan piawaian yang telah ditetapkan oleh SAE untuk pertandingan Formula SAE. Satu kajian telah dijalankan dengan memilih beberapa jenis Sistem Penghantar berserta komponen-komponennya untuk menambah pengetahuan serta memahami keperluan bagi memilih system yang sesuai untuk kereta lumba. Seterusnya, reka bentuk yang berbeza bagi Sistem Penghantar akan dianalisis untuk dijadikan pembandingan. Reka bentuk yang telah dipilih bagi Sistem Penghantar akan dibangunkan dan analisis secara terperinci terhadap reka bentuk itu dijalankan. Analisis terhadap Sistem Penghantar lebih kepada mengenal pasti akhiran gear yang mempengaruhi prestasi kenderaan seperti daya kilas, pecutan dan kelajuan maksimum bagi kenderaaan. Selain daripada itu, bebanan pada gandar juga diambil kira untuk mendapatkan daya kilas maksimum dengan menggunakan tiga pendekatan berbeza iaitu prestasi engine, geseran tayar, dan ramalan pecutan serta daya membelok yang bertindak pada kereta lumba.

TABLE OF CONTENT

CHAPTER	ΤΟΡΙΟ	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xvii

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope	3
1.5	Benefit of Study	3
1.6	Overall Summary	4

CHAPTER	TOF	PIC		PAGE
CHAPTER 2	LIT	ERATU	RE REVIEW	
	2.1	Histor	ry of Formula SAE	5
		2.1.1	Objective of Formula SAE	7
		2.1.2	Requirement of Formula	
			SAE Competition	8
	2.2	Powe	rtrain	10
		2.2.1	Drivetrain	10
		2.2.2	SAE Constraints	11
		2.2.3	Transmission	12
		2.2.4	Power Transfer System	15
		2.2.5	Chain Drive	15
		2.2.6	Belt Drive	16
		2.2.7	Gear Reduction Box	16
		2.2.8	Differential	17
		2.2.9	Drive Shaft Joint	21
	2.3	Study	of Drivetrain Design Layout	
		Done	By Other University	23
		2.3.1	UOW Racing Team	
			University of Wollongong	
			(Australia)	23
		2.3.2	University of Saskatchewan	
			Formula SAE (Canada)	24

CHAPTER	TOPIC		PAGE
	2.3.3	University of Alberta	
		FSAE (Canada)	24
	2.3.4	McGill Racing Team,	
		McGill University (Canada)	25
	2.3.5	USQ Motorsport Team,	
		University of Southern	
		Queensland (Australia)	25
	2.3.6	WMU Formula Racing,	
		Western Michigan University	
		(USA)	26

CHAPTER 3 METHODOLOGY

3.1	Review	w and Study on the	
	Formu	ıla SAE Rules	28
3.2	Review	w and Study on the	
	Previo	ous Design	28
3.3	Desig	n Criteria	29
3.4	Drivetrain Design Selection and		
	Devel	opment	30
	3.4.1	Drivetrain Design Selection	31
	3.4.2	Determination of Loads	34
	3.4.3	Drivetrain Development	35

CHAPTER	TOPIC			PAGE
CHAPTER 4	RESU			
	4.1	Final	Gearing	36
	4.2	Axle	Loading	39
		4.2.1	Engine Performance	39
		4.2.2	Tire Friction	42
		4.2.3	Vehicle Performance	46
			4.2.3.1 Acceleration	46
			4.2.3.2 Cornering	48

CHAPTER 5	CON	CONCLUSION			
	5.1	Conclusion	51		
	5.2	Further Work	52		
	BIBI	LIOGRAPHY	53		
	APP	ENDICES	58		

LIST OF TABLES

NO.	TITLE	PAGE
3.1	Drivetrain Design with the Advantages	
	and Disadvantage	31
4.1	Accelerating Figure of SAE Cars	
	(Little, J. October 2004)	46
A1	Formula SAE Overall Winner	
	(Source: http://www.fsae.com)	58
A2	Formula SAE USA Winner	
	(Source: http://www.fsae.com)	59
A3	Formula SAE West Winner	
	(Source: http://www.fsae.com)	60
A4	Formula SAE UK Winner	
	(Source: http://www.fsae.com)	60
A5	Formula SAE Australasia Winner	
	(Source: http://www.fsae.com)	60
A6	Formula SAE Japan Winner	
	(Source: http://www.fsae.com)	60
A7	Formula SAE Italy Winner	
	(Source: http://www.fsae.com)	61

A8	Formula SAE Germany Winner	
	(Source: http://www.fsae.com)	61
A9	Formula SAE Brazil Winner	
	(Source: http://www.fsae.com)	61
B1	Standard YZF R6 Final Gearing Top Speed	62
B2	56/16 Final Gearing Top Speed	62
В3	56/15 Final Gearing Top Speed	63
B4	56/14 Final Gearing Top Speed	63
C1	Centripetal Acceleration	64
C2	Resultant Normal Force	65
C3	Frictional Force with $\mu = 0.72$	51
C4	Total Torque Delivered to Tire	52

LIST OF FIGURES

NO.	TITLE	PAGE
2.1(a)	Open Differential- Straight	
	(Source: http://auto.howstuffworks.com)	18
2.1(b)	Open Differential- Turn	
	(Source: http://auto.howstuffworks.com)	18
2.2	Limited Slip Differential- Clutch Type	
	(Source: http://auto.howstuffworks.com)	19
4.1	Drivetrain Torque Ampliation	40
4.2	Free Body Diagram of Tire	43
4.3	Free Body Diagram of Accelerating Car	44
4.4	Free Body Diagram of Moment	48
D1	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 3	68
D2	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 4	68
D3	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 5	69
D4	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 6	69

C Universiti Teknikal Malaysia Melaka

D5	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 7	70
D6	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 8	70
D7	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 9	71
D8	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 10	71
D9	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 11	72
D10	Graph of Frictional Force, μN and Torque, T	
	Against Speed with Radii Corner = 12	72
Ila	Drivetrain Arrangement, Differential Housing,	
	& Rear Sprocket	82
I2a	Drivetrain Arrangement	82
I3a	Drivetrain Arrangement	83
I4a	Drivetrain Arrangement	83
I5a	Drivetrain Arrangement	84
I6a	Drivetrain Arrangement	84

LIST OF SYMBOL

V	=	Velocity, m/s ²
V_{f}	=	Final Velocity, m/s ²
\mathbf{V}_{i}	=	Initial Velocity, m/s ²
r	=	Radius, m
r _R	=	Radius at Rear, m
r _C	=	Radius of Car Wheel, m
ω	=	Angular Velocity, rad/s
ω_{R}	=	Angular Velocity at Rear, rad/s
ω_{F}	=	Angular Velocity at Front, rad/s
ω _C	=	Angular Velocity of a Car, rad/s
Т	=	Torque, Nm
F	=	Force, N
F_{N}	=	Normal Force on Tire, N
F _R	=	Frictional Force, N
m	=	Mass, kg
g	=	Gravitational Acceleration, m/s ²
μ_k	=	Coefficient of Friction

Ν	=	Normal Force, N
N_3	=	Normal Force on Outside Rear Tire, N
N_4	=	Normal Force on Inside Rear Tire, N
a	=	Acceleration, m/s ²
t	=	Time, s
М	=	Moment, Nm
2t	=	Rear Wheel Track, m
$h_{\rm C}$	=	Height of Center Gravity, m

xvi

LIST OF APPENDICES

NO.	TITLE	PAGE
А	Formula SAE Winner (1981-2007)	58
В	Gearing Table	62
С	Cornering Traction Force	64
D	Graph of Frictional Force, μN and Torque, T	
	Against Speed	68
E	MATLAB Script	73
E1	Engine Torque	73
E2	Tire Torque	74
F	Sprocket	75
F1	Speed Ratio	75
F2	Motorcycle Chain	76
F3	Sprocket Diameter	76
F4	Sprocket Pitch Diameter	77
G	Yamaha YZF Engine Specification	78
G1	Engine	78
G2	Transmission	79
G3	Performance Values	80
G4	OEM Tires	80

Н	Coefficient of Friction, µ	81
Ι	Drivetrain Design Layout Done by Other	
	University	82
I1	University of Wollongong Racing Team (Australia)	82
I2	University of Saskatchewan Formula SAE (Canada)	82
I3	University of Alberta FSAE (Canada)	83
I4	McGrill Racing Team, McGrill University (Canada)	83
15	USQ Motorsport Team, University of Southern	
	Queensland (Australia)	84
16	WMU Formula Racing, Western Michigan	
	University (USA)	84
J	Relevant Formula SAE Rule and Regulation	85
J1	Formula SAE- Overview and Competition	85
J2	Powertrain	87
J3	Intake Restrictor	88
J4	Fastener	89
J5	Static Events	90
J6	Dynamic Events	91
J7	Possible of Rule Changes	93

CHAPTER 1

INTRODUCTION

1.1 Background

Formula SAE is a student design competition that been organized by the SAE International. This competition was started back in 1978 and was originally called as SAE Mini Indy.

The concept behind this competition is that a frictional manufacturing company has contact a student design team to develop a small Formula-style race car which can be a production item for the non-professional weekend autocross racer. Each student team design will builds and test the prototype of the car based on the rules that purpose to ensure onsite operations and promote clever problem solving.

This competition also promotes careers and excellence in engineering field especially in automotive as it encompasses all aspect of the automotive industry including research, design, manufacturing, testing, developing, marketing, management and finances.

In order to enter the Formula SAE competition, a race car must be developed. There are several vehicle requirements need for race car such as chassis, suspension and powertrain system. This study will focus on the drivetrain development for the car. The drivetrain is one of the components in the powertrain system which explains the mechanism of power transmitted from the engine to the rear wheel. The drivetrain includes a gearbox, a power transmission or transfer system such as drive shaft, differential, axles, CV joints, wheels, tires and braking system. There are many of different form of drivetrain that using different component in several of combinations. Thus, it is necessary to analysis the suitable drivetrain layout that suitable for the race car

1.2 Problem Statement

The previous study on the powertrain system only comes out with the design concept without having detail analysis on the system. Thus, to get the detail analysis for the powertrain system a study has been conducted.

This study is conducted to design analysis the powertrain system of Formula SAE race car and it mainly focusing on the drivetrain system. The drivetrain functioning as transmits power from the engine to the drive wheels and also varies the amount of torque.

The drivetrain design must fulfill the standard regulation that made by SAE for the Formula SAE competition. Thus, an analysis of several type of drivetrain has been conducted to select the appropriate design for the car.

1.3 Objective

a) Develop a design and analysis of the drivetrain system layout for Formula SAE race car that fulfill the standard and regulation rule that made by SAE.

1.4 Scope

There are several of scopes that will be fulfilling in this project such as

- i. To study on powertrain system which is mainly focusing on drivetrain system that used in Formula SAE and also fulfill the standard regulation that made by SAE for the Formula SAE competition.
- ii. Design and analysis of several drivetrain systems before choosing it as a final design layout.

1.5 Benefit of Study

This study is important due to develop a suitable drivetrain layout for the Formula SAE race car. The analysis of the drivetrain system is important to give maximum performance of the race car and reducing the possibilities of the drivetrain components to be failure during the competition. Based on the analysis made, the simples design layout will be choose and the entire drivetrain component will be a readily available in the market to make sure if anything happen to the drivetrain component there is a new replacement for it.

1.6 Overall Summary

In chapter one, this study detailing about the overview of the project which is the objective and the scope of study that might be involved in the project development process are started well as project guideline and goal. In this chapter also has been defined clearly about some of the problem statement that occurred in constructing this project.

In chapter two there are literature studies of the project. In this chapter, the appropriate data and information is gain from all the sources including from the internet website surfing, from journal, textbook, and so on. This chapter provides some knowledge to understand the drivetrain system.

In chapter three is the explanations of the project methodology. This chapter will explain the method that been used to complete the study.

Chapter four is about the analysis that made for the drivetrain development. This chapter includes the calculation and explanation of analysis made such as final gearing, engine performance, tire friction and engine performance during accelerating and cornering.

Chapter five is the summary or conclusion for what have been done in this project. In this chapter also will include the suggestion and further work to improve the project in the future.