LAYOUT DESIGN OF FOLDED CASCODE OPERATIONAL AMPLIFIER (OP-AMP)

NUR HIDAYAH BINTI MANSOR

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering electronic (Computer)

Faculty of Electronic Engineering and Computer Engineering Universiti Teknikal Malaysia Melaka

MAY 2011

C Universiti Teknikal Malaysia Melaka

UNIVERS FAKULTI KEJURUT BORA	STI TEKNIKAL MALAYSIA MELAKA eraan elektronik dan kejuruteraan komputer ang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : LAYOUT I OPERATIC	DESIGN OF FOLDED FOLDED CASCADE DNAL AMPLIFIER (OP-AMP)
Sesi : 2010/2011 Pengajian	
Saya <u>NUR HIDAYAH BINTI MA</u>	NSOR
	(HURUF BESAR)
mengaku membenarkan Laporan Proje syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Univer	ek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- rsiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan memb	uat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan memb	uat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	
4. Sila tandakan (√):	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Auk.	autre
(TANDATANGAN PENULIS	5) (COP DAN TANDA TANGAN PENYELIA)
Alamat Tetap: <u>kg.batu 8 mukim siong 0910</u> Kedah Darul Aman	ZUL ATFYI FAUZAN BIN MOHAMMED NAPIAH
Tarikh: 3 MAY 2011	Faculty of Electronic and Computer Engineering, University Text Rest Rest Adversaria Sector

*CATATAN : fika laporan ini SULIT atau TERHAD, sila lampirkan surat dififi uh futuri surat dififi uh futuri surat dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

i.

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Electronic Engineering (Computer Engineering)"

- -----Signature Name of Supervisor : En. Zul Atfyi Fauzan bin Mohammed Napiah . 3 MAY 2011 Date

I declare that this thesis entitled "Layout Design Of Folded Cascade Operational Amplifier (Op-Amp)" is the result of my own research except as cited in thereferences. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

 Singnature :
 Owner

 Name of candidate:
 Nur Hidayah Binti Mansor

 Date:
 3 MAY 2011

Specially dedicated to my beloved mother and father and my family

ACKNOWLEDGEMENTS

Firstly I am grateful to the Almighty, the bounty I can also prepare properly. Without the blessings of ILLAHI maybe this report cannot do. Say Alhamdullilah because given the welfare and good health throughout the complete report.

Second, I would like to express utmost gratitude to the project supervisor, En. Zul Atfyi Fauzan Bin Mohammed Napiah for his guidance and supervision for the project. The motivations and advices that he gave has helped her to overcome the complexities and the challenges that were posed by the project. His comments on the project throughout the whole progress of final year project have also helped the author to set clear and right path to achieve the goal set.

Next, I would like to extent the appreciation for the support offered byparents and family in inspiring her to pursue in this study. The support and encouragement showered has made her more motivated while facing the problems ithe project. Therefore, the author hopes the completion of the study will bring honour and contribution to the family.

Lastly, the author expresses appreciation to all her fellow friends for sharing knowledge together to complete the project. Indeed, the experience has motivated her to carry out the project patiently and cautiously. Thank you very much.

ABSTRACT

Complementary metal-oxide-semiconductor (CMOS) is a technology for constructing **CMOS** integrated circuit. technology is used in microprocessors, microcontrollers, static RAM, and other digital logic circuits. CMOS technology is also used for several analog circuits such as image sensors, data converters, and highly integrated transceivers for many types of communication. Metal-oxide- semiconductor -field -effect -transistor is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the other two contacts called source and drain. The popularity of a folded cascade mostly comes from the flexible input common mode level and the availability of shorting the input and output together even though it consumes higher power and requires more complicated design. Regarding to project applications, the noise coming from the input signals will affect both signal paths. The noise that affects both input paths are identical and will be rejected by this differential characteristic. In this project, will SILVACO EDA tool will be used to design the layout and schematic of folded cascade operational amplifier (Op-Amp). Both of them must be equivalent in the validation step before proceed to fabrication process.

ABSTRAK

Complementary metal-oxide-semiconductor (CMOS) adalah teknologi untuk membina litar bersepadu. Teknologi CMOS digunakan dalam mikropemproses, microcontroller, RAM statik dan litar logik digital. Teknologi CMOS digunakan untuk beberapa litar analog seperti sensor imej, penterjemahan data, dan integrasi transceiver tinggi untuk pelbagai jenis komunikasi. Metal – Oxide – semiconductorfield- effect -transistor merupakan peranti yang digunakan untuk menguatkan atau pensuisan isyarat elektronik. Di dalam MOSFET, voltan pada elektrod get berpenebat oksida boleh menyebabkan saluran terbentuk antara kedua-dua penyambung yang di kenali sebagai punca dan saliran. Sebahagian besar Populariti "folded cascade" berasal dari tingkat mod masukan bersama yang fleksibel dan ketersediaan penyambungan masukan dan keluaran bersama-sama walaupun ia mengambil kuasa yang lebih tinggi dan memerlukan rekabentuk yang lebih rumit. Merujuk kepada aplikasi projek ini, hingar yang berpunca daripada isyarat masukan akan memberi kesan kepada kedua-dua laluan isyarat. Hingar yang memberi kesan kepada kedua-dua laluan masukan tersebut akan dikenalpasti dan dibuang oleh perincian perbezaan. Dalam projek ini perisian SILVACO EDA akan digunkan untuk merekabentuk layout dan skematik untuk folded cascade operational amplifier. Kedua-duanya perlu setara semasa langkah penyetaraan sebelum ia boleh difabrikasi.

TABLE OF CONTENT

CHAPTER TITLE

I

Π

PAGE

PRO	JECT TITLE	i
DEC	LARATION	iii
DED	DICATION	iv
ACK	NOWLEDGEMENT	v
ABS	TRACT	Vi
ABS	TARK	vii
TAB	BLE OF CONTENT	viii
LIST	T OF FIGURE	xi
LIST	TABLE	xiii
LIST	OF ABBREVIATION	xiv
LIST	COF APPENDIX	xv
DIT		
INT	RODUCTION	
1.0	Background	1
1.1	Problem Statement	2
1.2	Objective	3
1.3	Scope	3
1.4	Project Outline	3
LITE	ERATURE REVIEW	
2.0	Transistor	5
2.0	Types Terminal of MOSFET	6
2.1	2 2 1 4 Terminal of MOSFET	6
	2.2.2.3 Terminal of MOSFET	8
2.3	The Operation of MOSFET	8
2.4	Operational Amplifier	10
	2.4.1 Types of Operational Amplifier	11
	2.4.2 Common Mode Range Op-Amp	13
	2.4.2.1 Input Common Mode Range	14
	2.4.2.2 Output Common Mode Range	15
	2.4.3 Folded Cascade Op-Amp Compensated	16
	2.4.4 High Gain Composite Cascade OpAmp	16

	2.4.5	Folded Cascade Connection	17
	2.4.6	Bulk Driven Device	19
	2.4.7	Slew Rate	21
	2.4.8	Current Mirror Sink/Source	22
2.5	Cmos		24
	2.5.1	CMOS Inverter	26
	2.5.2	Voltage Transfer Characteristic	29
	2.5.3	Steady State Degadetion	30
	2.5.4	Transient Behavior	31
2.6	Silvaco	o Eda Tools	32
	2.6.1	Introduction of EDA	32
	2.6.2	Types of EDA Tools	33
		2.6.2.1 Gateway	33
		2.6.2.2 Expert	34
		2.6.2.3 Smart Spice	34

III METHODOLOGY

3.0	State Of Methodology	35
3.1	Methodology Flow Chart	37
3.2	Design Flow Schematic and Layout Folded	38
	Cascade Op-Amp	
	3.2.1 Standard Physical Design Rule	38
	3.2.2 Design Information	39
3.3	Starting Gateway	40
3.4	Starting Expert	46

IV RESULT AND DISCUSSION

4.0	Introd	uction	52
4.1	Layou	t of Single Transistor	53
	4.1.1	Layer Information	53
	4.1.2	The NMOS Structure	54
	4.1.3	The PMOS Structure	54
4.2	Transi	stor Design Plan	55
	4.2.1	The Transistor Sizing	55
	4.2.2	Stage NMOS (M1 and M2)	56
	4.2.3	Stage PMOS (M14, M4, M5, M6, M7,	58
		And M13)	
	4.2.4	Stage NMOS (M8, M9, M10 and M11)	60
	4.2.5	Stage NMOS (M12)	61
	4.2.6	Stage NMOS (M3)	64
	4.2.7	Combination of All Layout	66
4.3	Discus	ssion	68

V CONCLUSION AND SUGGESTIONS

5.1 Conclusion5.2 Suggestion	70 71
REFERENCES	72
APPENDIX A	73
APPENDIX B	74
APPENDIX C	75

X

LIST OF FIGURE

NO TITLE

PAGE

2.1	The symbols of PMOS and NMOS	5
2.2	Bulk of PMOS and NMOS	6
2.3	The Basic Of MOSFET Schematic	7
2.4	The 4 Terminal N-P Junctions	7
2.5	The 3-Terminal MOSFETS.	8
2.6	MOSFET N Channel Operation	9
2.7	MOSFET P Channel Operation.	10
2.8	Basic of Operational Amplifier (Op-Amp)	10
2.9	The Inverting Amplifier	11
2.10	Non-Inverting Amplifier	13
2.11	Open Loop Op-Amp for Defining the Input Cmvr	13
2.12	A Graphical Display of Op-Amp Input Common Mode Range	14
2.13	Op-Amp Input and Output Common Mode Range	15
2.14	Composite Cascade Op-Amp	17
2.15	Simple Folded Cascade Circuit	18
2.16	Folded Cascade Op-Amp Structure	18
2.17	Bulk Driven Op-Amp	20
2.18	Slew Rate Effect On A Square Wave	21
2.19	Simple Current Sink	22
2.20	Method for Increasing Performance Of Current Source Sink	23
2.21	Adding an Active Load To Increase The Rout Of The Current	24
	Source /sink to improve performance	
2.22	The schematic of a CMOS inverter	26
2.23	Schematic of A CMOS Inverter as A Processed On A P-Type	27
	Silicon Substrates	
2.24	Schematic of A CMOS Inverter Circuit	28
2.25	Output Characteristic of Both Transistors	29
2.26	Voltage Transfer Characteristic of the CMOS Inverter Without	30
	Degradation	
2.27	Degrading Voltage Transfer Characteristic Due to NBTI	31
2.28	Transient Switching On/Off Behavior of the CMOS Inverter	31
2.29	Gateway Design Flow	33
3.1	Overall Progress of the Final Year Project	37
3.2	Outdistance	39
3.3	Indistance	39
3.4	Starting To Open Gateway Workspace	40
3.5	Gateway Workspace Setup	41
3.6	Schematic Entry Setup	41

3.7	Example To Entered Symbol At Schematic Space	42
3.8	Draw The Connection To Node	42
3.9	Setting of Parameter	43
3.10	Example Check for the Error.	44
3.11	Generate The Schematic	45
3.12	Workspace and GUI Familiarization	46
3.13	Example to Create Object PMOS	47
3.14	Stage Transistor In Schematic	47
3.15	The Layout for Each Stage	48
3.16	Layout with Metal 1 Connection	49
3.17	Layout with Metal 2 Connections	49
3.18	Show via 1 as Connection on Source at PMOS	50
3.19	Show via 1 as Connection on Source at NMOS	50
3.20	Final Connection between PMOS and NMOS with V _{dd} and	51
	Ground	
4.1	Circuit of Folded Cascade Op-Amp.	53
4.2	Layer of Transistor	53
4.3	The Layout of NMOS	54
4.4	The Layout of PMOS	55
4.5	Schematic of Same Ratio Transistor (NMOS)	56
4.6	Step to Design Layout NMOS	57
4.7	Final Layout of NMOS (M1 and M2)	57
4.8	The Schematic Same Ratio of PMOS	58
4. 9	Single Step To Design Layout PMOS	59
4.10	Final layout for same ratio transistor (M14, M4, M5, M6, M7	59
A 11	and M 15.) Schematic Four NDAOS with Some Datic	60
4.11	Single Step To Layout NMOS (Mg, M0, M10, M11)	60 61
4.12	Final Layout For M_{2} MQ M10 M11)	61 61
4.13	Schematic For NMOS (M12)	62
4.14	Single Step to Get the Layout of NMOS (M12)	62
4.15	Final Layout for NMOS (M12)	60
4.10	Schematic for NMOS (M3)	64
7.17 A 18	Single Step Of NMOS (M3)	65
4.10	L avout of NMOS for M3	65
4.19	Final Stage I avoit with Connection for First Design	20
4.20	Final Stage Layout with Connection for Second Design	67
2 22	DRC sorints	60
2.22	Dire suips.	00

LIST OF TABLE

NO	TITLE	PAGE
3.1	Design Rule	38
4.1	Show The Transistor Sizing	55

LIST OF ABBREVIATIONS

FC	-	Folded Cascode
MOSFET	-	metal -Oxide semiconductor field-effect transistor
NMOS	-	n channel MOSFET
PMOS	-	p channel MOSFET
EDA	-	electronic design automation
CMOS	-	Complementary metaloxide-semiconductor
Op- Amp	-	operational amplifier
CMVR	-	common mode voltage range
CMR	-	common mode range
S EDA	-	SILVACO EDA

LIST OF APPENDICES

NO	TITLE	PAGE
A	Fully Schematic of Folded Cascade	73
В	Short Circuit of Folded Cascade	74
С	Circuit of Measurement Folded Cascade Op-Amp	75
D	Netlist for Circuit and Layout	76

CHAPTER I

INTRODUCTION

1.0 Background

This project more focus to design the schematic and layout of folded cascade operational amplifier (op - amp). Then simulation of the layout design was examined and compare with the simulation obtain in schematic level design. For this project used the metal – oxide semiconductor field – effect transistor (MOSFET) is used. The fundamental knowledge of MOSFET will be explain to give basic knowledge about MOSFET. MOSFET is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-type or p-type and is accordingly called an nMOSFET or a pMOSFET (also commonly NMOS or PMOS) [1].

The op - amps can achieve higher speed and wider swing with special designs, like a folded-cascade op-amp and a current mirror op-amp. They usually called Operational transconductance Amplifier because of the importance of their transconductance value. Instead of using a Miller compensation capacitor as in two-stage op - amp design, OTAs use the load capacitor to achieve compensation. The basic idea of the folded-cascade op-amp is to apply cascade op - amp transistors to the input differential pair but using transistors opposite on type from these used in the input stage. The arrangement of opposite-type transistors allows the output of this

C Universiti Teknikal Malaysia Melaka

single gain – stage amplifier to be taken at the same bias-voltage levels as the input signals [1].

The folded cascade op-amp can cascade an output stage to get extremely high gain with lower output resistance. The folded cascade op - amp is useful for moderately low supply voltages, at the cost of some extra current, but has limited performance in sub 1 V applications, as well as a limited Vcm (in). The gain of a folded cascade op amp is normally lower than that of a corresponding conventional cascade op amp due to the lower impedance of the devices in parallel. A folded cascade op amp has a pole at the folding connection which is lower compared to that node pole of the conventional cascade op - amp. This is due to the larger parasitic capacitance of extra and possibly wider devices in the folded structure. t the output voltage swing of a folded cascade op amp is only in significantly higher than that of a conventional cascade topology. The popularity of a folded cascade mostly comes from the flexible input common mode level and the availability of shorting the input and output together even though it consumes higher power and requires more complicated design. Regarding our project applications, the noise coming from the input signals will affect both signal paths. The noise that affects both input paths is identical, and will be rejected by this differential characteristic. In other words, the noise will have no effects on the differential signals since both sides of the signals see the same noise. The design, simulation, and testing were performed on the Computer Aided Design Software, SILVACO EDA tools [2].

1.2 Problem Statement

Many method or software that will be used to integrated circuit design. The software that can be use in this project is Cadence Virtuoso, SILVACO EDA tool and so on. In other word, when design the integrated circuit (IC), actually it will be a problem to the signal. The problem that will occur in the signal is a noise. When signal have a noise or distortion, the result of the signal is in not goods condition. Therefore, it needs some solution to avoid or reduce the noise.

2

1.3 Objective

Upon completion of this thesis, using the silvaco eda tool software, we should able to:-

- (i) To understand the use of SILVACO EDA tools.
- To be familiar with Silvaco Gateway, Expert, and Smart Spice Layout Processor
- (iii) To analyze CMOS transistor characteristics
- (iv) To design the schematic and layout of folded cascade operational amplifier.
- (v) To validate the layout with schematic of folded cascade operational amplifier.

1.4 Scope

In this project, will used the SILVACO EDA tool software. The electronic design automation (EDA) is a category of software tools for designing electronic systems such as printed circuit boards and integrated circuits. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. The SILVACO EDA tool divides three paths, Smart Spice, expert and gateway.

1.5 Project Outline

1.5.1 Chapter I

For this thesis in chapter I we discuss about introduction of project. We include of background project, problem stamen of project, objective from this project and scope of project.

Conduct the literature review studies about fabrication and characteristic of MOSFET and overview CMOS in final year project seminar 1. Continue the literature studies at final year project II, about characteristic of Operational Amplifier (op - amp) and basic of folded cascade characteristic and operation.

1.5.3 Chapter III

Discuss the methodology of project. Draw the flow chart to make work a more systematic. And this chapter also explains how to use a gateway and expert in SILVACO EDA tools to draw schematic and build the layout folded cascade op amp.

1.5.4 Chapter IV

For this chapter, entry the result of layout and schematic and discuss about the result.

1.5.5 Chapter V

Write the conclusion of project and make a recommendation of project in future work.

CHAPTER II

LITERATURE REVIEW

2.0 Transistors

The most popular technology for realizing microcircuits makes use of Metal Oxide Semiconductor Field Effect Transistor (MOSFET). CMOS circuits use two complementary types of transistors, n-channel and p-channel. N-channel devices conduct with a positive gate voltage while p-channel devices conduct with a negative gate voltage. More over, electrons are used to conduct current in n-channel transistors, while holes are used in p-channel transistors. The symbols of PMOS and NMOS in SILVACO EDA are represented as below.

Figure 2.1: The symbols of PMOS and NMOS [3]

C Universiti Teknikal Malaysia Melaka

The bulks of the PMOS and the NMOS are usually connected to power and ground respectively. If the bulk terminal is omitted from the schematic symbol, the connections can be assumed to be what is shown in the following diagram [3].

Figure 2.2: Bulk of PMOS and NMOS [3]

2.2 Types Terminal of Mosfet

2.2.1 4 - Terminal of MOSFET

MOSFET are 4 - terminal devices with a gate that controls the conduction of the drain to source channel. The body (or substrate) of the typical n-channel enhancement mosfet is a p-type material with the drain and source formed from Ntype materials. The oxide layer insulates the metal gate connection from the other layers. There are holes in the oxide layer left for the metallic contacts of the drain and source [4].

Figure 2.3: The Basic Of MOSFET Schematic [4]

A 4 – terminal N - P junctions act as diodes, and because the layers of the mosfet have p-type and n-type materials in close contact, diodes are formed from the body to the drain or source, as shown in the drawing here of the 4 - terminal mosfet. If you were to leave the body connection floating, there could be no voltage flow through the two PN body diodes because they are reverse connected to each other.

Figure 2.4: The 4 Terminal N - P Junctions [4]

2.2.2 3 - Terminal of MOSFET.

However, in the 3 - terminal mosfets that are commonly used in guitar effects pedals, the body and source are connected internally and this shorts out the PN junction of the lower diode and removes it from the circuit. The top body diode can now conduct from drain to source because of the internal connection and therefore has to be taken into consideration during circuit design. This means that every 3 - terminal mosfet has a body diode due the construction of the device. It is not added as a separate component inside the mosfet.

Figure 2.5: The 3-Terminal MOSFET [4]

2.2.3 The Operation of Mosfet

The operation of MOSFET can be devide two operation of MOSFET N channel and MOSFET P channel. Both are describing as a below:

(i) Basic MOSFET N Channel Operation.

- The gate electrode is placed on top of a very thin insulating layer.
- There are a pair of small n-type regions just under the drain & source electron