

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION ON THE EFFECT OF MATRIX VARIATION TO THE MECHANICAL PROPERTIES OF METAL-METAL COMPOSITE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours.

by

NORASHSIKIN BINTI MOHD ARSAD

FACULTY OF MANUFACTURING ENGINEERING 2009

UNIV	ERSITI TEKNIKAL MALAYSIA MELAKA
BORA	NG PENGESAHAN STATUS TESIS*
	ON THE EFFECT OF MATRIX VARIATION TO THE PROPERTIES OF METAL-METAL COMPOSITE 2009
Saya NORASHSIKIN BIN	LI MOHD ARSAD
5	sis (PSM/Sarjana/Doktor Falsafah) ini disimpan di knikal Malaysia Melaka (UTeM) dengan syarat-syarat
2. Perpustakaan Universiti untuk tujuan pengajian	n membuat salinan tesis ini sebagai bahan pertukaran
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
√ TIDAK TERHAD	Disahkan oleh:
(FANDATANGAN	PENULIS) (TANDATANGAN PENYELIA)
Alamat Tetap: Peti Surat 60034, 91010 Tawau,	Cop Rasmi: Tuter Fakutti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Kereh 75450 Netaka
Sabah.	
Tarikh:22 May 2009	Tarikh: <u>22 May 2009</u>
disertasi bagi pengajian secara ker ** Jika tesis ini SULIT atau TERHAD dengan menyatakan sekali sebah d	pagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau ja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM) , sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan an tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD. versiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Investigation on the Effect of Matrix Variation to the Mechanical Properties of Metal-metal Composite" is the results of my own research as cited in references.

Arilino

:

:

:

Signature Author's Name Date

Norashsikin Binti Mohd Arsad 22 May 2009

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) with Honours. The member of the supervisory committee is as follow:

(En.Mohamad Haidir Bin Maslan) MOHAMAD HAIDIR BIN MASLAN Tutor Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Keroh

75450 Melaka

ABSTRACT

Metal-metal composite is a new invention method to produce a material which has significant increases in elastic modulus (stiffness), wear resistance, strength and weight savings. In this study, investigation on effect of different matrix (Aluminium 2024 and Stannum) on the properties of the metal-metal composites is studied. In this project, Aluminium 2024 reinforced low carbon steel and Stannum reinforced low carbon steel were fabricated by using pressureless metal infiltration. This is a new method of liquid state to produce metal-metal composites. The best compounding formulation of composite was found at weight percentage (wt %) with 60 wt% of matrixes material (i.e., Aluminium 2024 and Stannum) with 40 wt% of reinforcement (Low Carbon Steel). The mechanical test such tensile test and charpy impact test were conducted under ASTM D3552 and E23 standard to compare the toughness, tensile strength and modulus of elasticity between the two matrixes (Aluminium 2024 and Stannum). The results showed Aluminium 2024 reinforced low carbon steel composite, shows that improvement in term of mechanical properties (i.e., tensile strength and impact strength) compared to Stannum reinforced low carbon steel. The presence of interphase-interface between matrix and reinforcement were observed under Scanning Electron Microscope (SEM) and Fractography analysis was carried out to study the microstructure characteristics related to the fracture surface materials.

ABSTRAK

Komposit logam-logam adalah kaedah penemuan baru untuk menghasilkan sesuatu bahan komposit yang berupaya meningkatkan sifat kekakuan, ketahanan kehausan, kekuatan dan mempunyai berat yang ringan. Dalam kajian ini, penyiasatan terhadap matriks yang berbeza iaitu Aluminum 2024 dan Timah ke atas metal-metal komposit telah dipelajari. Dalam projek ini, penghasilan komposit Aluminium 2024 diperkuat keluli berkarbon rendah dan komposit Timah diperkuat keluli berkarbon rendah telah dihasilkan melalui kaedah baru dalam keadaan cecair iaitu Presureless Infiltration. Formula sebatian terbaik komposit didapati pada peratusan berat (wt %) dengan 60 wt% matriks (Aluminium dan Timah) dan 40 wt% tetulang (keluli berkarbon rendah). Setelah komposit itu terhasil, ujian mekanikal seperti ujian tegangan dan ujian hentaman dilakukan di bawah ASTM D3552 dan piawaian E23 untuk membandingkan keliatan, kekuatan tegangan dan modulus kekenyalan di antara dua matriks yang berbeza iaitu matriks Aluminium 2024 dan matriks Timah. Seperti yang telah dijangkakan, keputusan menunjukkan bahawa Aluminium 2024 diperkuat keluli berkarbon rendah telah meningkatkan sifat-sifat mekanikal (kekuatan tegangan dan kekuatan hentaman) jauh lebih baik berbanding Timah diperkuat keluli berkarbon rendah. Kewujudan antaramuka-antarafasa di antara matriks dan tetulang diperhatikan dengan menggunakan Mikroskop Pengimbas Elektron (SEM) dan analisis fractografi telah dilakukan untuk mengkaji dan mempelajari karakteristik permukaan spesimen yang telah retak.

DEDICATION

For all your advice and encouragement, this thesis is gratefully dedicated to my beloved family (Mr. Mohd Arsad Osman and Mrs. Normah Binti Sulaiman) and friends. Thank you very much for their continuous support and effort towards the publication of this thesis.

ACKNOWLEDGEMENT

Firstly, Syukur Alhamdulillah and all praises of Allah S.W.T which lead me to accomplish this final year project in a course of BMFG 4913 and BMFG 4923 (PSM 1&2).I would like to express my big appreciation and sincere gratitude to my supervisor, Mr. Mohamad Haidir Bin Maslan and to my examiner Dr.Azizah Binti Shaaban for their encouragement, ideas and support and for their irreplaceable unfailing patience, guidance throughout this project research. Their knowledge and experience really inspired and spurred myself.

Last but least, to technician lab members and whom those involve in completing this projects who have been helping together to give idea and any flourishing suggestions, a special thanks for their sincerely and co-operations. Also big thanks for my family as well as friends and all technicians without their wise counsel and dependable assistance this project research would not have been possible. Thank you, very much.

TABLE OF CONTENTS

Abstr	act		i
Abstrak			ii
Dedic	ation		iii
Ackn	owledge	ement	iv
Table	of Cont	ent	V
List o	f Tables		ix
List o	f Figure	s	х
List o	f Abbrev	viations Symbols, Specialized Nomenclature	xiv
1. IN	ГRODU	JCTION	1
1.1	Resear	rch Background	1
1.2	Proble	em Statements	2
1.3	Object	tives	3
1.4	Scope	of study	3
1.5	Research Question		
1.6	Hypotheses 4		
2. LI	ГERAT	URE REVIEW	5
2.1	Comp	osites	5
	2.1.1	Introduction	5
	2.1.2	Composites Properties	6
2.2	Matrix	ζ.	9
	2.2.1	Metal Matrix Composites (MMC)	10
2.3	Metal	Matrix Composites Processing	12
	2.3.1	Liquid state methods	12
		2.3.1.1 Squeeze Casting	12
		2.3.1.2 Melt Stirring	13
		2.3.1.3 Pressureless Metal Infiltration	14
		2.3.1.4 Spray Co-Deposition	15

	2.3.2	Solid State Methods	16
		2.3.2.1 Diffusion Bonding of Foils	16
		2.3.2.2 In – situ Processing	16
		2.3.2.3 Powder Blending and Consolidation	17
	2.3.3	Vapour State Method	18
		2.3.3.1 Chemical Vapor Deposition	18
2.4	Chara	cteristic of Metal Matrix Composites	19
	2.4.1	Previous Research on Metal Matrix Composites	20
	2.4.2	Polymer Matrix Composite (PMC)	22
	2.4.3	Ceramic Matrix Composite (CMC)	23
2.5	Reinfo	preements	24
	2.5.1	Low Carbon Steel (Reinforcement)	26
2.6	Alumi	inium Matrix Composites (AMC)	27
	2.6.1	Introduction to Aluminium Matrix Composites	27
	2.6.2	Aluminium 2024	28
	2.6.3	Previous Research on Aluminium Matrix Composite	30
2.7	Stannu	um (Tin)	31
2.8	Interphase and Interface		31
	2.8.1	Types of Bonding	33
		2.8.1.1 Mechanical Bonding	34
		2.8.1.2 Chemical Bonding	35
3. ME	THOD	OLOGY	37
3.1		uction	37
3.2		ss sequence in this project	38
3.3		odology of parameter consideration	39
	3.3.1	Parameter consideration	39
	3.3.2	Sample Preparation	40
3.4		odology of mould fabrications	41
	3.4.1	Process flow of fabricating mould	42
3.5	Metho	odology of composite fabrications	43

	3.5.1	Procedure of composite fabrications	43
	3.5.2	Process flow of composite fabrications	47
3.6	Specir	nen Fabrications	48
	3.6.1	Flow Chart of the Sample Fabrication Process	49
3.7	Metho	dology mechanical properties testing and analysis	49
	3.7.1	Tensile test	50
	3.7.2	Impact test	52
	3.7.3	Matrix-reinforcement boundary observation analysis	54
4. RES	SULTS		55
4.1	Introd	uction	55
4.2	Tensil	e Test Result	55
	4.2.1	Aluminium 2024 reinforced low carbon steel	56
	4.2.2	Aluminium 2024	57
	4.2.3	Stannum reinforced low carbon steel	58
	4.2.4	Stannum	59
4.3	Charp	y Impact Test Result	61
	4.3.1	Aluminium 2024 reinforced low carbon steel	61
	4.3.2	Aluminium 2024	62
	4.3.3	Stannum reinforced low carbon steel	62
	4.3.4	Stannum	63
4.4	Result	for Scanning Electron Microscopy (SEM)	64
	4.4.1	SEM of Aluminium 2024 reinforced low carbon steel	64
	4.4.2	SEM of Stannum reinforced low carbon steel	65
5. DIS	CUSSI	ON	66
5.1	Introd	uction	66
	5.1.1	Composites enhanced the mechanical properties of the material	66
5.2	Mecha	nnical Properties: Tensile Strength	68
	5.2.1	Data Analysis for Tensile Strength	69
5.3	Mecha	nnical Properties: Impact Strength	71
	5.3.1	Data Analysis for Impact Strength	72
5.4	Fractography Analysis 73		

vii

	5.4.1	Fractography analysis of tensile surface fracture	74
	5.4.2	Fractography analysis of impact surface fracture	76
5.5	Matrix	k-Reinforcement Boundary Observation	77
	5.5.1	Aluminium 2024 reinforced low carbon steel	77
	5.5.2	Stannum reinforced low carbon steel	80
6. CO	NCLUS	SION	82
6.1	Conclusion		
6.2	Recommendation		
REFERENCES 8			85

APPENDICES

А	Gant Chart for PSM 1	90
В	Gant Chart for PSM 2	91
С	Machines	92
D	Part of Composites Mould	93

LIST OF TABLES

2.1	General combinations of matrix and strengthener in MMC	10
2.2	Properties of Matrix Materials	12
2.3	Advantages & disadvantages of MMCs over PMCs	19
2.4	Types of reinforcements materials and its examples	24
2.5	Composition of Aluminium 2024	29
3.1	Overall dimension details for tensile specimen test	51
4.1	Tensile Test Result for Aluminium Reinforced Low Carbon Steel	57
4.2	Tensile Test Result for Aluminium 2024	58
4.3	Tensile Test Result for Stannum Reinforced Low Carbon Steel	59
4.4	Tensile Test Result for Stannum	60
4.5	Impact Test Result for Aluminium Reinforced Low Carbon Steel	61
4.6	Impact Test Result for Aluminium 2024	62
4.7	Impact Test Result for Stannum Reinforced Low Carbon Steel	63
4.8	Impact Test Result for Stannum	63

5.1 Young Modulus and Ultimate Strength of Aluminium and Stannum 70

LIST OF FIGURES

2.1	Formation in composites material	6
2.2	Properties of the composite based on the properties of the component	
	materials	7
2.3	Stress-Strain curves for Composite	8
2.4	Stress-Strain curves for a monolithic metal	8
2.5	Squeeze Casting	13
2.5a	Squeeze Casting: Insert Perform Into Die Cavity	13
2.5b	Added Precise Quantity of Molten Metal	13
2.5c	Close Die and Apply pressure	13
2.5d	Remove Ram	13
2.5e	Extract Component	13
2.6	Melt Stirring Method	14
2.7	Presureless Infiltration Process	15
2.8	Spray Co-deposition Production of SiC Particulate Reinforced Metal	15
2.9	Diffusion Bonding Process	16
2.10	Diagram of Induction Heating Used for Unidirectional Solidification	17
2.11	Chemical Vapor Deposition Unit	18
2.12	Fiber Orientation	25
2.12a	Fibers are in one direction, the composite is called unidirectional	25
2.12b	Fibers oriented in all directions, it has randomly oriented fibers	25
2.12c	Orthogonal or bidirectional fiber	25
2.12d	Layers oriented in different directions	25
2.13	Dependence of properties based on fiber and loading stress	
	orientations	26
2.14	Schematic diagram of the fiber-matrix interphase and some of the factors	
	that contribute to its formation	33
2.15	Interlock of mechanical bonding	35
2.16	Chemical Bonding	35

3.1	Step in processing sequences of producing metal-metal	
	Composites	38
3.2	Parameter (Aluminium 2024 and Stannum) involve in this project	39
3.3	Aluminium Bar	40
3.4	Stannum Rod	40
3.5	Low Carbon Steel in geometry of rod	41
3.6	Composite mould which is consists of bottom and cavity	42
3.7	Process sequence of fabricating mould of composites	42
3.8	Composites mould consists of base mould and cavity	43
3.9	Preparation of mould and raw material	44
3.10	Melting process of matrix material	44
3.11	Pouring molten matrix on top of reinforcement	45
3.12	Sample of Aluminium 2024 reinforced low carbon steel	45
3.13	Removing composites from mould	46
3.14	Surface finishing process by milling machine	46
3.15	Process flow of composite fabrications	47
3.16	Tensile Test Specimen	48
3.17	Charpy Impact Test Specimen	48
3.18	Flowchart of Sample Fabrication Process	49
3.19	The Overall Dimension of Tensile Test Specimen According to the	
	ASTM D3552-Design Type D Straight Sided	50
3.27	Sample is clamped tightly using Universal Tensile Machine	51
3.29	Notched impact's specimen: 45° notch angle & 2.54 mm depth of notch	52
3.30	Charpy Impact Test Specimen according to ASTM E23 Type a Design	53
3.31	Impact Tester Machine	53
3.32	Scanning Electron Microscopy (SEM)	54
3.33	Mounted of specimens on SEM stubs	54
4.1	Stress-strain graph for Aluminium 2024 Reinforced Low Carbon Steel	56
4.2	Stress-strain graph for Aluminium 2024	57
4.3	Stress-strain graph for Stannum Reinforced Low Carbon Steel	59
4.4	Stress-strain graph for Stannum	60
4.5	SEM for Aluminium 2024 Reinforced Low Carbon Steel at	
	· ·	

	150 X magnifications	64
4.6	SEM for Stanum Reinforced Low Carbon Steel at 150 X magnifications	65
5.1	Comparison of tensile strength between composites and monolithic	
	material	67
5.2	Comparison of impact strength between composites and monolithic	
	material	68
5.3	Comparison properties between Aluminium 2024 reinforced low	
	carbon steel and Stannum reinforced low carbon steel	68
5.4	Experimentally results of data properties for Aluminium 2024 and	
	Stannum	70
5.5	Comparison properties between Aluminium 2024 reinforced low	
	carbon steel and Stannum reinforced low carbon steel	71
5.6	Fracture surface of Aluminium 2024 reinforced low carbon steel	74
5.7	Reinforcement pulls out from the matrix (Stannum Reinforced	
	low carbon steel)	75
5.8	Impact fracture for Stannum reinforced low carbon steel	76
5.9	Impact fracture for Aluminium 2024 reinforced low carbon steel	76
5.10	The matrix-fiber interface observation through the Scanning	
	Electron Microscopy (SEM) at 150 X magnifications	77
5.11	Schematic representation of metal substrate surface regions	79
5.12	The matrix-fiber interface observation through the Scanning	
	Electron Microscopy (SEM) at 150 X magnifications	80

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

%	-	Percent
μ	-	Coefficient of friction
⁰ C	-	Degrees Celsius
⁰ F	-	Fahrenheit
150 x	-	150 times magnification
Al	-	Aluminium
Al_2O_3	-	Aluminum Oxide
AMCs	-	Aluminum matrix composites
ASTM	-	American Society for Testing and Materials
CFs	-	Carbon fibers
CMC	-	Ceramic Matrix Composites
Cu	-	Copper
D	-	Diameter
Ε	-	Modulus of Elasticity
eg.	-	Example
et al.	-	Et alia (and others)
etc.	-	Et cetera
GPa	-	Giga Pascal
HDPE	-	High Density Polyethylene
i.e.,	-	That is
J	-	Joule
LDPE	-	Low Density Polyethylene
М	-	Mega
mm	-	milimeter
MMC	-	Metal Matrix Composites
MPa	-	Mega Pascal
Ра	-	Pascal

xiii

PMC	-	Polymer Matrix Composites
S	-	Second
SEM	-	Scanning Electron Microscopy
Sn	-	Stannum
UTM	-	Universal Tensile Machine
V	-	Volume fraction of component
wt%	-	Percent of weight fraction
ZrO_2	-	Zirconium Oxide
σ	-	Tensile Strength
σ_{f}	-	Tensile Strength of the Fiber
σ_y	-	Yield Strength,
$ au_c$	-	Shear yield Strength of the Matrix
τί	-	Interfacial shear strength

CHAPTER 1

INTRODUCTION

1.1 Research Background

A composite is a combination of two or more material that can be arranged to be reinforcement or matrix. The matrix is a percolating "soft" phase with in a general excellent ductility, formability, and thermal conductivity in which are embedded the "hard" reinforcements (high stiffness and low thermal expansion). The combination forms a useful material to increase the properties of materials. The chemical reaction between reinforcement and matrix form an interface and interphase that separating them insoluble in each other.

Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced aluminum material for at least 20 years. Aluminium metal matrix composites are one of several classes of advanced materials which are expected to play a significant role in the development of future aerospace, automotive and military applications.

Reinforcement that had been used in this investigation was a low carbon steel. When combined with an aluminum matrix, the resulting material has significant increases in elastic modulus (stiffness), wear resistance, strength and fatigue resistance.

Pressureless metal infiltration is a process to produce the composite. By using different matrix of Aluminium 2024 and Stannum reinforced with rod low carbon steel, the mechanical properties of different matrix can be compared to study the material properties. Tensile test, charpy impact test and matrix-reinforcement boundary observations was conducted under ASTM standard to obtain the mechanical properties of this composite material. Besides, the study of the surface between matrix and reinforcement were also facilitated to observe the bonding that developed from physical or chemical interactions, interfacial frictional stress and thermal stresses.

1.2 Problem Statements

Nowadays, metal-metal composites has not been paid much attention and used extensively in industry although it has excellent mechanical and thermal properties (Hassan et al., 2008). The attractive physical and mechanical properties that can be obtained with this composites, such as high specific modulus, strength, and thermal stability, high impact strength and have been documented extensively. However, there is no detailed information can be found for this metal-metal composite which is used reinforcement and matrix as backbone for building structure. This project will investigate the effect of different matrix (Aluminium 2024 and Stannum) on the properties of the metal-metal composites it is a research developed to study the mechanical properties of Aluminium 2024 and Stannum. These matrixes (Aluminium 2024 and Stannum) will continuously reinforce with low carbon steel in geometry of rod. This reinforcement is embedded into the different matrix (Aluminium 2024 and Stannum) separately and their mechanical properties are compared and analyzed. It emphasizes the study on mechanical behavior of different effect of matrix which is Aluminium 2024 and Stannum in metal matrix composites. This project also using the pressureless metal infiltration which is a liquid state method to produces this metalmetal composite.

1.3 Objectives

There are few reasons to accomplish this project, which are:

- (a) To investigate the mechanical properties of Aluminium 2024 and Stannum in metalmetal composites.
- (b) To compare the mechanical properties effect of different matrix Aluminium 2024 and Stannum reinforced with low carbon steel.

1.4 Scope of Study

The emphasis of this report is on the establishment of studies on investigation effect of different matrix (Aluminium 2024 and Stannum) on the properties of the metal-metal composites. The comparison between the two different matrixes was investigated in order to acquire the mechanical properties. Besides, pressureless metal infiltration which is a liquid state method is using to produce this metal-metal composite. The mechanical properties was obtained via tensile test and charpy impact test conducted under ASTM standard to determine the toughness, tensile strength, yield strength and modulus of elasticity. The matrix-reinforcement boundary is observed using SEM (Scanning Electron Microscope) to understand and analyze the interphase-interface between reinforcement and matrix and physical properties. Fractography analysis was carried out to study the microstructure characteristics related to the fractured surface materials.

1.5 Research Question

- (a) What is the effect of mechanical properties when using different matrix?
- (b) Which matrix (Aluminium 2024 or Stannum) will increase the mechanical properties of metal-metal composites?
- (c) What will be formed when matrix and reinforcement are insoluble in each other?

1.6 Hypotheses

Different uses of matrix material such as Aluminum 2024 and Stannum with the same reinforcement (low carbon steel) will results a different effect behaviors and mechanical properties of a composite material. It was predicted that Aluminium 2024 matrix composites reinforced with low carbon steel will increase the mechanical properties of the metal-metal composites compared to copper matrix composites because Aluminium 2024 is quite attractive due to its low density, its capability to be strengthened by precipitation, its good corrosion resistance, high thermal and electrical conductivity, and its high damping capacity. In addition, processing Aluminium 2024 is more practical for their isotropic mechanical properties (higher than their unreinforced alloys) and their low costs (cheap processing routes and low prices). The chemical reaction between reinforcement and matrix form an interface and interphase that separating them insoluble in each other.

CHAPTER 2

LITERATURE REVIEW

2.1 Composites

2.1.1 Introduction

The term "composite" broadly refers to a material system that composed of a discrete constituents (the reinforcements) distributed in a continuous phase (the matrix) which derives its distinguishing characteristics from the properties of its constituents, from the geometry and architecture of the constituents, and form the properties of the boundaries (interfaces) between different constituents, as depicted in Figure 2.1. Composite materials are usually classified on the basis of the physical or chemical nature of the matrix phase such as polymer matrix composites (PMC), metal matrix composites (MMC) and ceramic matrix composites (CMC).

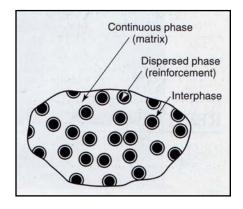


Figure 2.1: Formation in composites material (Helsel and Liu, 2001)

2.1.2 Composites Properties

Composites consist of two major parts in its constituent which is matrix and reinforcement. According to Matthews and Rawlings, (2002), each of materials (i.e. matrix and reinforcement) must exist of more than 5 wt% to be classified as composites material. The purposed of introduced the composites material is to improve the properties that have been performed by monolithic material. Thus, the composite is expected to improve the mechanical characteristics such as stiffness, toughness, ambient and high-temperature resistance (Callister, 2003).

The final properties of a composite with strengthener in fiber form are determined by fiber content, matrix material, fiber material, fiber orientation, and to a smaller extent by the fiber length and distribution in the composite. The reinforcing effects of the fiber in the composite are best explained by the rule of mixtures. In this rule, the properties of the composite depend directly on the volume fractions of each component in the mixture and the respective properties of the fiber and the matrix.

$$\sigma_{c=\sigma_f}V_f+\sigma_m}V_m$$
 and $E_c=E_fV_f+E_m}V_m \longrightarrow$ Rules of Mixtures

Where σ = Strength of the material, V= Volume fraction of component, E=Modulus of elasticity of the material. The subscripts c is for the finished composite, f is for the fiber,