DEVELOPMENT OF FUZZY LOGIC SPEED CONTROLLER FOR DC MOTOR APPLICATIONS USING RABBIT MICROPROCESSOR

LIM SENG KEAT

APRIL 2008

C Universiti Teknikal Malaysia Melaka

DEVELOPMENT OF FUZZY LOGIC SPEED CONTROLLER FOR DC MOTOR APPLICATIONS BY USING RABBIT MICROPROCESSOR

LIM SENG KEAT

This report is submitted in partial fulfillment of requirements for the Degree of Bachelor In Electrical Engineering (Power Electronics and Drives)

> Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka

> > April 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of LEectrical Engineering (Power Electronics and Drives)."

Signature	:
Name	:Associate Professor Dr. Zulkifilie bin Ibrahim

Date :

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature:_____

Name : LIM SENG KEAT

DATE : 23 April 2008

ACKNOWLEDGEMENT

In submitting this report, I would like to convey my highly appreciation to Associate Professor Dr. Zulkifilie Ibrahim, who is also my supervisor of my Projek Sarjana Muda (PSM), for his guidance and participation in conducting my project. His knowledge and insights were valuable in identifying the ways to solve my problems encountered regarding to my project. Hereby, I also would like to thanks Hew Wai Onn, Leong Chee Meng, Ng Poo Heng, Ngo Chee Guan, Tan Jin Hong and Yee Yit Tong, for they had provided me with good ideas, advices and comments in order to help me accomplish my project according to the planned schedule. Also, I would like to thanks Professor Dr. Marizan Sulaiman, Mr. Md. Hairul Nizam Talib and Mr. Azhar Ahmad for providing their comments during my presentations on my project. Lastly, I would also convey my gratitude to Mr. Saifulza Alwi for his had allow me to attend his lecture on Artificial Intelligence subject, which it provide the fundamental knowledge to fuzzy logic control and would be helpful in my project development.

ABSTRACT

The project is titled as "Development of Fuzzy Logic Speed Controller for DC Motor Applications by Using Rabbit Microprocessor." In this project, the embedded controller developed is based on Rabbit microprocessor and its core module model *RCM 3100*. The control method implemented in this is fuzzy logic control method. A fuzzy logic algorithm needs to be developed and be compiled in Rabbit microprocessor in order to provide precise control signal for DC motor variable speed drive. Instead of using assembly language to compile the fuzzy algorithm, this controller will use Dynamic C programming language to develop the algorithm.

The goal of the project is to design and develop a laboratory scale functioning prototype in order to demonstrate the interfacing between the fuzzy logic control algorithm in Rabbit microprocessor and the DC motor speed drive. The Rabbit microprocessor based fuzzy controller is able to generate Pulse Width Modulation (PWM) signal. The PWM signal generated is an input signal for Hbridge DC power converter in order to control the speed of DC motor.

The major hardware implementation in this project is Rabbit microprocessor. Rabbit microprocessor is chosen due to its specification features of high speed (maximum of 112500bps baud rate), easy design hardware system and low power consumption. Besides, H-bridge DC driver also need to be developed, the DC drive has a simple design and allow forward and reverse direction control of the DC motor.

ABSTRAK

Projek ini bertajuk "Pembangunan pengawal kelajuan digital fuzzy logic untuk aplikasi motor DC dengan menggunakan mikropemproses Rabbit," dalam projek ini, satu pengawal padat yang dibangunkan adalah berteraskan mikropemproses Rabbit dan modul tersnya *RCM 3100*. Cara pengawal atur yang digunakan dalam projek ini adalah cara kawalaturan fuzzy logic. Satu algoritma fuzzy logic perlu dibangunkan dan dikompil ke dalam mikropemproses Rabbit agar dapat memberikan isyarat kawalan yang tepat kepada pemacu kelajuan motor DC. Daripada menggunkan bahasa himpunan, pengawal yang direkacipta ini menggunakan bahasa pengaturcaraan Dynamic C yang dikhaskan untuk mikropempemproses Rabbit.

Matlamat projek in adalah untuk merekacipta dan membangunkan satu prototaip yang berfungi dalam skala makmal. Prototaip ini diharapkan dapat mendemonstrasikan pengantaraan yang baik antara algoritma fuzzy logic yang dibangunkan dlam mikropemproses Rabbit, dengan pemacu kelajuan motor DC. Pengawal fuzzy asas mikropemproses Rabbit mampu menjanakan isyarat PWM. Isyarat PWM yang terjana akan dijadikan isyarat masukan untuk pemacu dan seterusnya pemacu kelajuan dapat mengawal kelajuan motor DC.

Mikropemproses Rabbit dipilih sebagai perkakasan yang utama adalah disebabkan cirri-ciri kelajuan pemprosesan isyarat yang ditampilkannya. Kelajuanini boleh mencapai tahap maksimanya 112500bps. Rekacipta pengaturcaraab yang mudah dan penggunaan kuasa yang rendah juga merupakan kelebihan mikropemproses ini. Selain itu, perkakasan yang diperlukan dalam projek ini ialah

H-bridge. Topologi H-bridge digunakan atas keupayaannya yang membenarkan kawalan putaran motor DC dalam dua arah dan mudah untuk direkacipta.

LIST OF CONTENTS

CHAPTER		PAGE
	LIST OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xvii
	LIST OF APPENDIX	xviii
1	INTRODUCTION	1
	1.1 Objectives	2
	1.2 Scope of project	2
	1.3 Problem statement	3
2	LITERATURE REVIEW	6
	2.1 Embedded Systems and Embedded Controllers	6
	2.2 Rational of Motor Speed Control	10
	2.2.1 Shunt field control	11
	2.2.2 Armature voltage control	11
	2.2.3 PWM speed control	12
	2.3 Fuzzy logic	14
	2.3.1 Introduction	14
	2.3.2 Fuzzy logic control algorithm	15
	2.3.3 Advantage of fuzzy logic control	16
	2.3.3.1 Fuzzy logic as a simpler and faster	17
	design methodology	
	2.3.3.2 Fuzzy logic – A better solution to non-	19
	linear control	

	2.3.3.3 Fuzzy logic is more robust and faster	20
3	PROJECT METHODOLOGY	21
	3.1 Introduction	21
	3.2 Hardware Part Process	24
	3.2.1 Rabbit microprocessor Rabbit 3000	24
	3.2.1.1 Features and specifications of	25
	Rabbit 3000	
	3.2.1.2 The CPU of Rabbit 3000	26
	3.2.1.3 Parallel I/O	28
	3.2.1.4 Parallel Port A	29
	3.2.1.5 Parallel Port F	30
	3.2.1.6 PWM channels	32
	3.2.2 Rabbit Core Module, RCM 3100	34
	3.2.3 Operation of H-bridge DC Power Converter	37
	3.2.4 DC motor	38
	3.2.5 Feedback Circuit	40
	3.2.6 Analogue-to-digital converter, ADC0802	41
	3.3 Dynamic C (Integrated Development System)	46
	3.3.1 Code compilation and running	49
	3.3.1.1 Code building in conventional	49
	development environment	
	3.3.1.2 Code building with Dynamic C	51
	3.3.2 Initialization of Parallel I/O Ports Using	52
	Dynamic C	
	3.4 Measurement, Testing and Support Equipment	56
	3.4.1 Digital Oscilloscope	56
	3.4.2 Digital Multimeter	58
	3.4.3 Variable DC Voltage Power Supply	59
4	DESIGN AND DEVELOPMENT OF HARDWARE	61
	PROTOTYPE BOARD	
	4.1 Overview	61

	4.2 Hardware connection of RCM 3100	62
	4.3 Development of H-bridge DC Motor Driver	64
	4.4 Development of Feedback System	68
	4.5 PWM Generation by Microprocessor Rabbit 3000	70
	4.6 Interfacing among H-bridge Driver, DC Motor and	72
	RCM 3100	
	4.7 Interfacing between Analogue-to-Digital Converter	73
	ADC0802 and Rabbit 3000	
5	DEVELOPMENT OF SOFTWARE ALGORTIHM	75
	FOR FUZZY LOGIC CONTROLLER	
	5.1 Constraint in Conventional Controller Design	75
	5.2 Fuzzy Logic Controller Designing Procedure	76
	5.3 Fuzzification and Membership Function	78
	5.4 Formation of the Rule Base	82
	5.5 Defuzzification	85
	5.6 Fuzzy Logic Algorithm in Dynamic C	87
6	EXPERIMENTAL RESULT AND PERFORMANCE	90
	ANALYSIS	
	6.1 Experimental Setup and Testing Procedure	90
	6.1.1 The hardware interfacing connection setup.	91
	6.2 Step Response with Initial Fuzzy Set Partitions	97
	6.3 Response to Step Reduction of Speed Command, and	99
	Load Disturbance	
	6.4 FLC Performance with Minimum Overlapped Base	101
	Width of Fuzzy Set	
	6.5 FLC Performance with Maximum Point of Fuzzy Set	105
	Closed to Origin	
	6.6 FLC Performance with Maximum Point of Fuzzy Set	107
	Far Away from Origin	
	6.7 FLC Performance with Reduction of Universe of	110
	Discourse for Fuzzy Output Variable	

	6.8 Performance Analysis of the Fuzzy Logic Speed	114
	Controller	
7	CONCLUSIONS AND RECOMMENDATIONS	116
	7.1 Conclusion	116
	7.2 Recommendations for future development	120
	REFERENCE	122
	APPENDIX A-D	

LIST OF TABLES

Table 3.1	Parallel Port A Registers of RCM 3100	29
Table 3.2	Parallel Port A Data register Bit Functions of RCM 3100	29
Table 3.3	Parallel Port F Registers of RCM 3100	30
Table 3.4	Parallel Port F Register Functions of RCM 3100	31
Table 4.1	Components required for H-bridge driver construction	65
Table 5.1	Universe of discourse for input and output variables of the	77
	fuzzy logic controller	
Table 6.1	Pin configuration and connection of RCM3100	94
Table 6.2	The pin configuration and connection of L6205 for hardware	95
	interfacing.	
Table 6.3	The pins connection of ADC0802 for hardware interfacing.	96
Table 6.4	Experimental result for FLC with initial setting	99
Table 6.5	Experimental result with minimum overlapped of input	104
	variable fuzzy set	
Table 6.6	Experimental result with maximum point of input variable	109
	fuzzy set is far away from origin	
Table 6.7	Experimental results with reduction of universe of discourse	113
	for fuzzy output variable	

PAGE

LIST OF FIGURES

		PAGE
Figure 1.1	Gantt chart for PSM 1.	4
Figure 1.2	Gantt chart for PSM 2.	5
Figure 2.1	IBM PC motherboard	7
Figure 2.2	PC 104 stack module.	8
Figure 2.3	JK Microsystems Mini ITX based embedded PC.	8
Figure 2.4	PWM waveforms with different duty cycle.	12
Figure 2.5	Designing steps for conventional controller.	17
Figure 2.6	Designing steps for fuzzy logic controller.	17
Figure 2.7	Lookup table versus rules and membership functions.	20
Figure 3.1	Block diagram of fuzzy logic speed controller using <i>Rabbit</i>	23
-	3000 microprocessor.	
Figure 3.2	Block diagram of a fuzzy logic controller.	23
Figure 3.3	Rabbit 3000 in LQFP package.	24
Figure 3.4	Rabbit 3000 block diagram.	27
Figure 3.5	Timer synchronous output allow for precise timing of output	28
	pulses.	
Figure 3.6	Block diagram of the PWM modulator in Rabbit 3000.	33
Figure 3.7	Open-drain mode and spread mode of PWM modulator in	33
	Rabbit 3000.	
Figure 3.8	Connection header J1 and J2 at RCM 3100.	34

Figure 3.9	Subsystems of the Rabbit Core Module RCM 3100.	35
Figure 3.10	Rabbit Core Module, RCM 3100.	35
Figure 3.11	Nomenclature of an H-bridge using MOSFET.	37
Figure 3.12	DC motor.	38
Figure 3.13	Equivalence electrical circuit of a DC motor.	39
Figure 3.14	Relation of motor speed in voltage reference to DC voltage	39
	supply.	
Figure 3.15	Feedback system.	40
Figure 3.16	Circuit diagram of feedback system.	40
Figure 3.17	Block diagram of successive approximation analogue-to-	42
	digital converter.	
Figure 3.18	Conversion process from analogue signal into digital	43
	equivalence in ADC0802.	
Figure 3.19	Pin layout of ADC0802.	44
Figure 3.20	Flow of code building using conventional development	50
	environment.	
Figure 3.21	Flow of code building using Dynamic C.	51
Figure 3.22	Block diagram of parallel port initialization.	53
Figure 3.23	Port initialization.	55
Figure 3.24	Digital oscilloscope.	56
Figure 3.25	Oscilloscope probe.	57
Figure 3.26	Digital multimeter.	58
Figure 3.27	Variable DC voltage power supply.	59
Figure 4.1	Attach the <i>RCM3100</i> module to prototyping board.	62
Figure 4.2	Connect serial programming cable to serial port on RCM	63
	3100.	
Figure 4.3	Block diagram of DMOS dual full bridge driver (L6205).	64
Figure 4.4	Circuit connection diagram for a parallel bridge operation of	66
	L6205.	
Figure 4.5	H-bridge driver (L6205) implemented with a logic inverter	67
	74LS04.	
Figure 4.6	Block diagram of a speed feedback system.	68

Figure 4.7	The constructed speed signal feedback system.	69
Figure 4.8	Connection diagram of the speed signal feedback system.	69
Figure 4.9	Flow to generate PWM signal using Rabbit 3000.	70
Figure 4.10	PWM signal generated using microprocessor Rabbit 3000.	71
	(a) PWM signal with 1020 counts, duty cycle = 99.6% .	
	(b) PWM signal with 200 counts, duty cycle = 19.53% .	
	(c) PWM signal with 500 counts, duty cycle = 48.83% .	
Figure 4.11	Testing flow for interfacing among H-bridge driver, DC	72
	motor and RCM 3100.	
Figure 4.12	Circuit connection for interfacing between ADC0802 and	74
	Rabbit 3000.	
Figure 4.13	Testing flow for interfacing between ADC 0802 and Rabbit	74
	3000.	
Figure 5.1	Linguistic division on a typical speed error profile.	78
Figure 5.2	Partition of input variable fuzzy sets using triangular	79
	fuzzifier.	
Figure 5.3	Definition of membership degree using triangular fuzzifier.	79
Figure 5.4	Block of source code that performs membership degree	80
	calculation.	
Figure 5.5	Source code in Dynamic C to define a triangular fuzzifier.	81
Figure 5.6	The singleton representation for output variables.	84
Figure 5.7	Block of source code that defined the rule base in singleton	84
	representation.	
Figure 5.8	Block of source code that performs singleton defuzzification.	86
Figure 5.9	The control flow of fuzzy logic algorithm that developed in	88
	Dynamic C.	
Figure 5.10	State diagram for fuzzy logic controller algorithm developed	89
	in <i>Rabbit 3000</i> .	

Figure 6.1	Block diagram of the overall fuzzy logic controlled DC	92
	motor drive experimental setup.	
Figure 6.2	Experimental setup.	93
Figure 6.3	Input and output variable fuzzy set partition for initial testing	97
	condition.	
Figure 6.4	Step response with varied speed reference.	98
	(a) Speed reference $= 1.0$ V.	
	(b) Speed reference = 1.5 V.	
	(c) Speed reference $= 2.0$ V.	
	(d) Speed reference = 2.5 V.	
	(e) Speed reference = 3.0 V .	
Figure 6.5	Response of FLC to reduction of speed command and load	100
	disturbances.	
Figure 6.6	Original partition for input variable fuzzy set.	101
Figure 6.7	Input variable fuzzy set partition with minimum overlapped	102
	region.	
Figure 6.8	Step response with input variable fuzzy set minimum	103
	overlapped.	
	(a) Speed reference $= 0.5$ V.	
	(b) Speed reference $= 1.0$ V.	
	(c) Speed reference $= 1.5$ V.	
	(d) Speed reference $= 2.0$ V.	
	(e) Speed reference = 2.5 V.	
	(f) Speed reference $= 3.0$ V.	
Figure 6.9	Maximum point of input variable fuzzy set tuned to close to	105
	the origin.	

Figure 6.10	Step response results in oscillation.	106
	(a) Speed reference = 0.5 V.	
	(b) Speed reference = 1.0 V .	
	(c) Speed reference = 1.5 V.	
	(d) Speed reference = 2.0 V .	
Figure 6.11	Maximum point of input variable fuzzy sets tuned to be far	107
	away from the origin.	
Figure 6.12	Step response with maximum input variable fuzzy set is far	108
	away from origin.	
	(a) Speed reference $= 0.5$ V.	
	(b) Speed reference $= 1.0$ V.	
	(c) Speed reference = 1.5 V.	
	(d) Speed reference = 2.0 V .	
	(e) Speed reference = 2.5 V.	
Figure 6.13	Reduction of universe of discourse of the fuzzy output	110
	variable.	
Figure 6.14	Step response with reduction of universe of discourse of	112
	output variable.	
	(a) Speed reference = 0.5 V.	
	(b) Speed reference $= 1.0$ V.	
	(c) Speed reference = 1.5 V.	
	(d) Speed reference = 2.0 V .	
	(e) Speed reference = 2.5 V.	
	(f) Speed reference = 3.0 V .	
Figure 6.15	Smooth response during in step command.	113

LIST OF ABBREVIAITIONDS

AC	Alternating current
ADC	Analogue-to-digital converter
СРІ	Common Programming Interface
DAC	Digital-to-analogue converter
DC	Direct current
DSP	Digital Signal Processor
EMF	Electromotive Force
EPROM	Electrical Programmable Read-Only Memory
FL	Fuzzy logic
FLC	Fuzzy logic controller
IDE	Integrated development environment
ISA	Industry standard architecture
LQFP	Low Quad Flat Profile
LSB	Least significant bit
MOSFET	Metal oxide silicon field effect transistor
OEM	Original equipment manufacturer
PC	Personal computer
PCI	Peripheral Component Interconnect
PICMG	PCI Industrial Manufacturer Group
PWM	Pulse width modulation
RFI	Radio frequency interference

LIST OF APPENDIX

- APPENDIX A PWM Generation
- **APPENDIX B** Interfacing between H-bridge, DC motor and *RCM 3100*
- APPENDIX C ADC0802 interfacing with *Rabbit 3000*
- APPENDIX D Fuzzy logic controller

CHAPTER 1

INTRODUCTION

This project is titled as "Development of a fuzzy logic speed controller for DC motor applications using Rabbit microprocessor". The purpose of this project is to provide a modular of fuzzy logic control algorithm in the aspect of DC motor speed controlling by using Rabbit Core Module 3100 prototyping board. The project development consisted of two major parts; hardware implementation and software development.

In the hardware part, H-bridge DC motor driver will be designed and developed. The designed H-bridge DC power converter will be used as the hardware interface between DC motor and the microprocessor-based fuzzy controller. While, a frequencyto-voltage converter (FVC) and analogue-to-digital converter (ADC) will be used to convert and provide the actual speed signal from speed rotary encoder, and to be used as fuzzy controller input. In the software part, the fuzzy logic control algorithm will be developed and implemented by using Dynamic C, a high level programming language developed by Rabbit Semiconductors especially for its microprocessor. In the means of high level programming language, the assembly language will not directly being applied in the development of fuzzy logic algorithm. The fuzzy logic algorithm programmed in C structure will be compiled into the memory system of Rabbit Microprocessor. As the result, the fuzzy controller developed is able to provide precise PWM signal in order to drive the DC driver. Lastly, the Rabbit microprocessor will be interfaced to the H-bridge DC power converter and DC motor to run in real time and debug.

1.1 Objectives

- To design and develop a digital fuzzy logic speed controller for DC motor applications using Rabbit microprocessor.
- To design and develop functional laboratory scale prototype fuzzy logic speed controller (FLC).

1.2 Scope of project

- To develop a DC motor speed controller by implementing fuzzy logic control method using Rabbit microprocessor.
- To interface between the fuzzy logic algorithm in Rabbit microprocessor and the H-bridge DC power converter.

1.3 Problem statement

In present world, the conventional controller of DC motor speed mostly based on Digital Signal Processor (DSP), Programmable Logic Controller (PLC) or PC-based controller. Yet, these controllers might be costly and difficult to be re-programmed. Hereby, there is necessity to develop a cost effective and programmable speed controller. In the terms of cost effective, a controller with minimize number of components need to be developed by using 8-bits Rabbit microprocessor.

Besides, the fuzzy logic algorithm that applied in this project having its difficulties to be realized in digital microprocessor. This is because the central of a fuzzy logic controller (FLC) is linguistic variables. A linguistic variable is a non-precise variable. For that reason as well, the fuzzy logic controller in present days mostly are PC-based. Thus, there is a challenge to find out a way for describing a linguistic variable in a crisp term that the Rabbit microprocessor can deal with.

1.4 Project Gantt Chart

Figure 1.1: Gant chart for PSM I.

C Universiti Teknikal Malaysia Melaka