

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A STUDY OF MECHANICAL PROPERTIES IN RELATION WITH MORPHOLOGICAL STRUCTURE OF PP/KENAF FIBER REINFORCED PLASTIC COMPOSITE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Materials Engineering) with Honours.

by

NOOR SYAFIQ BIN SHAARI

FACULTY OF MANUFACTURING ENGINEERING

2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL: A STUDY OF MECHANICAL PROPERTIES IN RELATION WITH

MORPHOLOGICAL STRUCTURE OF PP/KENAF FIBER REINFORCED PLASTICS

COMPOSITE

SESI PENGAJIAN: 2008/2009

Saya <u>NOOR SYAFIQ BIN SHAARI</u> mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

SULIT

Di sahkan oleh:

(TANDATANGAN PENULIS)

Alamat Tetap: No. 5, Lorong Rajawali 3, Taman Berjaya, 14300, Nibong Tebal, Pulau Pinang.

(TANDATANĠAN PENYELIA) JEEFFERIE BIN ABD RAZAK Cop Rasmi: Pensyarah Fekulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Tarikh: 15 Mei 2009

Tarikh: 15 Mei 2009

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "A Study of Mechanical Properties in Relation with Morphological Structure of PP/Kenaf Fiber Reinforced Plastic Composite" is the results of my own research as cited in references.

Signature

Author's Name Date

:

•

NOOR SYAFIQ BIN SHAARI 16 APRIL 2009

.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Material Engineering) with Honours. The member of the supervisory committee is as follow:

(EN.JEEFFERIE BIN ABD RAZAK)

ABSTRACT

This research aims to study and analyze the effects of different fiber loading and coupling agent addition on the mechanical properties and its relationship to the micro structural behavior of the kenaf fiber reinforced polypropylene composites. The main raw materials used in this project are polypropylene (PP) resin as matrix materials and kenaf fiber as reinforcement materials for the composite fabrication. Typically, the observed size of kenaf fibers used in this study is around 513.39µm. The composite panels were fabricated by using an internal mixer and compression molding machine and were then cut into the specific dimension according to the specific ASTM standard of testing. The specimens primarily were tested for the Critical Properties Analysis -Tensile Test. The best compounding formulation of composite was found at the weight percentage (wt%) of 60wt% of PP matrix and 40wt% of the kenaf fibers. Further analyses for various mechanical properties of the composite were done accordingly to all composites formulation. The microstructures of tested specimens fracture surface were observed as to understand the fracture behavior, the fiber distribution and the surface morphology and its significant correlation to the mechanical properties studied. The results showed that the increasing of fiber loading had significantly increased the mechanical properties of the fabricated composite. The introduction of 3wt% of polypropylene-graft-maleic anhydride (MAPP) was done to the best formulated composites which indicate the improvement of the interfacial adhesion between the fiber-matrix interphase through the morphology observed and also improvement in the properties studied especially in water absorption behavior. Through the study, the enhancement of fabricated composite could be applied to the structural engineering applications through the advantage of the mechanical properties performance of tensile, flexural and impact properties.

i

ABSTRAK

Matlamat penulisan kertas kerja ini adalah untuk mengkaji dan menganalisis kesan penambahan gentian dan agen perangkai serta hubungan struktur mikro pada sifat mekanik komposit gentian kenaf yang diperkuatkan dengan polipropilena. Bahan utama yang digunakan di dalam kajian ini adalah resin polipropilena (PP) sebagai bahan matrik dan gentian kenaf sebagai bahan penenulangan komposit. Saiz gentian kenaf yang digunakan dalam kajian ini adalah dalam lingkungan 513.39µm. Kepingan komposit dibentuk dengan menggunakan mesin pencampuran dalaman serta mesin pemampat dan kemudiannya dipotong mengikut spesifikasi tertentu berdasarkan piawaian ujian ASTM. Pada permulaannya, spesimen-spesimen diuji pada Analisa Sifat Kritikal iaitu ujian tegangan. Formula sebatian terbaik komposit didapati pada peratusan berat (wt%) dengan 60wt% matrik PP dan 40wt% gentian kenaf. Analisa lanjutan pelbagai sifat mekanik komposit diteruskan terhadap semua formula sebatian. Struktur mikro pada permukaan spesimen yang telah retak dikaji dalam memahami sifat rekahan, taburan gentian dan morfologi permukaan serta hubungannya terhadap kajian sifat mekanik. Keputusan menunjukkan bahawa dengan peningkatan pertambahan gentian telah meningkatkan sifat-sifat mekanik komposit. Pengenalan polypropylene-graft-maleic anhydride, (MAPP) dilakukan terhadap formula sebatian terbaik komposit yang menunjukkan penambahbaikan terhadap lekatan antara muka di antara matrik-gentian melalui pemerhatian morfologi dan juga peningkatan sifat mekanik komposit terutamanya sifat penyerapan air. Melalui kajian ini juga, penambahbaikan terhadap sifat mekanik komposit diharap dapat diaplikasikan dengan penggunaan di dalam industri melalui kelebihan pencapaian dalam sifat tegangan, sifat lenturan dan sifat hentaman komposit.

DEDICATION

For my beloved family and friends

ACKNOWLEDGEMENT

I would like to convey my thanks to the all person who had contributed in ensuring a successful occurrence throughout the duration of my final year project (PSM I). I also gratefully acknowledge to my ex-supervisor, Mrs. Zurina binti Shamsudin, my supervisor Mr. Jefferie bin Abd Razak and my previous and my current examiners Mr. Edeerozey bin Abd. Manaf and Associated Professor Dr Thangaraj Joseph Sahaya Anand for their encouragement, fully support, by providing me enormous guidance and idea for my research project. Without them all, this project may not valuable. Their knowledge and experience has fully inspired, motivated and drive me to complete my final year project successfully. Also, my special thanks to Mr. Hairulhisham bin Rosnan, for your time and co-operation completing my research project. Subsequently to Mohd Azhar Bin Abu Shah and all technicians involved to complete this project. To all my peers, especially those who are undergoing final year in Degree programs, thanks for your all kindness of delivering ideas and motivation that necessary for me to complete this study. Besides those mentioned, I also would like to express my gratitude with highly appreciation and dedication to my family because without them, I won't be here to complete my study in Universiti Teknikal Malaysia, Melaka.

TABLE OF CONTENTS

Abst	ract		i			
Abst	rak		ii			
Dedication			iii			
Ackı	nowledge	ement	iv			
Tabl	e of Con	tents	V			
List	of Tables	5	ix			
List	of Figure	es	Х			
List	of Abbre	eviations, Symbols, Specialized Nomenclature	xiv			
1. IN	TRODI	UCTION	1			
1.1		ground of study	1			
1.2	Proble	em Statements	3			
1.3	Objec	tives	4			
1.4	Нурот	theses	5			
1.5	Scope of study					
2. LI	ITERAT	URE REVIEW	7			
2.1	Introd	luction	7			
2.2 Composite		7				
	2.2.1	Introduction to Composite	7			
	2.2.2	Polymer Matrix Composite (PMC)	9			
2.3	Matri	x	10			
	2.3.1	Polypropylene (PP) as Matrix Material	11			
2.4	Reinf	orcement	12			
	2.4.1	Natural fiber	13			
		2.4.1.1 Kenaf fiber	15			
2.5	Proce	ssing of composites	18			
2.6	Rules	Rules of Mixture (RoM)19				

	2.6.1	Elastic Modulus	19				
	2.6.2	Density	20				
2.7	Fiber loading						
2.8	Tensil	Tensile and flexural properties 22					
2.9	Impac	et properties	24				
2.10	Water	absorption	25				
2.11	Coupl	ing Agent	27				
2.12	Morpl	hological study	31				
3. ME	ETHOD	OLOGY	33				
3.1	Introd	uction	33				
3.2	Mater	ials	34				
	3.2.1	Polypropylene (PP)	34				
	3.2.2	Kenaf short fiber (core)	36				
	3.2.3	Coupling agents	37				
3.3	Raw r	naterials preparation	38				
	3.3.1	Crushing	38				
	3.3.2	Kenaf fiber drying process	38				
3.4	Chara	cterization of kenaf short fiber	39				
	3.4.1	Density measurement	39				
	3.4.2	Water absorption	40				
	3.4.3	Drying profile study	40				
	3.4.4	Microscopy study	40				
3.5	Sampl	le fabrication	41				
	3.5.1	Compounding of PP/kenaf composite	41				
	3.5.2	Introduction of Coupling Agent	43				
	3.5.3	Hot and cold compression molding	43				
3.6	Mecha	anical testing	44				
	3.6.1	Critical Properties Analysis – Tensile Test	44				
	3.6.2	Flexural Test	45				
	3.6.3	Izod Pendulum Impact Test	46				

	3.6.4 Water Absorption Test	47	
	3.6.5 Thickness Swelling Test	47	
	3.6.6 Morphological study	48	
4. RI	ESULTS	49	
4.1	Introduction	49	
4.2	Characterization	49	
	4.2.1 Fiber size	49	
	4.2.2 Density	50	
	4.2.3 Drying study	51	
4.3	Observation of Sample Preparation Process	52	
4.4	Critical Property Analysis - Tensile Test	53	
	4.4.1 Fracture Surface Morphology of Tensile Specimen	55	
4.5	Flexural Test 59		
	4.5.1 Bending Surface Morphology of Flexural Specimen	61	
4.6	Impact Test	65	
	4.6.1 Fracture Surface Morphology of Impact Specimen	67	
4.7	Water Absorption Testing	70	
4.8	Thickness Swelling Testing		
5. DI	SCUSSION	75	
5.1	Introduction	75	
5.2	Tensile Properties	75	
5.3	Flexural Properties	82	
5.4	Impact Properties	87	
5.5	Water Absorption and Thickness Swelling Behavior	90	
6. C(DNCLUSION AND RECOMMENDATION	92	
6.1	Conclusion	92	
6.2	Recommendation		

REFERENCES

APPENDIX

A	Gantt chart for PSM I	100
В	Gantt chart for PSM II	101
С	Micrograph of Kenaf Fibers size	102
D	Data of Kenaf Fiber Size Analysis	103
E	Sample designation by weight percentage (wt %)	104

LIST OF TABLES

2.1	Comparison of Thermoplastics and Thermosets polymer	12
2.2	Comparison of Properties of Kenaf-Filled PP with typical	
	commercially filled PP composites	13
2.3	Comparison between natural fiber and synthetic fiber	14
2.4	Scientific classification of kenaf plant	16
2.5	Chemical composition in Kenaf fiber	17
2.6	Results on mechanical test on various PP/kenaf composite blends	30
3.1	Physical properties of the polypropylene (PP)	36
3.2	Technical properties of Polypropylene-graft-maleic anhydride (MAPP)	37
4.1	Measurement of kenaf fiber density	51
4.2	Total of weight loss of kenaf short fiber of the drying process	51
4.3	Tensile properties of pure PP and PP/kenaf fiber composite with	
	the absence and presence of MAPP	54
4.4	Flexural properties of pure PP and PP/kenaf fiber composite with	
	the absence and presence of MAPP	60
4.5	Impact properties of pure PP and PP/kenaf fiber composite with	
	the absence and presence of MAPP	66
4.6	Weight deflection and Percentage of weight gain of specimens	
	at the different composition of kenaf fiber addition	71
4.7	Thickness deflection and Percentage of thickness swelling of specimens	
	at the different composition of kenaf fiber addition	73

LIST OF FIGURES

2.1	A classification scheme for the various composites types	8
2.2	Molecular structure of PP	11
2.3	Parts of Kenaf Plant	15
2.4	Configuration of kenaf fiber	17
2.5	Stress-strain curves of the kenaf sheet, the PLLA film and the	
	PLLA/kenaf composite	22
2.6	Relationship between tensile properties and fiber content	23
2.7	Relationship between flexural properties and fiber content	23
2.8	Effect of the amount kenaf versus the notched and un-notched	
	Izod impact strength of PP/kenaf coupled composites with 2% of	
	weight of coupling agent	25
2.9	Water absorption of natural and glass fiber composites (untreated)	26
2.10	Water absorption of natural fiber composites (treated)	26
2.11	Hypothetical reaction of silanol and the fiber	28
2.12	Proposed reaction mechanism for compatibilization	28
2.13	Stress-strain curves of typical kenaf filled coupled composites with 2%	
	of weight of coupling agent	29
2.14	Reaction steps in silane grafting of bio fiber surface	30
2.15A	SEM micrographs of kenaf fiber surface in composites 100µm	
	(at 200x)	31
2.15B	SEM micrographs of kenaf fiber surface in composites 10µm	
	(at 500x)	31
2.16a	SEM micrographs of the tensile fracture surface of PP/kenaf (20%)	
	without MAPP	32
2.16b	SEM micrographs of the tensile fracture surface of PP/kenaf (20%)	
	with MAPP	32
2.17a	SEM micrograph of an untreated kenaf fiber	32
2.17b	SEM micrograph of 3% NaOH treated kenaf fiber	32

x C Universiti Teknikal Malaysia Melaka

3.1	Polypropylene Pellets	34
3.2	Flow chart of methodology	35
3.3	Kenaf fibers	36
3.4	Polypropylene-graft-maleic anhydride (MAPP)	37
3.5	Rotor mill machine	38
3.6	Dried kenaf fiber	39
3.7	Electronic Densimeter MD-300S	39
3.8	Scanning Electron Microscopy SEM EVO 50	41
3.9	Internal mixer HAAKE Rheomix OS	42
3.10	Hot Press machine G0-7014-A30	43
3.11	Universal Testing Machine UTM	44
3.12	Flexural Testing at three-point bending process	45
3.13	Standard test configuration of flexural test	46
3.14	Standard test configuration of Impact Test	46
3.15	Specimens mounted on the SEM stubs	48
4.1	Morphology of the kenaf fibers	50
4.2	Total weight loss of the kenaf short fiber in gram (g) of the drying proces	s 52
4.3	Tensile Strength of the PP/Kenaf/MAPP composite	
	at different composition	54
4.4	Tensile Modulus of the PP/Kenaf/MAPP composite at different	
	composition	55
4.5	The SEM image of the fractured surface of pure PP at the 1000x	
	of magnification	56
4.6	The SEM image of the fractured surface of PP/kenaf composite with	
	10wt% of kenaf addition at the 1000x of magnification	57
4.7	The SEM image of the fractured surface of PP/kenaf composite with	
	20wt% of kenaf addition at the 1000x of magnification	57
4.8	The SEM image of the fractured surface of PP/kenaf composite with	
	30wt% of kenaf addition at the 1000x of magnification	58

4.9	The SEM image of the fractured surface of PP/kenaf composite with	
	40wt% of kenaf addition at the 1000x of magnification	58
4.10	The SEM image of the fractured surface of PP/kenaf composite with	
	40wt% of kenaf addition and 3wt% of MAPP at the 1000x	
	of magnification	59
4.11	Flexural Strength of the PP/Kenaf/MAPP composite at different	
	composition	60
4.12	Flexural Modulus of the PP/Kenaf/MAPP composite at different	
	composition	61
4.13	The SEM image of the bending surface for pure PP at the 3000x	
	of magnification	62
4.14	The SEM image of the bending surface for PP/kenaf composite with	
	10wt% of kenaf fiber addition at the 1000x of magnification	63
4.15	The SEM image of the bending surface for PP/kenaf composite with	
	20wt% of kenaf fiber addition at the 1000x of magnification	63
4.16	The SEM image of the bending surface for PP/kenaf composite with	
	30wt% of kenaf fiber addition at the 1000x of magnification	64
4.17	The SEM image of the bending surface for PP/kenaf composite with	
	40wt% of kenaf fiber addition at the 1000x of magnification	64
4.18	The SEM image of the bending surface for PP/kenaf composite with	
	40wt% of kenaf fiber and 3wt% of MAPP at the 500x of magnification	65
4.19	Impact Strength of the PP/Kenaf/MAPP composite at different	
	composition	66
4.20	The SEM image of the fractured surface for pure PP at the 1000x	
	of magnification	67
4.21	The SEM image of the fractured surface for PP/kenaf composite with	
	10wt% of kenaf fiber addition at the 1000x of magnification	68
4.22	The SEM image of the fractured surface for PP/kenaf composite with	
	20wt% of kenaf fiber addition at the 1000x of magnification	68
4.23	The SEM image of the fractured surface for PP/kenaf composite with	
	30wt% of kenaf fiber addition at the 1000x of magnification	69

4.24	The SEM image of the fractured surface for PP/kenaf composite with	
	40wt% of kenaf fiber addition at the 500x of magnification	69
4.25	The SEM image of the fractured surface for PP/kenaf composite with	
	40wt% of kenaf fiber addition and 3wt% of MAPP at the 350x	
	of magnification	70
4.26	Percentages of weight gain at the ambient temperature after 24 hours	
	immersion for different specimen composition	72
4.27	Percentages of thickness swelling at the ambient temperature after	
	24 hours immersion for different specimen composition	74
F 1	OFM manufally and the DD/W and the formed as more site south	
5.1	SEM morphology of the PP/Kenaf reinforced composite with	70
	the introduction of 3wt% of MAPP	78
5.2	Tensile Properties and Morphological Behavior (1000 X Magnification)	
	of the pure PP and PP/Kenaf composites	79
5.3	Tensile Properties and Morphological Behavior (1000 X Magnification)	
	of the PP/Kenaf/MAPP composites	81
5.4	SEM Fractured Surface for PP/Kenaf reinforced composite with	
	40wt% of kenaf fiber	82
5.5	Flexural Properties and Morphological Behavior (1000 X Magnification)	
	of the pure PP and PP/Kenaf/MAPP composites	85
5.6	Flexural Properties and Morphological Behavior (1000 X Magnification)	
	of the PP/Kenaf/MAPP composites	86
5.7	Impact Strength and Morphological Behavior (1000 X Magnification)	
	of the pure PP and PP/Kenaf/MAPP composites	88
5.8	Impact Strength and Morphological Behavior (1000 X Magnification)	
	of the PP/Kenaf/MAPP composites	89

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

200x	-	200 times magnification
%	-	Percent
⁰ C	-	Degrees Celsius
Р	-	Density
σ/ρ	-	Tensile Strength per unit mass (specific strength)
<i>Ε</i> /ρ	-	Tensile Modulus per unit mass (specific modulus)
-OH	-	Hydroxyl
AMPTES	-	3-aminopropyl-triethoxysilane
APS	-	3-aminopropyl-triethoxysilane
ASTM	-	American Society for Testing and Materials
CCC	-	Carbon-Carbon Composite
CMC	-	Ceramic-Matrix Composite
E_{cL}	-	Longitudinal Young Modulus of Composite
E_{cT}	-	Transverse Young Modulus of Composite
eg.	-	Example
et al.	-	and others
etc.	-	Et cetera
FRP	-	Fiber-reinforced plastics
g/cm ³	-	Gram per Centimeter Cube
GPa	-	Giga Pascal
i.e.,	-	That is
J	-	Joule
Kw	-	Kilowatt
(M)	-	Malaysia
MAPP	-	Maleic-Anhydride Grafted Polypropylene
MAPP	-	Polypropylene-graft-maleic anhydride

min	-	Minutes
mm	-	Milimeter
mm/min	-	Milimeter per minute
μm	-	Micrometer
MMC	-	Metal-Matrix Composite
MPa	-	Mega Pascal
Ν	-	Newton
NF	-	Natural Fiber
N/mm ²	-	Newton millimeter square
NaOH	-	Sodium Hydroxide
OH	-	Hydroxyl
PE	-	Polyethylene
PLLA	-	Poly-L-lactic acid
PMC	-	Polymer Matrix Composite
PP	-	Polypropylene
PP/kenaf	-	Kenaf Fiber Reinforced Polypropylene Composite
PS	-	Polystyrene
RoM	-	Rules of Mixtures
rpm	-	Revolution per minute
SEM	-	Scanning Electron Microscope
UTM	-	Universal Testing Machine
UV	-	ultraviolet
wt%	-	Percent of weight fraction

CHAPTER 1 INTRODUCTION

1.1 Background of Study

Recently, the used of fiber-reinforced plastics (FRP) composite becomes famous in manufacturing industry. The primary advantages of using fiber as filler/reinforcement in plastics are low densities, non abrasive high filling levels possible resulting in high stiffness properties, high specific properties, easily recyclable, the fibers will not fractured when processing over sharp curvatures, biodegradable, low energy consumption and low cost of production (Kahraman *et al.*, 2005). Throughout its performance, FRP composites play a vital role in consumer needs or products that exhibits high level of mechanical properties. The main purpose of using the FRP composites is to improve the mechanical properties of existing polymeric materials. The FRP composite can be defined as a material consists of polymer such as Polypropylene (PP), Polyethylene (PE), Polystyrene (PS) and etc. as matrix and fiber as reinforcement. Each matrix or reinforcement type can be distinct because of its physical or mechanical properties, materials form and chemical composition.

Products in a monolithic material are widely used in a daily life such as bottle, food packaging, vehicles, piping, electronic and etc. These examples of plastics product were specifically produced by using PP, PE, and PS. However, the manipulation of monolithic polymer materials as daily life products are not exhibits the high performances especially in vehicles and electronics application. High impact resistance is necessary for vehicles and high melting temperature is needed for electronic part

1

(Paul *et al.*, 2008). Melting temperature for PP which is 175°C has proved that it is not suitable to be used in electronic and engine vehicles which commonly operated at higher temperature of service (Kalpakjian and Schmid, 2006; Callister, 2003). Therefore, the introduction to the fabrication of composites which utilizes the advantages of fiber reinforcement should capable to improve the performances compare to monolithic polymeric material, especially in highly demanding application like automotives and electronics application.

There are two types of fiber commonly used in composites which are natural fiber and synthetic fiber. Both types of fiber got higher potential to be used as a reinforcement agent in composite materials. For low cost of production and widely availability of fiber, natural fiber had been chosen for this study. Natural fiber had played important roles in enhancing the composites performance. Kenaf, Jute, and Hemp namely as natural fiber were widely used as reinforcement for composites. In addition, the performance of the natural fiber, especially kenaf has proved by researchers previously as the multipurpose used materials because of kenaf plant itself include the stalks (bast and core), leaves and seeds to be produced as useful material in manufacturing industry. Beyond the new uses for kenaf including its utilization in building material, absorbents, household, and vehicles, the commercial success of kenaf has great potential economic and environmental benefits in replacement or reduced use of fiberglass in industrial products and the increased used of recycled plastics (Webber et al., 2002). However, there were also disadvantages of using natural fiber in thermoplastics through its lignocellulosic properties which are the high moisture absorption of the fibers and the low processing temperature permissible during the fabrication process (Sanadi et al., 1995).

In order to increase the performances and properties of fabricated composites, the compatibilizer should be introduced. Various types of chemical reagents have been used in previous study by researchers such as silane, Maleic-Anhydride Grafted Polypropylene (MAPP), alkoxysilane and etc. Besides the using of Silane, Maleated coupling agents are widely used as its main function to enhance the interactions

between the matrix and fiber and to strengthen composites containing fillers and fiber reinforcement (Keener *et al.*, 2004). Therefore, the introduction of MAPP as compatibilizer has been employed through the study in order to improve the mechanical properties of the fabricated composites.

1.2 Problem Statements

It is important and possible to produce a new types of material that exhibit the economically and environmentally benefits for the applications in automotive, building, furniture and packaging industries. By combining the different resources, it is possible to blend, mix or process the natural fiber with other elements such as glass, plastics and synthetics material to produces new classes of materials (Sanadi *et al.*, 1990). Biodegradable or environmentally acceptable materials have attained increasing interest in few decades to the researchers and manufactures due to the environmental pressure derived from the consumption of petroleum-based materials, difficulties in degrade in a landfill and composting environments (Liu *et al.*, 2006; Huda *et al.*, 2007). Thus, the introduction of natural fiber such as kenaf, hemp, ramie and flex has attractively influenced the production of biodegradable materials lately, especially in manufacturing industry (Bledski *et al.*, 2002).

Natural fiber like kenaf can be used as replacement to the conventional fiber. Global environmental issues have led to a renewed interest in bio-based materials like fiber glass or carbon fiber; which the focus on renewable raw materials can be biodegradable or recyclable at reasonable cost (Hong *et al.*, 2007; Zampaloni *et al.*, 2007). The problem faced by the researchers and manufacturers is to find the good natural fiber for polymer composite application equipped with the most promising and outstanding mechanical and physical properties. The uses of natural plant fibers as a reinforcement materials to replace synthetic fibers is receiving great attention, due to the advantages of renewability, low density and high specific strength (Ochi, 2008). These fiber

outstanding properties such as high specific strength in stiffness, impact resistance, flexibility, and modulus make them an attractive alternative over the traditional materials (Sgriccia *et al.*, 2008). Specifically, the good properties of kenaf fiber include good specific strengths and modulus, economical viability, low density and low weight has make them as a reinforcement of choice by industry.

The low processing temperature permissible to the ligno-cellulosic fiber in thermoplastics is limited due to fiber degradation at higher processing temperatures (Sanadi *et al.*, 1995). It is important to ensure that the fabrication are employed in the controlled temperature processing, because the degradation of the kenaf fiber will lead to the failure or poor performance to the properties of the fabricated composite. Therefore, the chosen suitable processing temperature is important consideration accordance to the fabrication of PP/kenaf composites.

1.3 Objectives

The purpose of this study is:

- a) To study the effects of different fibers loading of kenaf (wt %) to the mechanical properties of the fiber reinforced polypropylene composite;
- b) To study the effects of proposed compatibilizer on the fabrication of PP/kenaf fiber and compare its effect to the properties enhancement of the fabricated composites.

1.4 Hypotheses

- i). The different filler loading or proportion of kenaf short fiber used for this study will affect the mechanical properties of the composite. It is expected that, by increasing the proportion of filler loading, mechanical properties of the fabricated composite must be also increased correspondingly in accordance with the rules of mixture theory.
- ii). Introduction of compatibilizer in this study will increased the mechanical properties of the fabricated composites. The good interfacial adhesion formed between the surface interaction of kenaf fiber and PP matrix is expected to improve the properties of composites materials.

1.5 Scope of study

The study was started by preparing and characterizing the kenaf fiber as raw materials to be used as reinforcement material in the fabrication of PP/kenaf composite. The materials used that related in this study are polypropylene (PP) pellets and kenaf short fibers. The kenaf short fibers were prepared by using the rotor mill to get the various size of fiber length. The size and density of the fiber reinforced were determined by using Scanning Electron Microscope (SEM) model EVO 5 and Electronic Densimeter model MD300-S, respectively. However, the kenaf properties are difficult to measure, thus no preliminary study on the kenaf properties was carried out during this research (Sanadi *et al.*, 1995).

Next stage of process involves the drying study of kenaf fiber. Kenaf fibers will be dried in the drying oven for seven hours period of time and the weight losses of fibers were weighed for every hour. The effects of fiber loading for kenaf short fiber on polypropylene composites were investigates by varying the weight percentage (wt%) for both materials. There are five fraction of fiber loading will be employed in this study