STUDIES AND DESIGN OF SUSPENSION SYSTEM FOR A FORMULA SAE RACING CAR

AIZAT FUAD BIN AHMAD SHATAR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

🔘 Universiti Teknikal Malaysia Melaka

STUDIES AND DESIGN OF SUSPENSION SYSTEM FOR A FORMULA SAE RACING CAR

AIZAT FUAD BIN AHMAD SHATAR

This technical report is submitted in accordance with the requirements of the Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

MAY 2009

C Universiti Teknikal Malaysia Melaka

"I admit that have read this work and in my opinion this work was adequate from scope aspect and quality to award in purpose Bachelor of Mechanical Engineering (Automotive)"

Signature	:
1 st Supervisor's name	e:
Date	:

Signature	:
2 nd Supervisor's nam	e:
Date	:

"I hereby, declare that ideas, design, results, analyses and conclusion set out in this thesis entitled Studies and Design of Suspension System for a Formula SAE Racing Car are entirely my own effort, except where otherwise indicated and acknowledged."

Signature	:
Name	: AIZAT FUAD BIN AHMAD SHATAR
Date	: 18 TH MAY 2009

To my beloved father, Ahmad Shatar Bin Azizan and my beloved mother, Nor Haiyati Binti Hashim

ACKNOWLEDGEMENT

In the name of Allah, the Most Merciful and the Most Beneficent. It is with the deepest senses gratitude of the almighty that gives strength and ability to complete this thesis.

First of all, I would like to dedicate my special thanks to my supervisor, Mr. Razali Bin Mohd. Tihth, for allowing me to do this project under his supervision. Thanks again for giving me all the valuable information and ideas on how to perform this project.

Last but not least, thanks to the continuous support and encouragement from my family and all of my friends in Universiti Teknikal Malaysia Melaka, and the others who somehow involve whether directly or indirectly in the completion of this project. Their help and guidance really mean a lot.

ABSTRACT

Formula SAE is a student designed competition, organized by SAE International to take students out of the classroom and allows them to apply the textbook theories to the real work experiences. Today, the competition has expanded around the world and this is one of the best ways to promote UTeM globally. This project is to study and design the suspension system for Formula SAE race car. The designed suspension system must follow all the Formula SAE rules and regulations thus compete with other race car around the world. All the required steps in designing the suspension system are conducted in this project in order to produce a race car with optimum handling and cornering performance. At the end of this project, the designed suspension system must be competitive enough which can be used for further development.

ABSTRAK

Formula SAE merupakan sebuah perlumbaan yang dianjurkan oleh SAE International khas untuk pelajar bagi membolehkan pelajar mengaplikasikan segala teori dan ilmu pengetahuan yang telah diajar di dalam kelas dan mendedahkan pelajar kepada persekitaran sebenar alam pekerjaan. Dewasa ini, perlumbaan Formula SAE telah berkembang ke seluruh dunia dan ini merupakan antara langkah yang terbaik untuk mempromosikan UTeM secara global. Projek ini adalah bertujuan untuk membina sistem gantungan bagi kereta lumba Formula SAE. Sistem gantungan yang telah dibina haruslah mengikut segala syarat dan peraturan yang telah ditetapkan oleh Formula SAE dan juga mampu memberikan saingan kepada kereta lumba pasukan lain dari seluruh dunia. Segala langkah yang diperlukan bagi membina sistem gantungan telah dipraktikkan agar dapat menghasilkan sebuah kereta lumba yang bukan sahaja mempunyai kuasa enjin yang baik, malahan juga memiliki keupayaan kawalan dan membelok yang mantap.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

	CONF	TIRMATION	i
	DECL	ARATION	ii
	DEDI	CATION	iii
	ACKN	IOWLEDGEMENT	iv
	ABST	RACT	v
	ABST	RAK	vi
	TABL	E OF CONTENTS	vii
	LIST	OF FIGURES	xii
	LIST	OF CHARTS	xvii
	LIST	OF TABLES	xviii
	LIST	OF APPENDIX	xix
CHAPTER 1	INTR	ODUCTION	1
	1.1	Project Background	1
	1.2	Problem Statement	3
	1.3	Objectives	3
	1.4	Scope	4
	1.5	Project Overview	4
CHAPTER 2	LITE	RATURE REVIEW	5
	2.1	Formula SAE	5

2.2 Vehicle Requirement and Restriction 6

2.3	Types	s of Suspension System	7
	2.3.1	Solid Axle Suspension System	7
	2.3.2	Semi-rigid Crank Axle	9
	2.3.3	Independent Suspension System	10
		2.3.3.1 MacPherson Strut	11
		2.3.3.2 Double Wishbone	12
		2.3.3.3 Multi-link	14
2.4	Impor	rtant Suspension Parameters	15
	2.4.1	Ackermann Steering Geometry	15
	2.4.2	Camber	16
	2.4.3	Caster	16
	2.4.4	Jacking	17
	2.4.5	Kingpin Inclination	17
	2.4.6	Kingpin Offset	18
	2.4.7	Slip Angle	18
	2.4.8	Toe	19
	2.4.9	Wheelbase and Wheel Track	19
	2.4.10) Instantaneous Center	20
	2.4.11	Roll Center	21
	2.4.12	2 Roll Axis	21
	2.4.13	3 Roll Moment	21
2.5	Open	Wheel Race Car Suspension System	22
	2.5.1	General Concept	22
	2.5.2	Push Rod and Pull Rod	24
	2.5.3	Rockers	25
2.6	Techn	nology on Composites	26
	2.6.1	Composites	26
	2.6.2	Carbon Fiber	26
	2.6.3	Resin Types	27
		2.6.3.1 Polyester Resin	28

2.8	Computer Aided Engineering (CAE) Software	32
	2.8.1 MSC ADAMS	34

CHAPTER 3 METHODOLOGY

2.7

3.1	Proces	Process Flow			
3.2	Proces	Process Explanation			
	3.2.1	Problem Statement Identification	40		
	3.2.2	Literature Review	40		
	3.2.3	Study on Open Wheel and Formula SAE race car	40		
	3.2.4	Selection of the Suspension Type	41		
	3.2.5	Defining the Concept Design	41		
	3.2.6	Wheel and Tire Selection	42		
	3.2.7	Vehicle Dimension Establishment	42		
	3.2.8	Suspension Parameters Setup	42		
	3.2.9	Modeling the Suspension Geometry	43		
	3.2.10	Suspension System Analyze	43		
	3.2.11	Suspension Components Design	43		
	3.2.12	Discussion and Conclusion	44		

CHAPTER 4 RESULT

4.1	Initial	Initial Result			
4.2	Suspe	nsion Design Selection	46		
	4.2.1	Suspension Type Selection	46		
	4.2.2	Materials	46		
	4.2.3	Software	47		
	4.2.4	Wheel and Tire Selection	48		
	4.2.5	Wheelbase and Track Width	48		

36

45

	4.2.6	Target Weight and Weight Distribution	49		
	4.2.7	Spring and Damper	49		
4.3	Conce	Concept Design			
4.4	Simul	ation Result	51		
	4.4.1	Geometry Comparison Simulation	51		
	4.4.2	Geometry Comparison Result	53		
		4.4.2.1 Camber Angle for Parallel Wheel Travel	53		
		4.4.2.2 Roll Center Location for Parallel Wheel			
		Travel	55		
		4.4.2.3 Roll Center Location for Opposite Wheel			
		Travel	56		
	4.4.3	Suspension System Components in Adams Car	59		
	4.4.4	Adams Car Designed Suspension Simulation Mode	el 60		
		4.4.4.1 Front Suspension	60		
		4.4.4.2 Rear Suspension	62		
	4.4.5	Designed Suspension Kinematics Behavior	64		
		4.4.5.1 Front Camber Angle	64		
		4.4.5.2 Rear Camber Angle	65		
		4.4.5.3 Front Toe Angle	66		
		4.4.5.4 Rear Toe Angle	67		
		4.4.5.5 Front Roll Center Vertical Location	68		
		4.4.5.6 Rear Roll Center Vertical Location	69		
		4.4.5.7 Front Roll Rate	70		
		4.4.5.8 Rear Roll Rate	71		
4.5	Suspension System Components CAD Model				
	4.5.1	Control Arm	72		
	4.5.2	Push Rod	72		
	4.5.3	Bell Crank	73		
	4.5.4	Damper and Spring	73		
	4.5.5	Upright	74		

	4.6 Suspension System Assembly CAD Model		75	
		4.6.1	Front Assembly	75
		4.6.2	Rear Assembly	75
CHAPTER 5	5 DISC	USSIO	Ν	76
CHAPTER 6 CONCLUSION AND RECOMMENDATION			78	
	6.1	Concl	usion	78
	6.2	Recon	nmendation	79
	DEE	DENC	F	90

REFERENCE	80
APPENDIX	83

LIST OF FIGURES

NO.	TITLE	PAGE
2.1	Hotchkiss suspension system	8
2.2	Four link suspension system	8
2.3	De Dion suspension system	8
2.4	Semi-rigid crank axle	9
2.5	MacPherson strut	11
2.6	Double wishbone	12
2.7	Multi-link	14
2.8	Ackermann steering geometry	15
2.9	Camber angle	16
2.10	Camber angle position	16
2.11	Caster angle	17

2.12	Kingpin inclination and scrub radius	18
2.13	Toe angle	19
2.14	Wheelbase and wheel track	20
2.15	Instantaneous center	20
2.16	Double wishbone suspension on F1 car	22
2.17	Dampers and springs	23
2.18	Pull rod setup	24
2.19	Push rod setup	24
2.20	Rocker on suspension system	25
4.1	Concept design 1	50
4.2	Concept design 2	50
4.3	Parallel arms with unequal lengths	51
4.4	Unparallel arms with unequal lengths	51
4.5	Graph of Camber Angle against Wheel Travel for Parallel Wheel Travel (Front)	53

4.6	Graph of Camber Angle against Wheel Travel for Parallel Wheel Travel (Rear)	53
4.7	Graph of Roll Center Location against Wheel Travel for Parallel Wheel Travel (Front)	55
4.8	Graph of Roll Center Location against Wheel Travel for Parallel Wheel Travel (Rear)	55
4.9	Graph of Roll Center Location against Wheel Travel for Opposite Wheel Travel (Front)	56
4.10	Graph of Roll Center Location against Wheel Travel for Opposite Wheel Travel (Rear)	56
4.11	Suspension System Components in Adams Car	59
4.12	Front suspension front view	60
4.13	Front suspension top view	60
4.14	Front suspension side view	61
4.15	Front suspension isometric view	61
4.16	Rear suspension front view	62
4.17	Rear suspension top view	62
4.18	Rear suspension side view	63

4.19	Rear suspension isometric view	63
4.20	Graph of camber angle against wheel travel (front)	64
4.21	Graph of camber angle against wheel travel (rear)	65
4.22	Graph of toe angle against wheel travel (front)	66
4.23	Graph of toe angle against wheel travel (rear)	67
4.24	Graph of roll center vertical location against wheel travel (front)	68
4.25	Graph of roll center vertical location against wheel travel (rear)	69
4.26	Graph of roll rate against wheel travel (front)	70
4.27	Graph of roll rate against wheel travel (rear)	71
4.28	Control arm	72
4.29	Push Rod	72
4.30	Bell Crank	73
4.31	Damper and spring	73
4.32	Upright	74

4.33	Front Assembly	75	
4.34	Rear Assembly	75	

xvi

LIST OF CHARTS

NO.	TITLE	PAGE
3.1	Process flow for the 1 st semester	38
3.2	Process flow for the 2 nd semester	39
3.3	Suspension type selection process	41

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Comparison of carbon fiber tensile modulus	27
2.2	Advantages and disadvantages of polyester resin	28
2.3	Advantages and disadvantages of epoxy resin	29
4.1	Analysis parameters	52

LIST OF APPENDIX

NO.	TITLE	PAGE
А	Gantt Chart PSM 1	82
В	Gantt Chart PSM 2	83
С	Description of the Kinematic Joints in Adams Car	84
D	Adams Car Suspension System Hardpoint	85
E	Formula SAE 2008 Rules	89

CHAPTER 1

INTRODUCTION

1.1 PROJECT BACKGROUND

Universiti Teknikal Malaysia Melaka (UTeM) currently has a Formula Varsity race car that is built to compete in the Formula Varsity Race. Its suspension system utilizes the double wishbone design that made from mild steel and can be said that it did perform well when comparing with other cars in Formula Varsity Race. However, the suspension system design does not apply the rules and regulations of the Formula SAE, thus cannot be used in the Formula SAE competition.

The aim of this project is to design and develop the suspension system for UTeM Formula SAE race car according to the Formula SAE rules and regulations. The suspension system that will be design must be able to improve the car cornering ability and handling performance in order to make sure the car to be competitive with other team around the world.

Having excellent engine performance and braking power is good but without sufficient cornering ability and good handling performance, the driver will feel difficult to drive the car, thus unable to use the full potential of the car performance. This means that the cornering ability and handling performance is very important to the overall performance of the race car. To achieve this goal in the given time, several tasks were set, that are:

- a) Study on the type of suspension system use in automotive vehicle.
- b) Study on the open wheel and Formula SAE race car suspension system.
- c) Study the technology of composites (carbon fibre).
- d) Suggestion for the design and construction of the suspension system.
- e) Identifying the important parameters for competitive suspension system.
- f) Design and analysis of the system design by using CAD and CAE software.

By identifying the critical areas that are important for the competitive suspension system, the handling and cornering ability of the car can be improved, thus will allow faster speed into and exit out of the corners. This will result in quicker lap time, better performance and higher overall standing in Formula SAE competition.

Besides that, reliability also is one of the main concerns in designing the suspension system. In order to avoid the failure of the suspension system, the design analysis of the suspension system will be conducted.

If all things go well according to the plan, the suspension system that is competitive with other team that have more experience in Formula SAE competition can be designed at the end of this project.

1.2 PROBLEM STATEMENT

In this research, the student is responsible to study and design the suspension system for Formula SAE race car. As a beginning, the student will refer to the existing Formula SAE car that has been design by the Short Term Grant Researcher Group of UTeM and look for the optimization and redesign opportunities on the way to have better quality of suspension design, which reflect to better ride and handling. The design should refer to the Formula SAE standards and regulations, in term of technical performance and safety. The designed suspension system should be analyzed virtually using related CAE software, based on the analysis characteristics been established during the literature stage. Aim of this research is the suspension system is fit enough in term of quality and safety, and can be fabricated and produce in future research to be used as a suspension system for UTeM Formula SAE race car.

1.3 OBJECTIVES

- 1. To design the suspension system for UTeM Formula SAE race car.
- 2. To understand the concept of suspension and its application, in this case it is specific to the Formula SAE race car application.
- 3. To understand the quality of suspension system and its criteria, and do the analysis based on the criteria that have been established.
- 4. To understand the concept of formula race car suspension system and its application.
- 5. The application of self technical knowledge, CAD and CAE tools, understand related high-tech material and its production process, and the application and the advantage of the designed item.