A NON-DESTRUCTIVE CRACK DETECTION TECHNIQUE USING VIBRATION

MOHD KASMIE BIN ABDUL HALIM

This Report Is Submitted In Partial Fulfillment of Requirement for the Bachelor Degree of Mechanical Engineering (Thermal Fluid)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2009

"I admit to have read this report and it has followed the scope and quality in Partial Fulfillment of Requirement for the Degree of Bachelor of Mechanical Engineering (Thermal Fluid)"

Signature	:	••••••		
First Supervisor Name	: MR.	AHMAD	FUAD	BIN
	ABD	UL GHAN	I	
Date	: APR	IL 2009		

Signature	:	•••••	••••••	
Second Supervisor Name	: MR.	NOR	AZZMI	BIN
	MASI	RIPAN		
Date	: APRI	L 2009		

AGREEMENT

"I agree that this report is my own work except for some summaries and information which I have already stated"

Signature	:
Name	: MOHD KASMIE BIN ABD. HALIM
Date	: APRIL 2009

To beloved mother

Puan Zainab Binti Ismail

My siblings

Other family, male friend and female friend

ACKNOWLEDGEMENT

First and foremost, my greatest gratitude to Allah, for His will, I managed to complete this study. Thanks a lot for giving me this strength and opportunity to complete this study. In this opportunity, I would like to express my heartfelt thanks and sincere appreciation to my supervisor Mr. Ahmad Fuad B. Abdul Ghani for his guidance and help me to find out the information to complete this research (PSM) in the given time.

I would like to dedicate my gratitude to all my lecturers and technicians involved in teaching my course, thanks for the kindness, concern, guidance, constructive critics, support, encouragement and invaluable advice are so precious for me.

Not forget to my beloved family, all my friends, course mate, and anyone that has provided whether an idea or support, directly or indirectly that played a role towards in completing this study. Thank you for everything.

ABSTRAK

Kajian ini dilakukan adalah untuk mengkaji peretakan yang berlaku ke atas bahan dengan menggunakan teknik getaran. Objektif utama kajian ini adalah untuk mengkaji kesan daya tindakan luar yang bertindak ke atas bahan dan tempoh masa daya tindakan luar, kesan komposisi bahan terhadap struktur bahan, dan mengesan peretakan yang berlaku ke atas bahan serta sifat-sifat peretakan. Spesimen yang dipilih adalah jenis tembaga dan keluli lembut. Ujian kekerasan dilakukan untuk menentukan sifat kedua-dua bahan yang dipilih. Teknik mengesan peretakan yang berlaku ke atas permukaan spesimen dilakukan dengan menggunakan teknik ujian tanpa musnah iaitu teknik getaran. Daya tindakan dikenakan ke atas permukaan spesimen untuk mendapatkan data daya hentakan. Kajian ini akan membuat perbandingan dari sudut anjakan impact force dan juga menggunakan FFT analyzer untuk membuat perbandingan frequensi tabii antara spesimen rujukan yang tidak mempunyai sebarang peretakan dengan spesimen yang mempunyai peretakan. Selepas itu, ujian pengesanan peretakan ke atas permukaan spesimen dilakukan secara visual dengan menggunakan kanta pembesar. Kajian ini diteruskan melalui perbandingan dengan ujian ultrasonik. Semua keputusan dicatat dan kajian terperinci dilakukan terhadap kedua-dua jenis spesimen.

ABSTRACT

This project is carried out to study about crack detection on the material by using vibration technique. Main objective of this study to find out the effect of impact force to the different material and contact time, identify effect of composition material to the structure, trace the crack location and behavior of crack on the specimen. The specimens that will be used in this study are copper type and mild steel type. Both types of specimens will be test with hardness tester machine to obtain the characteristic material that was chooses. Crack detection technique by using non destruction method namely vibration will be applied to the specimens. Impact force will be applied to the specimen to obtain the impact force data. This study will make comparison between a good specimen as reference and crack specimen in edge of displacement of impact force and FFT analyzer also will be used to make comparison in edge of natural frequency. After that, visual inspection to the specimen will be carrying out by using magnifying glass. This study is follow by comparison with the result from ultrasonic testing. All the results both types of specimens will be discuss in depth.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	AGREEMENT	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRAK	v
	ABSTRACT	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURE	xiv
	LIST OF SYMBOL	xviii
	LIST OF ABBREVIATION	xix
	LIST OF APPENDIX	XX

CHAPTER I	INTRODUCTION	
	1.1 Background of Study	1
	1.2 Problem Statement	2
	1.3 Objective of Study	2
	1.4 Important of Study	3
	1.5 Scope of Study	3
	1.6 Report Summary	4

CHAPTER	TITLE	PAGE
CHAPTER II	LITERATURE REVIEW	
	2.1 Introduction of Crack	6
	2.2 Fatigue	10
	2.2.1 Stress	10
	2.2.1.1 Strain	11
	2.3 Structural Analysis	11
	2.4 Structural Load	12
	2.4.1 Static Load	12
	2.4.2 Dynamic Load	12
	2.4.3 Load Combination	12
	2.5 Non Destruction Test	13
	2.5.1 Visual Inspection	14
	2.5.2 Vibration Inspection	14
	2.5.2.1 Vibration Measurement	17
	2.5.2.2 Phase Measurement	17
	2.5.3 Ultrasonic Testing	18

CHAPTER III METHODOLOGHY

3.1 Introduction	19
3.2 Study Procedure	22
3.2.1 Selection Specimen	22
3.2.2 Hardness Test	23
3.2.2.1 Hardness Test Procedure	25
3.2.3 Experiment Setup	26
3.2.3.1 DEWEsoft 6.2, Impact	26
Force Experiment Setup	
3.2.3.2 DEWEsoft 6.2, FFT	31
Experiment Setup	
3.2.4 Ultrasonic Testing (UT)	34

CHAPTER TITLE

CHAPTER IV	RESULT AND ANALYSIS	
	4.1 Introduction	37
	4.2 Hardness Test	38
	4.2.1 Results	38
	4.2.2 Hardness Test Analysis	40
	4.3 Vibration Inspection	41
	4.3.1 Impact Force Testing	42
	4.3.1.1 Result	43
	4.3.1.2 Impact Force Analysis	51
	4.3.1.3 Time Contact Analysis	52
	4.3.2 Free Falling Body (Crack	54
	Location)	
	4.3.2.1 Results	54
	4.3.3 Fixed-Free Cantilever Beam (FFT)	59
	4.3.3.1 Results	59
	4.4 Visual Inspection	63
	4.5 Ultrasonic Testing	64

CHAPTER V DISCUSSION

5.1 Introduction	68
5.2 Vibration Inspection	69
5.2.1 Specimen Characteristic	69
5.2.2 Crack Analysis	70
5.3 Visual Inspection	72
5.4 Ultrasonic Testing	72
5.5 Potential Causes of Crack	73
5.5.1 Equipment and Material	73
5.5.2 People	74
5.5.3 Methods	75

PAGE

5.5.4 Environment	76
5.6 Effect of Crack	77
5.7 Method to Reduce or Eliminate the Crack	77

CHAPTER VI	CONCLUSION AND SUGGESTION OF	
	IMPROVEMENT	
	6.1 Conclusion	79
	6.2 Suggestion of Improvement	82
	REFERENCE	83
	BIBLIOGRAPHY	85
	APPENDIX A (CALCULATION)	86
	i. Hardness Test Calculation	87
	ii. Vibration Inspection Calculation	89
	APPENDIX B (RESULTS)	96
	i. Selection Specimen	97
	ii. Hardness Test	97
	iii.Vibration Inspection(Impact Force Mild Steel Graph)	98
	iv. Vibration Inspection(Impact Force Mild Copper Graph)	102
	v. Vibration Inspection(Identify Of Crack (Impact Force))	106
	vi. Vibration Inspection(Identify Of Crack (FFT))	109
	vii.Ultrasonic Testing	113

PAGE

PAGE

APPENDIX C (TABLES)	114
i. Hardness Test	115
iii.Ultrasonic Testing	117

APPENDIX D (GANTT CHART)118i. Gantt Chart for PSM I119ii Gantt Chart for PSM II120

LIST OF TABLE

NUMBER	TITLE
--------	-------

PAGE

Table 3.1	Specification hardness tester machine	24
Table 4.1	Material properties	38
Table 4.2	Hardness test for copper plate	38
Table 4.3	Hardness test for mild steel plate	39
Table 4.4	Maximum force acting on the reference mild	12
	steel plate at different level of height	43
Table 4.5	Maximum force acting on the copper plate at	12
	different level of height	43
Table 4.6	Maximum force acting on the crack mild steel	4.4
	plate at different level of height	44
Table 4.7	Time contact, Tc ball bearing with mild steel	17
	plate	4/
Table 4.8	Time contact, Tc ball bearing with copper	17
	plate	47
Table 4.9	Time contact, Tc ball bearing with crack mild	19
	steel plate	40
Table 4.10	Impact force values for reference mild steel	54
	plate at different peaks	54
Table 4.11	Impact force values for crack mild steel plate	54
	at different peaks	54
Table 4.12	Frequency of reference mild steel plate	59
Table 4.13	Frequency, f1 of crack mild steel plate	60
Table 4.14	Frequency, f2 of crack mild steel plate	60

NUMBER TITLE

Table 4.15	Specification of ultrasonic testing used	64
T 11 416	Full skip and half skip value from ultrasonic	66
1 able 4.10	testing graph	00
Table 4.17	Ultrasonic testing graph	67
Table 6.1	Overall result to trace crack on the specimen	80

xiii

LIST OF FIGURE

NUMBER	TITLE	PAGE
FIGURE 2.1	Experiment setup	8
FIGURE 2.2	FRF graph	8
FIGURE 2.3	FRF graph 2	9
FIGURE 2.4	Cause and effect nature of machine vibration	14
FIGURE 2.5	Harmonic vibration of rotor	16
FIGURE 2.6	Phase measurement for vibration	16
FIGURE 3.1	Procedure flow chart	21
FIGURE 3.2	Hardness machine tester	24
FIGURE 3.3	Experiment apparatus setup	26
FIGURE 3.4	Specimen and location impact force	27
FIGURE 3.5	Time waveform of impact force	27
FIGURE 3.6	General setting 1	28
FIGURE 3.7	General setting 2	28
FIGURE 3.8	General setting 3	29
FIGURE 3.9	General setting 4	29
FIGURE 3.10	General setting 5	30
FIGURE 3.11	Experiment apparatus setup	32
FIGURE 3.12	Point to be hit by impact hammer and apparatus	33
	arrange	
FIGURE 3.13	Technique to trace crack location using UT	34
FIGURE 3.14	Specification material to be test using UT	35
FIGURE 3.15	Angle transducer	35
FIGURE 3.16	Plotting card	36

NUMBER TITLE

РА	GF
IA	U L

XV

FIGURE 4.1	Example stress-strain curve	40
FIGURE 4.2	Free falling body experiment setup	42
FIGURE 4.3	Graph 1 maximum impact force against height of	45
	impact force for reference mild steel plate and copper	
FIGURE 4.4	Graph 2 maximum impact force against height of	46
	impact force for reference and crack mild steel plate	
FIGURE 4.5	Graph 1 time contact of impact force against height of	49
	impact force for reference mild steel and copper plate	
FIGURE 4.6	Graph 2 time contact of impact force against height of	50
	impact force for reference and crack mild steel plate	
FIGURE 4.7	Graph impact force against peaks for reference and	55
	crack mild steel plate	
FIGURE 4.8	Graph natural frequency for mild steel plate using FFT	61
	analyzer	
FIGURE 4.9	Visual inspection using magnifying glass	63
FIGURE 4.10	Specimen tested and ultrasonic graph	64
FIGURE 4.11	Full skip graph for ultrasonic testing	65
FIGURE 4.12	Half skip graph for ultrasonic testing	65
FIGURE 4.13	Specimen tested diagram	66
FIGURE B1	Mild steel and copper specimen	97
FIGURE B2	Hardness tester machine	97
FIGURE B3	Impact force ball bearing with mild steel plate at	98
	160mm height	
FIGURE B4	Impact force ball bearing with mild steel plate at	98
	140mm height	
FIGURE B5	Impact force ball bearing with mild steel plate at	99
	120mm height	
FIGURE B6	Impact force ball bearing with mild steel plate at	99
	100mm height	
FIGURE B7	Impact force ball bearing with mild steel plate at	100
	80mm height	

NUMBER	TITLE	PAGE
FIGURE B8	Impact force ball bearing with mild steel plate at	100
	60mm height	
FIGURE B9	Impact force ball bearing with mild steel plate at	101
	40mm height	
FIGURE B10	Impact force ball bearing with copper plate at 160mm	102
	height	
FIGURE B11	Impact force ball bearing with copper plate at 140mm	102
	height	
FIGURE B12	Impact force ball bearing with copper plate at 120mm	103
	height	
FIGURE B13	Impact force ball bearing with copper plate at 100mm	103
	height	
FIGURE B14	Impact force ball bearing with copper plate at 80mm	104
	height	
FIGURE B15	Impact force ball bearing with copper plate at 60mm	104
	height	
FIGURE B16	Impact force ball bearing with copper plate at 40mm	105
	height	
FIGURE B17	Impact force at different peaks for reference plate (1 st	106
	reading)	
FIGURE B18	Impact force at different peaks for reference plate (2 nd	106
	reading)	
FIGURE B19	Impact force at different peaks for reference plate (3 rd	107
	reading)	
FIGURE B20	Impact force at different peaks for crack plate (1 st	107
	reading)	
FIGURE B21	Impact force at different peaks for crack plate (2 nd	108
	reading)	
FIGURE B22	Impact force at different peaks for crack plate (3 rd	108
	reading)	

NUMBER	TITLE	PAGE
FIGURE B23	Frequency of hit hammer at distance 80mm from the	109
	fixed cantilever beam (reference mild steel plate)	
FIGURE B24	Frequency of hit hammer at distance 60mm from the	109
	fixed cantilever beam (reference mild steel plate)	
FIGURE B25	Frequency of hit hammer at distance 40mm from the	110
	fixed cantilever beam (reference mild steel plate)	
FIGURE B26	Frequency of hit hammer at distance 20mm from the	110
	fixed cantilever beam (reference mild steel plate)	
FIGURE B27	Frequency of hit hammer at distance 10mm from the	110
	fixed cantilever beam (reference mild steel plate)	
FIGURE B28	Frequency of hit hammer at distance 80mm from the	111
	fixed cantilever beam (crack mild steel plate)	
FIGURE B29	Frequency of hit hammer at distance 60mm from the	111
	fixed cantilever beam (crack mild steel plate)	
FIGURE B30	Frequency of hit hammer at distance 40mm from the	112
	fixed cantilever beam (crack mild steel plate)	
FIGURE B31	Frequency of hit hammer at distance 20mm from the	112
	fixed cantilever beam (crack mild steel plate)	
FIGURE B32	Frequency of hit hammer at distance 10mm from the	112
	fixed cantilever beam (crack mild steel plate)	
FIGURE B33	Ultrasonic plotting card result	113
FIGURE B34	Measurement of SD value	113

LIST OF SYMBOL

N_{f}	=	Fatigue Life	
Hz	=	Hertz	
σ	=	Average stress, Nominal stress, Poison's Ratio	
F	=	Force, N	
А	=	Area, m ²	
СРМ	=	Cycle per Minute	
RPM	=	Rotation per Minutes	
mV	=	millivolts	
μm	=	micrometer	
μs	=	microsecond	
F _{max}	=	Maximum Force, N	
MPA	=	Megapascal	
L	=	Length, m	
W	=	Width, m	
Т	=	Thickness, m	
N/m	=	Newton per meter	
θ	=	Angle, ^o	
Sa	= Sound path		
SD	= Surface distance		

LIST OF ABBREVIATION

NDT	=	Non Destruction Test
FFT	=	Fourier Fast Transform
ASME	=	American Society of Mechanical Engineer
ASTM	=	American Standard Test Material
SEM	=	Society for Experimental Mechanics
AISI	=	American International Supply Inc
MPI	=	Magnetic Particle Inspection
UT	=	Ultrasonic Testing
PDCA	=	Plan, Do, Check, Action
U.T.S	=	Ultimate Tensile Strength

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Calculations	86
В	Results	96
С	Tables	114
D	Gantt chart	118

CHAPTER I

INTRODUCTION

1.1 Background of Study

All structure or mechanical component that has been invented, have a lifetime and weaknesses. Because of that, this study is aiming to identify the best material and find out solution to increase lifetime of material.

This study is carried out to trace crack as an experimental specimen of nondestruction test (NDT). There are includes identified structure of material and analyzed the factors that maybe give crack effect to the structure material from the impact force data we will be have in the non-destruction test (NDT). The FFT analyzer also will used to identify the natural frequency of the specimens.

Crack is divided to many kinds. There are included surface crack, haggard crack, and others. Actually, crack at the component cannot give the direct effect to our safety but can give big effect when the crack is growing up into the certain size and very difficult to overcome the problem. Consequently of that, we should know to identify the factors that maybe give effect to the crack and try to retain or eliminate the crack to increase the lifetime of material.

First of all, this study will conduct by find out characteristic of specimens used by tested with hardness tester. The next step, this study will analyses the specimen by using vibration. Before trace any crack, vibration method will be used to identify condition of specimen. Comparison between good result of specimen and damage result of specimen will be carried out. The damage specimen will be analyses and detail inspection will be implementing to the specimen. Any result will be note and the best solution for the damage will be found out.

This study will be proof by using ultrasonic testing. This study will compare result by vibration experiment and ultrasonic testing.

1.2 Problem Statement

Crack is a major problem in the engineering field especially in the forging structure. Effect of crack, the structure of material cannot coherent for along time and decrease it lifetime. This occurred maybe from the fatigue and stress in the material and the others factor. However, crack on the structure of material can be overcome to increase the lifetime of the material by making right choose material and we know the suitable matrices of material used without any wasting. By controlling the crack, it will give good effect in the engineering field because it can be increase the lifetime of material, improved performance of material and also give benefit of economizing.

1.3 **Objective of Study**

This study is carried out by experimental analyses and also by theory through the non-destruction test (NDT) from the impact force data, FFT analyzer and ultrasonic testing of the virgin structure to construct and display damage location and it damage behaviors. There are objectives to accomplish in this study:

- i. Identify effect of impact force to the different material and contact time
- ii. Identify effect of composition material to the structure
- iii. To trace the crack location and behavior of crack

1.4 Important of Study

This study has several importances especially in the engineering field. Many people did not know how to solve the problem of structure crack and it is very difficult to identify the crack and its type by the direct sight. Consequence of that, this study will give detail explanation about the crack. There are importances of this study:

- i. Can identify location of crack and identify potential causes of crack
- ii. To reduce or even try to find out the best solution to eliminate the crack and improve lifetime of material
- iii. To control growing of crack and we can analyze machine operation before severely damage occurred

1.5 Scope of Study

- i. Literature study by journal, article, academic books and others related references
- ii. Trace the crack specimen through vibration experiment and ultrasonic testing
- iii. Study on crack cases in the material
- iv. The assembling of the structural mass and stiffness matrices of the plate structure is carried out using Hardness Tester
- v. The plates will be tested in vibration tests using impact force and also FFT analyzer to obtain the natural frequency of specimen