DESIGN AND FABRICATION OF ENGINE MOUNTING FOR UTeM FORMULA SYLE RACE CAR

MOHD SABIRIN BIN RAHMAT

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND FABRICATION OF ENGINE MOUNTING FOR UTeM FORMULA STYLE RACE CAR

MOHD SABIRIN BIN RAHMAT

This report is presented in

Partial fulfillment of the requirements for the

Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

University Technical Malaysia Melaka

MAY 2011

C Universiti Teknikal Malaysia Melaka

'I have read this thesis

and from my opinion this thesis

is sufficient in aspects of scope and quality for awarding

Bachelor of Mechanical Engineering (Automotive)'

Signatures	:
Name of Supervisor	: En. Muhd Ridzuan Mansor
Date	:

"I declare this report is on my own work except for summary and quotes that I have mentioned its sources"

Signature	:
Name of Author	: Mohd Sabirin Rahmat
Date	:

ii

For my beloved mum, Mrs. Siti Hawa bt Daud and my caring dad, Mr. Rahmat bin Md Zain

ACKNOWLEDGEMENTS

First I would like to express my grateful to ALLAH s.w.t. as for the blessing given that I can finish my project.

In preparing this paper, I have engaged with many people in helping me completing this project. First, I wish to express my sincere appreciation to my main thesis supervisor Mr Muhd Ridzuan bin Mansor, for encouragement, guidance, advices and motivation. Without his continued support and interest, this thesis would not have been the same as presented here.

The next category people who help me to grow further and influence my project are the colleagues who always help me in order to finish this project. I would like to express my gratitude especially Muhammad Hafizullah bin Ashari, Mohd Zaini bin Jamaludin and Amar Ridzuan bin Abd Hamid my housemate for his help and advices. I appreciate very much to them because of the idea and information given.

Last but not least I acknowledge without endless love and relentless support from my family, I would not have been here. My father, mother, sisters and brother that always support and encourage me to success.

Thank you all.

ABSTRACT

The aim of this project is to produce a new engine mounting UTeM formula style race car. This project also generated according to the existing engine mounting based on Formula Varsity 2010 race car. In this project CATIA V5 was used software to create drawings and engine mounting formation in modeling 3dimensional (3D). In the meantime, the selection of materials was performed using CES 2010 Edupack software Aluminum Alloy 6061 T6 for rear mounting bracket and additional brackets and Aluminum Alloy 6063 T6 front of mounting bracket was selected for the project. Further analysis of the project was carried out with two methods of computation to obtain the load at each point on mounting components and then using CATIA V5 generative structural analysis workbench to analyze the component mounting engine. The CNC milling machines was used to produce the front mounting bracket and additional brackets and used EDM Wire Cut machine was used to produce the rear mounting bracket. Finally, the overall weight of fabricated new engine mounting was found to be 1.334 kg which is lighter compared to weight of previous engine mounting which was 2.395 kg. In conclusion, with a selection of lighter and stronger material this research was able achieve the objective with the accomplishment of the total overall weight of new engine mounting to be reduced by 44 percent compared to the previous engine mounting design.

ABSTRAK

Projek ini adalah untuk menghasilkan satu rekabentuk enjin mounting yang baru untuk kereta lumba Formula Varsity 2010. Projek ini juga dihasilkan sesuai dengan enjin *mounting* yang ada berdasarkan kereta lumba Formula Varsity 2010. Dalam projek ini perisian CATIA V5 digunakan untuk membuat lukisan dan pembentukan enjin mounting pada pemodelan 3-dimensi (3D). Sementara itu, pemilihan bahan dilakukan dengan menggunakan perisian CES 2010 Edupack Aluminium Alloy 6061 T6 untuk pemasangan braket belakang dan braket tambahan dan Aluminium Alloy 6063 T6 bagi braket hadapan dipilih untuk projek tersebut. Analisis dari projek ini dilakukan dengan dua kaedah pengiraan untuk mendapatkan beban pada setiap titik pada bahagian enjin *mounting* dan kemudian menggunakan analisis CATIA V5 struktur generatif meja kerja untuk menganalisis komponen enjin mounting. Mesin CNC milling digunakan untuk menghasilkan braket mounting hadapan dan braket tambahan dan mesin EDM Wire Cut digunakan untuk menghasilkan pemasangan braket belakang. Akhirnya, berat keseluruhan enjin mounting baru adalah 1.334 kg lebih ringan berbanding dengan berat enjin mounting yang sedia ada iaitu 2.395 kg. Kesimpulannya, dengan pilihan bahan yang lebih ringan dan lebih kuat dalam kajian ini mampu mencapai matlamat dengan jumlah berat keseluruhan enjin *mounting* yang baru dapat dikurangkan sebanyak 44 peratus berbanding dengan rekabentuk enjin mounting yang sedia ada.

TABLE OF CONTENT

CHAPTER TITLE

1

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvi
LIST OF ABBREVATIONS	xvii
LIST OF APPENDICES	xviii

INTRODUCTION 1 Introduction of project 1.0 1 1.1 Engine Mounting Layout 1 Problem Statement 1.2 2 1.3 **Objective of Project** 2 Scope of Project 1.4 3

LITERATURE REVIEW2.0Introduction2.1Engine Mounting

2.1	Engine Mounting	5
2.2	The Type of Engine Mount Position	6
	in Automotive Design	
	2.2.1 Front Engine Mounted, Rear	7
	Mounted Drive	
	2.2.2 Rear and Mid Engine	9
	2.2.3 Front Wheel Drive	10
	2.2.3.1 Type of Design	11
2.3	Motorcycle Engine Mounting	14
	System	
2.4	Type of Engine Mounting	15
	2.4.1 Passive Hydraulic Mount	15
	2.4.2 Active or Semi-active	17
	Hydraulic Mount	

3

2

METHODOLOGY

18

3.0	Introduction	18
3.1	Conceptual Design of the	18
	Engine Mounting	
3.2	Modeling of Engine Mounting	20
	3.2.1 The CATIA V5	20
	Software	
	3.2.2 Project Activities	21
	3.2.2.1 Literature Review and	22
	Finding Information	
	3.2.2.2 Design of Engine	22
	Mounting	
	3.2.2.3 Analysis the Problem	23
	3.2.2.4 Conceptual Design	24
	3.2.2.5 Selected Scheme	24
	3.2.2.6 Detailing	24

	3.2.2.7 Working Drawing	25
3.3	Material Selection by using	25
	CES 2010 Edupack	
3.4	Fabrication Process	29
	3.4.1 Laser cutting	29
	3.4.2 Turning/Boring/Parting	30
	3.4.3 Grinding	31
	3.4.4 Milling	32
	3.4.5 Metal Inert Gas (MIG)	33
DESIGN AND	MATERIAL SELECTION OF	34
NEW ENGINE	MOUNTING FOR UTeM	

NEW F FORMULA STYLE RACE CAR

4.0	Introduction	34
4.1	Description of the Formula	34
	Varsity Race Car	
4.2	Concept Design	35
4.3	Design Challenges	36
4.4	Total Design Method	37
4.5	Market Investigation	38
4.6	Product Design Specification	39
	(PDS)	
4.7	Solution Generation	40
4.8	Evaluation and Selection of	43
	Concept	
4.9	Detail Design	46
4.10	Material Selection	47
	4.10.1 Introduction	47
	4.10.2 Aluminum Alloy 6061	48
	Τ6	
	4.10.3 Low Carbon Steel	49
	4.10.4 Butyl Rubber	51
	4.10.5 Natural Rubber	51

	4.10.6 Polyurethane	51
4.11	Conclusion	53

6

7

LOAD A	NALYSIS	54
5.0) Introduction	54
5.	Front Bracket Mounting	54
5.2	2 Rear Bracket Mounting	56
5	3 Additional Bracket Analys	is 58
5.4	4 Bolt Analysis	59
5.:	5 Location of Load Distribut	ion 62
	and Clamp	
5.0	6 Characteristic of Bracket	63
	Mounting	
5.	7 Result for Analysis	64
5.5	8 Conclusion	64
FABRIC	CATION AND COMPONENT	65
ASSEM	BLY	
6.0) Introduction	65
6.	I Fabrication Process	65
6.2	2 Fabrication Flow Chart	66
6	3 Material Purchasing	66
6.4	4 AutoCAD Design and	67
	Dimension	
6.:	5 Fabrication	68
	6.5.1 EDM Wire Cut	68
	6.5.2 CNC Milling Machin	ne 69
6.0	5 Quality Check	70
6.	7 Fitting and Weighting Scal	e 72
6.8	8 Component Assembly Proc	cess 74
RESUL '	Γ AND DISCUSSION	75
	-	

7.1	Percentages of Weight	75
	Reduction	
7.2	Weight Reduction	78
7.3	Problem Encountered	78
	7.3.1 Rear Engine Mounting	78
CONCLUSION	AND RECOMMENDATION	80
8.0	Conclusion	80
8.1	Recommendation	81
REFERENCES		82
APPENDICES		87

LIST OF TABLES

TITLE

TABLE

3.1	Design Requirement for a Lightweight Engine Bracket	27
	Mounting	
3.2	Constraints in term of Mechanical Properties for	28
	Aluminum Alloy 6061 T6 and target value for New	
	Material	
3.3	Objective in term of Density for Aluminum Alloy 6061 T6	28
	and Target Value for New Material	
4.1	Product Design Specification Formula Varsity 2010	39
4.2	Application of Digital Logic Method to Criteria of Bracket	43
	Mounting	
4.3	Weighting Factor for Criteria of Bracket Mounting	44
4.4	Concentrating	45
4.5	Comparison of Mechanical Properties	50
4.6	Comparison of Material Properties Rubber	52
5.1	Metric Bolt Thread	60
5.2	Shown the Load Distribution and Clamp for Analysis by	62
	using CATIA V5	
5.3	Characteristic of Bracket Mounting	63
5.4	Comparison between New Design and Old Design	64
6.1	The Weight of Engine Mounting	74
7.1	Weight of New Engine Mounting Design	76
7.2	Weight of Previous Engine Mounting Design	77

C Universiti Teknikal Malaysia Melaka

PAGE

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	The Vibration of Motion an Engine. the Engine have Six	5
	Direction of Engine Movement for an Engine during Operation	
2.2	The Type of Positioning Engine support Mounting	6
2.3	Front Mounted Engine, Rear Mounted Drive	7
2.4	Rear and Mid Engine	9
2.5	Engine Mounted Longitudinally	11
2.6	Transverse Engine Mounted	12
2.7	The Motorcycle Engine Mounting System	15
2.8	The Passive Hydraulic Mount	16
2.9	The Active Hydraulic Mount	17
2.10	System of Active or Semi active Hydraulic Mount	17
3.1	Current Existing Design of Engine Mounting	19
3.2	Crab Finger as a Subject Matter in this Design	19
3.3	Flow Chart of Methodology	21
3.4	Flow Chart of Design Process	23
3.5	The Four Steps of Materials Selection: Translation, Screening,	26
	Ranking and seeking Supporting Information	
3.6	Young's Modulus, E, Plotted Density, p	27
3.7	Process Schematic	29
3.8	Process Schematic of Turning/Boring/Parting	30
3.9	Process Schematic of Grinding	31

3.10:	Process Schematic of Milling	32
3.11	Process Schematic of MIG	33
4.1	Design of Harley Davidson Engine Mounting	36
4.2:	Design Core	38
4.3:	Concept Design 1	40
4.4	Concept Design 2	41
4.5:	Concept Design 3	42
4.6:	Weighting Factor of Criteria	45
4.7	Exploded 3D Modeling of the Engine Mounting Design	46
5.1	Free body diagram of Front Engine Mounting Point	55
5.2	Von Mises Stress Map. Showing that Maximum Stress is Less	56
	than the Minimum Original Yield Strength of the Aluminum	
	Alloy 50MPa	
5.3	Free Body Diagram of Rear Engine Mounting Point	57
5.4	Von Mises Stress Map Showing that the Rear Bracket	58
	Mounting meet the Static Loading Requirements	
5.5	Von Mises Stress Map Showing that the Additional Bracket	59
	Mounting Meet the Static Loading Requirements	
5.6	Von Mises Stress Map Showing that the Bolt 12mm Diameter	61
	meet the Static Loading Requirements	
6.1	Fabrication Flow Chart	66
6.2	Design and Dimension for Rear Mounting Component	67
6.3	Design and Dimension for Front Mounting Component	68
6.4	Design and Major Dimension for Additional Mounting	68
	Component	
6.5	EDM Wire Cut Flow Process	69
6.6	CNC Milling Machine Flow Process	70
6.7	Checking Dimension for Front Mounting	71
6.8	Checking Dimension for Rear Mounting	71
6.9	Vernier Caliper	71
6.10	Calibration of Scale Weighing	72
6.11	Weighing the Front Bracket Mounting	72
6.12	Weighing the Rear Bracket Mounting	73

6.13	Weighing of Additional Bracket	73
6.14	Rubber Bushing	73
6.15	Position of Engine Mounting on Formula Varsity Style Race	74
	Car 2010	
7.1	Problem a rise when the Drawing content Decimal Point in the	78
	Dimension	
7.2	Machining Process with Jig to hold the Component	79

XV

LIST OF SYMBOLS

N = Newton

- τ =Torsional shear stress (MPa)
- T = Torque (Nm)
- r = radius (m)
- J = Polar moment of inertia (m⁴)
- σ_y = Yield strength (MPa)
- τ_{max} = Maximum shear stress (MPa)
- $\sigma = \text{stress}$

LIST OF ABBREVATIONS

- ARB = Anti Roll Bar
- CAD = Computer Aided Design
- CAE = Computer Aided Engineering
- CES = Cambridge Engineering Selector
- CNC = Computer Numerical Control
- EDM = Electrical Discharge Machining
- MIG = Metal Inert Gas
- PDS = Product Design Specifications
- SAE = Society of Automotive Engineers

LIST OF APPENDICES

NO

TITLE

PAGE

А	Regulation of UTeM Formula Varsity	87
В	Gantt chart	92
С	Design Dimension of the Rear Engine Mounting	94
D	Design Dimension of the Front Engine Mounting	95
Е	Design Dimension of the Additional Bracket Engine Mounting	96
F	Assembly Design of Engine Mounting	97
G	Exploded of the Engine Mounting	98

CHAPTER 1

INTRODUCTION

1.0 Introduction of Project

Formula Varsity race event is a student competition based on product they designed and fabricated of the race car. This concept of event also came from SAE championship held in UK, America and Canada but in Malaysia but in Malaysia events have different rules in terms of total capacity engines are using.

This project involve with two elements from the beginning of the project to the end. So that, one of two types of mounting brackets for Formula Student should be selected to ensure they are adequate for holding the engine. The two types of bracket mounting are stress member and non stress member. So, the design and fabrication that will be made through this project will open a new potential to experience the new type of material for engine bracket mounting of Formula Varsity race car which using aluminum alloy 6061 T6 instead of using mild metal.

1.1 Engine Mounting Layout

There are two major characteristics of a drivetrain that impact the performance of a car. First is the engine placement and second is the driving wheels location. The engine placement is a big factor to determine the moment of inertia and the weight distribution of car because many other mechanical and electrical components of a car are usually located closed to the engine. Engines are placed in one of four locations on vehicles. The locations are rear mounted, mid engine, linear mount, and transverse mount.

1.2 Problem Statement

The problem statement of this project is come out by researching the most common problem of designing and fabrication of the engine mounting. The problems are stated as below:

- a) The available engine mounting for formula style race car is not properly design for upper and front rear mounting in term of the dimension (inaccurate and difficult to assemble work).
- b) The rubber pad selected on previous design at the platform structure of the rear mounting cannot absorb the engine vibration.
- c) The overall weight of engine mounting is too heavy in term of the number of component and the material used.
- d) The vibration from the engine was directly impact the chassis because the bush and rubber of the mounting engine is not properly designed and installed.

1.3 Objective of Project

The objective of this project is to design and fabricate a new engine mounting for UTeM formula style race car.

1.4 Scope of Project

There are four scopes in this project in order to achieve the project objective.

- a) To produce detail and 3D design of the engine mounting using CAD software based on 2010 UTeM Formula style race car.
- b) To perform material selection and load analysis on the component.
- c) To fabricate the engine mounting component.
- d) To measure the overall weight of the engine mounting.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

The Formula Varsity is a student competition in Malaysia. The competition a such as like Formula SAE give impression for engineering student to gain experience in the design, manufacture and test of the vehicle. The concept of this event also came from SAE competition held in United Kingdom, America and Canada. The objectives of such event are to expose student to practical work, to give students to apply theories into practical and to develop new talent of students in automotive industry (Faieza et al., 2009).

In this research, the engine mounting have been design to obtain the best of reduce weight the component between the current design based on the Formula Varsity 2010. Engine mounting is used to mount the engine to the chassis for UTeM formula style race car. The engine must be mounted at the rear section of the car which follow the rules and regulation of the Formula Varsity 2010 technical specification. Any kind of materials considered exotic such as titanium or carbon fiber, are strictly prohibited from the car design include engine mounting (Rules for Formula Varsity UTeM, 2010).