A STUDY ON ISOLATION PERFORMANCE OF PIN DIODE WITH DEFECTED GROUND STRUCTURE (DGS) FOR RF SWITCH

CHAN SIEW YIEN

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic Engineering (Wireless Communication) With Honors

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

MAY 2011

i

FAKULTI K	UNIVERSTI TEKNIKAL MALAYSIA MELAKA EJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
	OY ON ISOLATION PERFORMANCE OF PIN DIODE DEFECTED GROUND STRUCTURE (DGS) FOR RF H
Sesi Pengajian : 2010/20	11
syarat kegunaan seperti berikut:	CHAN SIEW YIEN Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- niversiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan me	embuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan me	embuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	
4. Sila tandakan ($$):	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh
TERHAD*	organisasi/badan di mana penyelidikan dijalankan)
TIÐAK TERHAD	
	Disahkan oleh:
CRAA	
	XI I
(TANDATANGAN PE	JULIS) (COP DAN TANDA TANGAN PENYELIA) NOOR AZWAN BIN CHAIRI
Alamat Tetap:	Pensyarah Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Kommuter
NO 6G, JALAN HUA TAI NO 2 96100 SARIKEI SARAWAK.	Universiti Teknikal Malaysia Melaka (UTeM) Karung Berkunci Ne 1752 Pejabat Pos Durian Tunggal 76109 Durian Tunggal, Melaka
Tarikh: 3 May 2011	Tarikh: 3 May 2011

ii

"I hereby declare that this report is the result of my own except for quotes as cited in the references"

Signature CM

Author : CHAN SIEW YIEN

Date : 3 May 2011

iii

"I hereby declare that i have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Wireless Communication) with Honours".

Signature Supervisor Name : EN. NOOR AZWAN BIN SHAIRI

Date

: 3 May 2011

iv

Especially for

My beloved mom and dad

My family

~

My supervisor Mr Noor Azwan bin Shairi

All beloved friends

Thanks for everything ...

ν

ACKNOWLEDGEMENT

First of all, I would like to express my deep and sincere gratitude to my supervisor, Mr. Noor Azwan bin Shairi for the period of two semesters. His wide knowledge and his logical way of thinking have been of great help for me. While preparing for this project, Mr. Noor Azwan had given full attention throughout my project and always advising and gives me guidance and motivational moral support to get my project well prepared before I faced the seminar and presentation. Furthermore, he always helps and guides me in fulfilling and understands the task to be done. Here, I would like to express my gratitude towards the people who have helped me with my work and for their cooperation, support, and encouragement directly or indirectly during completing this project especially my colleagues and PSM laboratory technician. Thanks a ton and may God bless all of you. Thank you very much from the bottom of my heart.

ABSTRACT

This project aims to study the performance of isolation with DGS under PIN Diode for SPST switch design. This project involves with the studies of the background of Defected Ground Structure (DGS), PIN diode and the isolation issue in RF switch. There has been an isolation issue occurs in RF switch. The PIN diode with parasitic capacitance is causing degradation of isolation performance in RF switch and DGS (Defected Ground Structure) has a potential to remove the parasitic capacitance. Nowadays, there has been an increasing interest in studying microstrip lines that prohibit wave propagation in certain frequency bands using defected ground structure (DGS). DGS is implemented by modifying guided wave where it changes the propagation characteristic. DGS is realized by etching only a few areas on the ground plane under the microstrip line. Advanced Design Software (ADS) software will be used for PIN Diode and DGS circuit and layout modeling and then will be fabricated on the FR4 board. Once the prototype has been finish, the measurement parameter will be tested which then measured the isolation performance.

ABSTRAK

Projek ini bertujuan untuk mempelajari persembahan sisihan dengan Defected Ground Stucture(DGS) yang diletakkan di bawah PIN diod dalam reka bentuk suis SPST. Projek ini merangkumi kajian kerja untuk latar belakang Defected Ground Structure (DGS), PIN diod dan isu sisihan dalam suis RF. PIN diod yang mengandungi kapasitan parasitik menyebabkan penurunan dalam persembahan sisihan dalam suis RF dan Defected Ground Structure(DGS) mempunyai keupayaan untuk menyingkirkan kapasitan parasitik ini. Pada masa kini, pembelajaran garis mikrostrip yang menghalang perambatan gelombang dalam lingkaran frekuensi tertentu dengan menggunakan DGS kian meningkat. DGS dilaksanakan dengan mengubahsuai panduan gelombang di mana ia mengubah ciri-ciri perambatan. DGS direalisasikan dengan mengores beberapa tempat yang tertentu di permukaan dasar rata di bawah garis mikrostrip. Advanced Design Software (ADS) akan digunakan untuk membuat simulasi litar dan susun atur PIN diod dan DGS dan kemudiannya akan direalisasikan di atas papan litar bercetak FR4. Akhir sekali, ujian akan dilakukan ke atas prototaip yang telah disiap cetak di atas papan FR4 untuk memperolehi hasil sebelum persembahan penyisihan dianalisa.

CONTENTS

CHAPTER TITLE

PRO	JECT TITLE	i
DEC	LARATION OF PSM II REPORT	ii
DEC	LARATION	iii
SUPI	ERVISOR APPROVAL	iv
DED	ICATION	v
ACK	NOWLEDGEMENT	vi
ABS	TRACT	vii
ABS	TRAK	viii
CON	TENTS	ix
LIST OF TABLES		
LIST OF FIGURES		
LIST OF ABBREVIATIONS		
LIST OF APPENDICES		
INTF	RODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	2
1.3	Project Objective	2
1.4	Project Scope	2

I

PAGE

1.5	The	sis Outline	3
LIT	ERAT	URE REVIEW	4
2.1	PIN	diode	4
	2.1.1	Characteristics of the PIN diode	5
	2.1.2	PIN diode application as a switches	6
2.2	Defec	cted Ground Structure	8
RE	SEARG	CH METHODOLOGY	ļ
3.1	Projec	et Methodology	I
3.2	Advar	nced Design System(ADS)	1
3.3	Schen	natic Design	1
3.4	DGS	Layout Design	1
	3.41	Unit and scale	2
	3.42	Momentum Simulation	2
3.5	Layou	nt Design	3
3.6	Fabric	cation	3
	3.61	Ultra Violet (UV)	3
	3.62	Etching	3
	3.63	Cutting	3
	3.64	Soldering	3
3.7	Proto	type of RF switch after soldering process	3
3.8	Meas	urement	3
	3.81	Electronic Calibration	3

H

Ш

C Universiti Teknikal Malaysia Melaka

IV RESULTS AND DISCUSSION

40

4.1 Schematic Results
40
4.2 DGS Schematic
47
4.3 DGS Simulation Results
48
4.4 Simulation Results for biasing circuit with DGS
54
4.5 Measurement Results
59
4.6 Comparison between simulation and measurement for the sults

V CONCLUSION AND RECOMMENDATION 62

5.1	Conclusion	62
5.2	Recommendation	63

REFERENCES 64

APPENDIX A	66
APPENDIX B	69
APPENDIX C	72

LIST OF TABLES

NO	TITLE			PAGE

3.1	Specifications of the lumped components used for simulation	36
3.2	Specifications of the lumped components used for prototyping	37

C Universiti Teknikal Malaysia Melaka

NO	TITLE	
NU -	LILLE	

PAGE

2.0	PIN Diode and Corresponding Equivalent Circuit	6
2.1	Series SPST Switch	7
2.2	Shunt SPST Switch	8
2.3	Three dimensional view and equivalent circuit	9
2.4	S-Parameter stop-band characteristic	9
3.0	Project flowchart	11
3.1	Advanced Design Software	12
3.2	Flowchart of schematic design	14
3.3	Select the component and Edit component parameter	15
3.4	Enable the component and fill in the min, max, and step size value	16
3.5	Click on the tune button	16
3.6	The component is tuned due to the desired value	17
3.7	Choosing the layout window in the ADS software	18
3.8	Layout window	18
3.9	Quick button setup for ADS	19
3.10	Layers	20
3.11	Layers Editor	20
3.12	Flow chart of Unit & Scale	21

3.13	Layering the layout	22
3.14	Momentum simulation	23
3.15	Flow chart of substrate set up process	24
3.16	Flow chart of port editor setup	25
3.17	Flow chart of Momentum setup	26
3.18	Layout look-like options	27
3.19	Create layout component	28
3.20	Component library	29
3.21	Choosing the project save in the component library to the circuit	29
3.22	Schematic diagram with DGS layout	30
3.23	Biasing circuit	31
3.24	Generate layout by using ADS	32
3.25	Layout of transmission line with Dumbbell-shaped DGS	32
3.26	Ultra Violet room	33
3.27	Ferrite chloride and PCB developer	34
3.28	PCB shear	34
3.29	Soldering Tools	35
3.30	Convert layout in CorelDraw	36
3.31	Top view (Transmission Line)	37
3.32	Bottom View (Defected Ground Structure)	37
3.33	Network Analyzer	38
3.34	Electronic calibrator	39
4.0	Schematic diagram of DGS under PIN diode	41
4.1	Tuning inductor with DC block deactivated	41
4.2	Schematic diagram of inductor L with capacitor C activated	42
4.3	Tuning inductor L with fixed capacitor C activated	42
4.4	Tuning inductor L with fixed capacitor C deactivated	43
4.5	Tuning capacitor C with fixed inductor L	43
4.6	Schematic diagram of series inductor with capacitor	44

4.8	Schematic diagram of series inductor L with DC block activated	45
4.9	Tuning series inductor L with DC block activated	45
4.10	Schematic for DGS standalone	47
4.11	Dumbbell shaped DGS-8mm	48
4.12	Simulation results	48
4.13	Dumbbell shaped DGS-12mm	49
4.14	Simulation results	49
4.15	Dumbbell shaped DGS-14mm	50
4.16	Simulation results	50
4.17	Schematic diagram with dumbbell shaped DGS	52
4.18	Biasing circuit with DGS	53
4.19	Simulation results	54
4.20	Simulation results	54
4.21	Simulation results	55
4.22	Simulation results	55
4.23	Simulation results	56
4.24	Simulation results	56
4.25	Measurement results for DGS standalone(14 mm without gap)	59
4.26	Measurement results	60
4.27	Measurement results	60
4.28	Comparison of Insertion Loss between Simulation and	61
	Measurement results for 14 mm without Gap	
4.29	Comparison of Isolation between Simulation and Measurement	61
	results for 14 mm without gap	

LIST OF ABBREVIATIONS

Advanced Design Software
Defected Ground Structure
Single Pole Single Throw
Direct Current
Field Effect Transistor
Radio Frequency
Printed Circuit Board
SubMiniature version A
Ultra- Violet

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

NO	TITLE	PAGE
A	Application Note 5327	66
В	An Introduction to Defected Ground Structure in	69
	Microstrip Circuits	
С	PIN Diode Fundamentals	72

CHAPTER I

INTRODUCTION

1.1 Project Background

There has been an increasing interest in studying microstrip lines that prohibit wave propagation in certain frequency bands using defected ground structure (DGS). DGS is implemented by modifying guided wave where it changes the propagation characteristic. DGS is realized by etching only a few areas on the ground plane under the microstrip line. This project will study the performance of isolation based with dumbbell shaped DGS under PIN Diode for SPST switch design.

1.2 Problem Statement

There are has been an isolation issue occurs in RF switch. The PIN diode with a parasitic capacitance is causing degradation of isolation performance in RF Switch based with dumbbell shaped DGS (Defected Ground Structure) has a potential to remove the parasitic capacitance.

1.3 Project Objective

This project will study the isolation performance based with dumbbell shaped Defected ground structure (DGS) under PIN diode for SPST switch design.

1.4 Project Scope

The scope of this project:

- i. To study the background of Defected Ground Structure (DGS), PIN diode and the isolation issue in RF switch.
- ii. Get familiar with the Advanced Design System Software (ADS).
- iii. PIN diode and Defected Ground Structure (DGS) modeling.
- iv. A simulation and analysis on PIN Diode with Defected Ground Structure (DGS) will be done by using Advanced Design System Software (ADS).

1.5 Thesis Outline

Chapter 1 is about project background for this paper, project statement, objectives, and scope of works. Chapter 2 defines the information and theory relates to this project and also the overview of the component involved. Chapter 3 will explain on the project implementation. It will discuss details on the tools and steps involved during performance of the projects. First and the most important to make this project flow smoothly is the project flow chart.

Chapter 4 will present all the project results regarding the experiments and test that have been done. There are three topologies that had been compared which SPST switch PIN diode that was connected with the dumbbell- shaped defected ground structure of dimensions 8mm, 12 mm, and 14mm with and without gap. This chapter also discusses which topologies is the best to design the RF switch. Chapter 5 is about to make a conclusion and recommendation for future works related to this study.

CHAPTER II

LITERATURE REVIEW

2.1 PIN Diode

The most important property of the PIN diode is the fact that it can, under certain circumstances, behave as an almost pure resistance at RF frequencies, with a resistance value that can be varied over a range of approximately 1Ω to $10 \text{ k}\Omega$ through the use of a DC or low frequency control current. When the control current is varied continuously, the PIN diode is useful for leveling and amplitude modulating an RF signal. When the control current is switched "on" and "off" or in the discrete steps, the device is useful for switching, pulse modulating, attenuating, and phase shifting of an RF signal ^[6].

2.1.1 Characteristics of the PIN diode

A PIN diode structure got its name from the device construction that consists of a heavily doped p-region and a heavily doped n-region separated by a thin layer of a high resistivity material that is nearly intrinsic. The nearly intrinsic layer is called π -type or v-type depending on whether the conductivity is p-type or n-type, respectively. The thickness of the high-resistivity layer, which is usually of v-type, is 10-200 µm. At zero bias, two separate space-charge regions are formed at the p-I and i-n junctions of a PIN diode just inside the highly doped p and n regions due to the diffusion of holes and electrons across the junction. In the case of an ideal diode, the intrinsic layer has no impurities; that is, it is totally depleted of mobile charge carriers. When a reverse bias is applied, (n electrode positive and p electrode negative) the space-charge regions in the p and n layers become wider and the diode gives rise to very high impedance in this state ^[6].

When a forward bias is applied to the diode, carrier injection takes place into the intrinsic layer. Electrons are injected into the intrinsic v or π layer from the n-layer and holes are injected from the p-layer. If the intrinsic thickness is less than the diffusion lengths or carrier life times of the injected mobile carriers, the injected carries have uniform distribution and both electrons and holes have equal concentrations. In this conditions, the resistivity of the intrinsic layer drops as the forward bias is increased ^[2].

The diffusion of carriers reduces the resistivity of the intrinsic layer and it drops further with the increasing forward bias voltage and the diode offers very low impedance in this state. Thus a PIN diode works as a switching device, open circuited in the reverse-biased state and short circuited in the forward-biased state. To achieve a low impedance state of PIN diodes, it is essential that the lifetime of mobile carriers in the intrinsic layer be greater than the time period of the operating frequency^[6].

Simplified lumped element equivalent circuits of a packaged PIN diode in reverse- and forward-bias conditions are shown in Figure. L_s and C_p represent the series inductance and shunt capacitance of the package, R_s is the ohmic contact series resistance, and C_i is the junction capacitance of the diode. Under forward bias condition

 R_f is the total diode resistance consisting of intrinsic layer resistance and ohmic contact resistances. Typical equivalent circuit model parameters of a package PIN diode are $L_s \cong 0.3$ nH, $C_p \cong 0.3$ pF, $R_s \cong 0.2\Omega$, $C_j \cong 0.02$ pF, and $R_f = 1\Omega$. The forward bias current is about 10 mA and reverse breakdown voltage at 10 µA is about 50V.

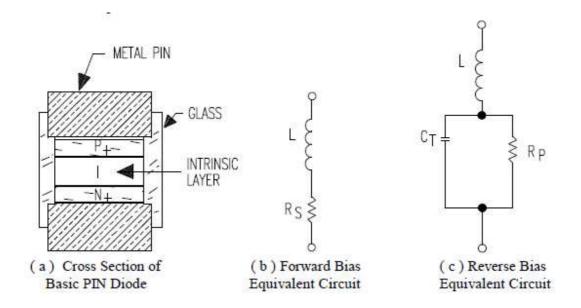


Figure 2.0: PIN diode and Corresponding Equivalent Circuit^[6]

2.1.2 PIN Diode Applications as switches

PIN diodes are commonly used as switching elements to control RF signals. In these applications, the PIN diode can be biased to either a high or low impedance device state, depending on the level of stored charge on the I region. A simple unturned single-pole single throw (SPST) switch may be design using either a single series or shunt connected PIN diode, as shown in Figure 2.1 and Figure 2.2^[6]. The series connected diode switch is commonly used when minimum insertion loss is required over a broad frequency range. This design is also easier to physically realize using printed circuit techniques, since no through holes are required in the circuit board. A single shunt mounted diode will, on the other hand, produce higher isolation values across a wider

frequency range and will result in a design capable of handling more power since it is easier to heat sink the diode.

Isolation is defined as the ratio of the power delivered to the load for an ideal switch in the ON state to the power delivered to the load when the switch is in the "OFF" state ^[4]. This also is expressed in Decibels and is a positive quantity. There are several techniques one can improve the isolation in switches, including using low OFF state capacitance FETs, distributed with tuning inductors, and realizing band-rejection filter in the operating frequency range. Basically, in these schemes either the OFF state capacitance of the switching devices is tuned out or their effect is minimized. In all these schemes, the insertion loss of the switches more or less remains the same. Most switches circuits designed at RF and low end of the microwave frequency band generally do not use any matching or tuning elements. They work down to DC, however as the frequency increases, the insertion loss increases and the isolation decreases due to finite value of the capacitance of the switching device in the OFF state ^[4].

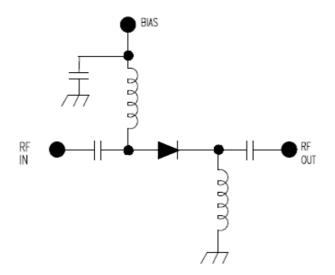


Figure 2.1: Series SPST Switch^[6]

C Universiti Teknikal Malaysia Melaka