MODELING AND SIMULATION OF 14 DOF VEHICLE DYNAMICS

AMRIK SINGH A/L PHUMAN SINGH

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MODELING AND SIMULATION OF 14 DOF VEHICLE DYNAMICS

AMRIK SINGH A/L PHUMAN SINGH

This thesis is submitted in partial fulfillment of the requirement for the Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2009

I/We admit that have read this report and in my/our opinion, this report is enough in terms of scope and quality to bestowal Bachelor of Mechanical Engineering (Automotive)

Signature	:
Supervisor I	:
Date	:
Signature	:
Supervisor II	:
Date	:

I declare that this report is my own work except for any summary or quotation from every single source is explained.

Signature	:
Author	: AMRIK SINGH A/L PHUMAN SINGH
Date	: 10 APRIL 2009

For my beloved mother, and family

ACKNOWLEDGEMENT

First of all, I would like to thank to God because I manage to complete my final year project without facing any severe problem. I am indebted to my supervisor, Ir. Mochamad Safarudin for his priceless effort in assisting me during the project period. Ir. Mochamad Safarudin was always there for me whenever I find difficulties in completing my task. I have learned a lot from him and I am very lucky to get him as my supervisor. Special appreciation goes to one of my favorite lecturer, Dr. Khisbullah Hudha for providing many helpful suggestions and comments for improving this project. I specially thank to my mother for her continuous support throughout the project. I would also like to thank Mr. Zulkiffli, and Mr. Ubaidillah for their time, concern and efforts given during the process of producing this thesis. A word of thanks is given to my friends for their constructive ideas in completing this report.

ABSTRACT

An accurate vehicle model is important to represent the behavior of the vehicle. There are many vehicle models built for the study of the vehicle dynamics specifically for the ride and handling behavior. This project describes the vehicle model development of the vehicle model to study the behavior of the vehicle. The derivation of a 14 DOF vehicle model consisting of ride, handling and tire model is presented. Three types of tire model namely Calspan, Dugoff and Magic Formula is developed in the Simulink and their performance for longitudinal force, lateral force and aligning moment was investigated and compared with the CarsimEd outputs. The most accurate tire model which follows the output of the CarSimEd was chosen to be coupled with the 14 DOF model. All the assumptions made for the 14 DOF vehicle model is stated. This 14 DOF vehicle model will be then validated using instrumented vehicle for two steering inputs namely step steer, and double lane change. The deviation of the outputs specifically the yaw rate, lateral acceleration and roll angle of the vehicle body and also the slip angle at each of the tire from the 14 DOF model simulation from the experimental results is discussed.

ABSTRAK

Suatu model kenderaan yang tepat adalah penting untuk mewakili kelakuan sesuatu kenderaan. Terdapat banyak model kenderaan yang dihasilkan bertujuan untuk mempelajari dinamik kenderaan terutamanya kelakuan tanggungan dan pengendalian. Projek ini menerangkan tentang pembangunan model kenderaan untuk mempelajari kelakuan kenderaan. Pengembangan untuk model kenderaan dengan 14 darjah kebebasan mengandungi model tanggungan, pengendalian, dan model tayar ditunjukkan. Tiga jenis model tayar iaitu Calspan, Dugoff dan Magic Formula telah dibangunkan dalam Simulink dan prestasi untuk daya dalam arah x dan y dan momen dalam arah z telah disiasat dan akan dibezakan dengan CarSimEd. Model tayar terbaik yang mengikuti response CarSimEd akan dipilih untuk digabungkan dengan model kenderaan 14 darjah kebebasan. Semua andaian untuk model kenderaan dengan 14 darjah kebebasan disertakan dalam projek ini. Model kenderaan dengan 14 darjah kebebasan telah disahkan dengan menggunakan data eksperimen untuk dua jenis pengemudian iaitu pengemudian pemalar dan perubahan dua lorong. Ralat untuk keputusn yang diperolehi melalui simulasi model kenderaan 14 darjah kebebasan berbanding keputusan daripada eksperimen dibincangkan.

CONTENTS

CHAPTER

TITLE

	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABST	TRAK	vi
	CON	TENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	OF SYMBOLS	xviii
	LIST	OF APPENDIX	xxiv
CHAPTER 1	INTO	DUCTION	1
	1.1	Background	1
	1.2	Problem Statement	4
	1.3	Objective	5

C Universiti Teknikal Malaysia Melaka

PAGE

CHAPTER	TITL	Æ	PAGE
	1.4	Scope	5
	1.5	Project Overview	5
CHAPTER II	LITE	RATURE REVIEW	7
	2.1	14 DOF Vehicle Model	7
	2.2	Development of 14 DOF Vehicle Model	8
	2.3	Modeling Assumptions	9
	2.4	Vehicle Ride Model	10
	2.5	Vehicle Handling Model	15
	2.6	Effect of Slip Angle and Camber Angle	19
	2.7	Tire Model	20
		2.7.1 Dugoff Tire Model	21
		2.7.2 Magic Formula Tire Model	22
		2.7.3 Calspan Tire Model	23
	2.8	Modeling with Simulink	26
	2.9	Validation of Vehicle Dynamics Simulation	27
	2.10	Vehicle Dynamics Software Packages	28
	2.11	Vehicle Handling Test	30
	2.12	Active Roll Control Suspension System	31

		2.12.1	Active Roll Control	
			Suspension System	
			Controller Structure	32
CHAPTER III	MET	THODOLOG	Y	35
	3.1	Project Pro	cess Flow Chart	36
	3.2	Literature F	Review	38
	3.3	Developme	nt of Mathematical Model	38
	3.4	Developme	nt of Simulink Model	38
	3.5	Parameter A	Assignments	42
	3.6	Comparison	n of Magic Formula,	
		Calspan and	d Dugoff with CarSimEd	45
	3.7	Validation	of 7 DOF Ride Model	
		using CarSi	mEd	45
	3.8	Validation	of 7 DOF Handling	
		Model usin	g CarSimEd	46
	3.9	Validation	of 14 DOF	49
CHAPTER IV	RES	ULTS AND I	DISCUSSION	51
	4.1	Tire Compa	arison Results	51
		4.1.1 30 d	legrees Step Steer	

TITLE

CHAPTER

Test at 50 kph

PAGE

	REF	ERENCE	84
	5.2	Recommendation	83
	5.1	Conclusion	81
CHAPTER V	CON	ICLUSION AND RECOMMENDATION	81
		Change Test	79
	4.7	ARC Performance for Double Lane	
	4.6	ARC Performance for Step Steer Test	77
	4.5	Effect of the Roll Center	76
		Change Test	71
		Model for Double Lane	
		4.4.2 Validation of 14 DOF Vehicle	
		Model for Step Steer Test	66
		4.4.1 Validation of 14 DOF Vehicle	
	4.4	Validation of 14 DOF Vehicle Model	66
		Using CarSimEd	62
	4.3	Validation of 7 DOF Handling Model	
		Using CarSimEd	59
	4.2	Validation of 7 DOF Ride Model	
		Test at 50 kph	55
		4.1.2 Double Lane Change	

APPENDIX	8	36

LIST OF TABLES

Table 3.1	Parameters for Ride and Model	42
Table 3.2	Parameters for Magic Formula Tire Model	43
Table 3.3	Parameters for Calspan Tire Model	44

No.

TITLE

PAGE

LIST OF FIGURES

No.	TITLE	PAGE
Figure 1.1	Vehicle Body Vertical Acceleration, Pitch and Roll Motion	2
Figure 1.2	Slalom Testing of Mercedes A-Class (Source: Bundell, (2004))	3
Figure 2.1	14 DOF Vehicle Model	9
Figure 2.2	Ride, Handling and Tire Model	10
Figure 2.3	Vehicle Ride Model	11
Figure 2.4	Sprung Mass Free Body Diagram	12
Figure 2.5	Vehicle Handling Model	15
Figure 2.6	Pitch Motion Due to Longitudinal Acceleration	17
Figure 2.7	Roll Motion Due to Lateral Acceleration	18
Figure 2.8	Free Body Diagram of a Wheel	19
Figure 2.9	Lateral Force and Aligning Moment Due to Slip Angle and Camber Thrust due to Camber Angle	20
Figure 2.10	Matlab Simulink	26

xiii

Figure 2.11	Roll Angle, Lateral Acceleration and Yaw Rate	
	Responses (Source: Shim (2006))	28
Figure 2.12	ISO 3888 Standard Double Lane Change	30
Figure 2.13	Comparison on the Vehicle Roll	
	Behavior with and without ARC	31
Figure 2.14	Control structure of ARC System	32
Figure 3.1	Project Process Flow Chart	36
Figure 3.2	Procedure of Determining the Tire Forces	39
Figure 3.3	Graph of Normalized Longitudinal Force against	
	Slip Angle	40
Figure 3.4	Graph of Normalized Lateral Force against	
	Slip Angle	40
Figure 3.5	Graph of Normalized Longitudinal Force against	
	Longitudinal Slip	41
Figure 3.6	Graph of Normalized Lateral Force against	
	Longitudinal Slip	41
Figure 3.7	Pitch Mode Bump Profile	45
Figure 3.8	Vehicle Body Parameters	46
Figure 3.9	Suspension Parameters	47
Figure 3.10	Tire Parameters	47
Figure 3.11	Track Coordinates Inputs for Double Lane	
	Change Test	48
Figure 3.12	3D Wire-Frame Animator	48

Figure 3.13	14 DOF Vehicle Simulink Model
Figure 4.1	Longitudinal Force for 30 Degrees Step Steer Test at 50 kph
Figure 4.2	Longitudinal Force Error for 30 Degrees Step Steer Test at 50 kph
Figure 4.3	Lateral Force for 30 Degrees Step

Steer Test at 50 kph

TITLE

No.

Figure 4.4	Lateral Force Error for 30 Degrees
	Step Steer Test at 50 kph
Figure 4.5	Aligning Moment for 30 Degrees Step
	Steer Test at 50 kph
Figure 4.6	Aligning Moment Error for 30 Degrees
	Step Steer Test at 50 kph
Figure 4.7	Longitudinal Force for Double Lane
	Change Test at 50 kph
Figure 4.8	Longitudinal Force Error for Double Lane

Figure 4.0	Longitudinal Porce Error for Double Lane	
	Change Test at 50 kph	56
Figure 4.9	Lateral Force for Double Lane Change	
	Test at 50 kph	57
Figure 4.10	Lateral Force Error for Double Lane	
	Change Test at 50 kph	57
Figure 4.11	Aligning Moment for Double Lane	
	Change Test at 50 kph	58
Figure 4.12	Aligning Moment Error for Double Lane	

Change Test at 50 kph

PAGE

49

52

52

53

54

54

55

56

58

xiv

xv

Figure 4.13	Body Vertical Acceleration	59
Figure 4.14	Body Vertical Displacement	59
Figure 4.15	Body Pitch Displacement	60
Figure 4.16	Front Left Damper Displacement	61
Figure 4.17	Rear Left Damper Displacement	61
Figure 4.18	7 DOF Model Lateral Acceleration Response for Double Lane Change Test at 80 kph	63
Figure 4.19	7 DOF Model Yaw Rate Response for Double Lane Change Test at 80 kph	63
Figure 4.20	7 DOF Model Front Left Tire Slip Angle for Double Lane Change Test at 80 kph	64
Figure 4.21	7 DOF Model Front Right Tire Slip Angle for Double Lane Change Test at 80 kph	64
Figure 4.22	7 DOF Model Rear Left Tire Slip Angle for Double Lane Change Test at 80 kph	65
Figure 4.23	7 DOF Model Rear Right Tire Slip Angle for Double Lane Change Test at 80 kph	65
Figure 4.24	Steering Angle Input for 180 Degrees Step Steer Test at 35 kph	66
Figure 4.25	Lateral Acceleration Response for 180 Degrees Step Steer Test at 35 kph	67
Figure 4.26	Yaw Rate Response for 180 Degrees Step Steer Test at 35 kph	67

xvi

Figure 4.27	Roll Angle Response for 180 degrees Step Steer Test at 35 kph	68
Figure 4.28	Front Left Tire Slip Angle for 180 degrees Step Steer Test at 35 kph	69
Figure 4.29	Front Right Tire Slip Angle for 180 degrees Step Steer Test at 35 kph	70
Figure 4.30	Rear Left Tire Slip Angle for 180 degrees Step Steer Test at 35 kph	70
Figure 4.31	Rear Right Tire Slip Angle for 180 degrees Step Steer Test at 35 kph	70
Figure 4.32	Steering Angle Input for Double Lane Change Test at 80 kph	71
Figure 4.33	Lateral Acceleration Response for Double Lane Change Test at 80 kph	72
Figure 4.34	Yaw Rate Response for Double Lane Change Test at 80 kph	72
Figure 4.35	Roll Angle Response for Double Lane Change Test at 80 kph	73
Figure 4.36	Front Left Tire Slip Angle for Double Lane Change Test at 80 kph	74
Figure 4.37	Front Right Tire Slip Angle for Double Lane Change Test at 80 kph	75
Figure 4.38	Rear Left Tire Slip Angle for Double Lane Change Test at 80 kph	75

No.	TITLE	PAGE
Figure 4.39	Rear Right Tire Slip Angle for Double Lane Change Test at 80 kph	75
Figure 4.40	Comparative Roll Angle Response for 180 Degrees Step Steer Test at 50 kph for Roll Center Effect	76
Figure 4.41	Comparative Tire Normal Forces for 180 Degrees Step Steer Test at 50 kph for Roll Center Effect	77
Figure 4.42	Roll Rate Response for ARC Performance during 180 Degrees Step Steer Test at 50 kph	78
Figure 4.43	Roll Angle Response for ARC Performance during 180 Degrees Step Steer Test at 50 kph	79
Figure 4.44	Roll Rate Response for ARC Performance during Double Lane Change Test at 80 kph	80
Figure 4.45	Roll Angle Response for ARC Performance during Double Lane Change Test at 80 kph	80

LIST OF SYMBOLS

а	= Distance of sprung mass C.G. from front axle
a_y	= Lateral acceleration
b	= Distance of sprung mass C.G. from rear axle
C _{sfl}	= Front left suspension damping coefficient
C_{sfr}	= Front right suspension damping coefficient
C _{srl}	= Rear left suspension damping coefficient
C _{srr}	= Rear right suspension damping coefficient
F _{fl}	= Front left suspension force
F_{fr}	= Front right suspension force
F _{rl}	= Rear left suspension force
F _{rr}	= Rear right suspension force
F _{sfl}	= Front left spring force
F _{sfr}	= Front right spring force
F _{srl}	= Rear left spring force
F _{srr}	= Rear right spring force
F _{dfl}	= Front left damper force

C Universiti Teknikal Malaysia Melaka

F _{dfr}	= Front	right	damper	force
------------------	---------	-------	--------	-------

- F_{drl} = Rear left damper force
- F_{drr} = Rear right damper force
- F_{v} = Vertical force on vehicle body
- F_{xfl} = Front left tire longitudinal force
- F_{xfr} = Front right tire longitudinal force
- F_{xrl} = Rear left tire longitudinal force
- F_{xrr} = Rear right tire longitudinal force
- F_{yfl} = Front left tire lateral force
- F_{yfr} = Front right tire lateral force
- F_{vrl} = Rear left tire lateral force
- F_{yrr} = Rear right tire lateral force
- F_{zfl} = Front left tire normal force
- F_{zfr} = Front right tire normal force
- F_{zrl} = Rear left tire normal force
- F_{zrr} = Rear right tire normal force
- h = Height of vehicle C.G. from ground
- h_{rc} = Height of roll center from ground
- I_p = Pitch moment of inertia
- I_r = Roll moment of inertia
- kph = kilometers per hour
- k_{θ} = Body pitch stiffness

k _o	= Body roll	l stiffness
----------------	-------------	-------------

- K_{sfl} = Front left suspension stiffness
- K_{sfr} = Front left suspension stiffness
- K_{srl} = Rear left suspension stiffness
- K_{srr} = Rear right suspension stiffness
- K_{tfl} = Front left tire stiffness
- K_{tfr} = Front right tire stiffness
- K_{trl} = Rear left tire stiffness
- K_{trr} = Rear right tire stiffness
- l_f = Distance of vehicle C.G. from front axle
- l_r = Distance of vehicle C.G. from rear axle
- m_s = Sprung mass
- m_t = Total mass of vehicle
- m_{ufl} = Front left unsprung mass
- m_{ufr} = Front right unsprung mass
- m_{url} = Rear left unsprung mass
- m_{urr} = Rear right unsprung mass
- M_{zfl} = Front left tire aligning moment
- M_{zfr} = Front right tire aligning moment
- M_{zrl} = Rear left tire aligning moment
- M_{zrr} = Rear right tire aligning moment
- S_{af} = Front tire longitudinal slip

S_{ar} = Rear tire le	ongitudinal	slip
-------------------------	-------------	------

- T_{bfl} = Front left wheel brake torque
- T_{bfr} = Front right wheel brake torque
- T_{brl} = Rear left wheel brake torque
- T_{brr} = Rear right wheel brake torque
- T_{dfl} = Front left wheel drive torque
- T_{dfr} = Front right wheel drive torque
- T_{drl} = Rear left wheel drive torque
- T_{drr} = Rear right wheel drive torque
- V_{tf} = Front tire speed
- V_{tr} = Rear tire speed
- v_{wxf} = Front tire longitudinal velocity
- v_{wxr} = Rear tire longitudinal velocity
- v_x = Longitudinal velocity
- v_{y} = Lateral velocity
- w =Track width
- Z_{rfl} = Front left road profile
- Z_{rfr} = Front right road profile
- Z_{rrl} = Rear left road profile
- Z_{rrr} = Rear right road profile
- \ddot{Z}_s = Sprung mass vertical acceleration at body C.G.
- Z_{sfl} = Front left sprung mass displacement

Z _{sfr}	= Front right sprung mass displacement
Ż _{sfr}	= Front right sprung mass velocity
Z _{srl}	= Rear left sprung mass displacement
Ż _{srl}	= Rear left sprung mass velocity
Z _{srr}	= Rear right sprung mass displacement
Ż _{srr}	= Rear right sprung mass velocity
Z _{srl}	= Rear left sprung mass displacement
Zufl	= Front left unsprung mass vertical displacement
Ż _{ufl}	= Front left unsprung mass vertical velocity
Ż _{ufl} ∙	= Front left unsprung mass vertical acceleration
Z _{ufr}	= Front right unsprung mass vertical displacement
Ż _{ufr}	= Front right unsprung mass vertical velocity
Ż _{ufr}	= Front right unsprung mass vertical acceleration
Z _{url}	= Rear left unsprung mass vertical displacement
Ż _{url}	= Rear left unsprung mass vertical velocity
Ż _{url} ₁	= Rear left unsprung mass vertical acceleration
Zurr	= Rear right unsprung mass vertical displacement
Ż _{urr}	= Rear right unsprung mass vertical velocity
Ż _{urr}	= Rear right unsprung mass vertical acceleration
α_f	= Front tire side slip angle

= Front left sprung mass velocity

 \dot{Z}_{sfl}

 α_r = Rear tire side slip angle

C Universiti Teknikal Malaysia Melaka