SIMULATION STUDY OF PITCHING AND ROLLING CONTROL FOR PASSANGER CAR

MOHD KHAIRUL AZWAN BIN MAMAT

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I/We* have read this thesis

and from my/our* opinion this thesis

is sufficient in aspects of scope and quality for awarding

Bachelor of Mechanical Engineering (Automotive)

Signature	:
Name of Supervisor	: EN MOHD HANIF BIN HARUN
Date	: 24 May 2010

*Line which is irrelevant

SIMULATION STUDY OF PITCHING AND ROLLING CONTROL FOR PASSANGER CAR

MOHD KHAIRUL AZWAN BIN MAMAT

This report is presented in

Partial fulfillment of the requirements for the

Degree of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2009

"I declare this report is on my own work except for summary and quotes that I have mentioned its sources"

Signature:....Name of Author: Mohd Khairul Azwan Bin MamatDate: 24 May 2010

To my beloved family

ACKNOWLEDGEMENTS

Praise to Allah S.W.T from Whom i seek help and guidance and under His benevolence we exist and without his help this project could not have been accomplished.

Firstly, I would like to take this opportunity and express my gratitude to my supervisor En. Mohd Hanif bin Harun because of his guidance and encouragement for this project during this thesis period. He always appreciates whatever little progress and gives me guideline to accomplish this report. Because of him, i have achieved, and also continuously give me much inspiration by sharing his precious knowledge and experience.

Last but not least, I thank everyone who involved directly and indirectly in this project. The sacrifice and commitment given towards me earning my bachelor's degree are indescribable and without them, this PSM thesis would have been impossible.

iv

ABSTRACT

This report presents the project in developing a mathematical modeling for vehicle dynamics study specifically for the vehicle braking and cornering condition. The derivation of 7 DOF vehicle ride model is presented. Ride model includes the degree of freedom for roll, pitch and vertical motion of the sprung mass and also vertical motion of each unsprung mass. Additional simulation programming such as CarSimEd is combined and validated to the 7 DOF ride model to study and control the performance of active suspension. The performance comparison due to pitching and rolling of vehicle between passive suspensions with active suspension will also be discussed.

ABSTRAK

Laporan ini mempersembahkan projek dalam pembentukan model matematik untuk kajian dinamik kenderaan terutamanya untuk kenderaan dalam keadaan hentian mengejut dan selekoh. Penerbitan 7 darjah pembebasan model penungangan dipersembahkan. Model penungangan mengandungi darjah kebebasan untuk kecondongan, kegolekan dan gerakan keatas kenderaan dan juga gerakan keatas bagi semua tayar. Program simulasi tambahan seperti *CarSimEd* digabung dan disahkan dengan 7 darjah pembebasan membolehkan kita untuk mengkaji dan mengawal prestasi suspensi aktif. Pembezaan prestasi kecondongan dan golekan kenderaan antara suspensi pasif dan suspensi aktif akan dibincangkan.

vi

CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	XV
CHAPTER 1	INTRODUCTION	1

1.1	Background	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Project scope	3

CHAPTER II	LITE	RATURE REVIEW	7
	2.1	Theory	7
	2.2	suspension	9
		2.2.1 Passive suspension	9
		2.2.2 Semi-active suspension	10
		2.2.3 Active suspension	11
	2.3	Previous study on active suspension	
		Control	13
	2.7	previous studies on Mathematical	
		modeling	14

CHAPTER III	MET	METHODOLOGY		15
	3.1	Mode	ling assumption	16
	3.2	Projec	et process flow chart	17
	3.2	Equat	ion of motion	18
		3.2.1	Vehicle ride model	18
		3.2.2	(Using passive suspension)	18
		3.2.3	(Using active suspension)	22

3.3	PID controller design		
3.4	Active suspension controller structure	29	
	3.41 Decoupling Transformation	30	
3.5	Modeling with Matlab Simulink	32	
3.6	Validation of 7 DOF ride model		
	using CarSimEd	33	
3.7	Vehicle pitch and roll test	39	
	3.7.1 Hard cornering test	39	
	3.7.2 Hard braking test	41	

CHAPTER IV	RESULT AND DISCUSSION		43
	4.1	Validation of 7 DOF Ride Model	
		Using CarSimEd	43
	4.2	Steps steer test with active suspension	46
	4.3	Hard cornering tests	49
	4.4	Hard braking tests	52

CHAPTER V	CONCLUSION AND RECOMMENDATION		54
	5.1	Conclusion	54
	5.2	Recommendation	55

APPENDIX

57

56

LIST OF TABLES

No.	TITLE	PAGE
Table 1	PSM 1 Gantt chart	4
Table 2	PSM 2 Gantt chart	5
Table 3	Ziegler-Nichols tuning method	28
Table 4	Parameter for 7 DOF ride model	38
Table 5	PID for Step Steer Test	46
Table 6	PID for hard cornering test	49
Table 7	PID for Hard Braking Test	52

LIST OF FIGURES

No.	TITLE	PAGE
Figure 1	Rolling motion	8
Figure 2	Pitching motion	8
Figure 3	Passive suspension system	9
Figure 4	Semi active suspension	10
Figure 5	Low bandwidth or soft active suspension	11
Figure 6	High bandwidth or stiff active suspension	12
Figure 7	The result simulation in braking and cornering	
	using passive suspension	14
Figure 8	summary process flow for PSM I and PSM II	17
Figure 9	Free body diagram of ride model	
	(using passive suspension)	18
Figure 10	Free body diagrams of sprung mass	19
Figure 11	Rolling and pitching motion	20
Figure 12	Free body diagram of ride model	
	(using active suspension)	22
Figure 13	pitch moment due to braking	25

No.	TITLE	PAGE
Figure 14	Roll moment due to the lateral acceleration	26
Figure 15	Schematic of active suspension design	27
Figure 16	A block diagram of PID controller	28
Figure 17	Control structure of active suspension system	29
Figure 18	Sample of ride model simulation	32
Figure 19	Vehicle Body Parameters	33
Figure 20	Suspension parameter	34
Figure 21	Tire Parameters	34
Figure 22	Steering input for Double Lane Change Test	35
Figure 23	CarSimEd run setup	35
Figure 24	Graph of roll (deg) vs. time (s)	36
Figure 25	Graph of pitch (deg) versus time(s)	36
Figure 26	Graph of vehicle vertical acceleration versus time(s)	37
Figure 27	3D wire frame on simulation of CarSimEd	37
Figure 28	Steering input for hard cornering	39
Figure 29	Vehicle body pitch in step steer test	39
Figure 30	CarSimEd result simulation in pitch angle	40
Figure 31	CarSimEd braking input for hard brake test	41
Figure 32	CarSimEd pitch angle due to hard brake	41
Figure 33	CarSimEd vertical acceleration due to hard braking	42

Figure 34	Vehicle body roll in step steer test	44
Figure 35	Vehicle body roll in step steer test	44
Figure 36	vehicle body pitch in step steer test	45
Figure 37	Active suspension vs. Passive vehicle body	
	in roll angle	46
Figure 38	Active suspension vs. Passive vehicle body	
	in pitch angle	47
Figure 39	Active vs. Passive vehicle body in vertical body	
	acceleration	48
Figure 40	Active Vs passive suspensions in body roll	49
Figure 41	Active vs. Passive suspension in body pitch	50
Figure 42	Active vs., Passive in vertical body acceleration	51
Figure 43	Active vs. Passive suspension in body pitch	52
Figure 44	Active vs. Passive in vertical body acceleration	53

LIST OF SYMBOLS

- C_{sfl} = Front left suspension damping coefficient C_{sfr} = Front right suspension damping coefficient C_{srl} = Rear left suspension damping coefficient C_{srr} = Rear right suspension damping coefficient F_{fl} = Front left suspension force F_{fr} = Front right suspension force F_{rl} = Rear left suspension force F_{rr} = Rear right suspension force F_{pfl} = Front left actuator force F_{pfr} = Front right actuator force = Rear left actuator force F_{prl} F_{prr} = Rear right actuator force = Height of vehicle C.G. h I_{yy} = Pitch axis moment of inertia
- I_{xx} = Roll axis moment of inertia

- K_{sfl} = Front left suspension stiffness
- K_{sfr} = Front left suspension stiffness
- K_{srl} = Rear left suspension stiffness
- K_{srr} = Rear right suspension stiffness
- K_{rfl} = Front left tire stiffness
- K_{rfr} = Front right tire stiffness
- K_{rrl} = Rear left tire stiffness
- K_{rrr} = Rear right tire stiffness
- l_f = Distance of sprung mass C.G. from front axle
- l_r = Distance of sprung mass C.G. from rear axle
- m_b = Sprung mass
- m_{wfl} = Front left unsprung mass
- m_{wfr} = Front right unsprung mass
- m_{wrl} = Rear left unsprung mass
- m_{wrr} = Rear right unsprung mass
- w = Track width
- Z_{rfl} = Front left road profile
- Z_{rfr} = Front right road profile
- Z_{rrl} = Rear left road profile
- Z_{rrr} = Rear right road profile
- Z_b = sprung mass displacement

\ddot{Z}_b	= Sprung mass	vertical accele	eration at body C.G.
--------------	---------------	-----------------	----------------------

- Z_{bfl} = Front left sprung mass displacement
- \dot{Z}_{bfl} = Front left sprung mass velocity
- Z_{bfr} = Front right sprung mass displacement
- \dot{Z}_{bfr} = Front right sprung mass velocity
- Z_{brl} = Rear left sprung mass displacement
- \dot{Z}_{brl} = Rear left sprung mass velocity
- Z_{brr} = Rear right sprung mass displacement
- \dot{Z}_{brr} = Rear right sprung mass velocity
- Z_{brl} = Rear left sprung mass displacement
- Z_{wfl} = Front left unsprung mass vertical displacement
- \dot{Z}_{wfl} = Front left unsprung mass vertical velocity
- \ddot{Z}_{wfl} = Front left unsprung mass vertical acceleration
- Z_{wfr} = Front right unsprung mass vertical displacement
- Z_{wfr} = Front right unsprung mass vertical velocity
- \ddot{Z}_{wfr} = Front right unsprung mass vertical acceleration
- Z_{wrl} = Rear left unsprung mass vertical displacement
- \dot{Z}_{wrl} = Rear left unsprung mass vertical velocity
- \ddot{Z}_{wrl} = Rear left unsprung mass vertical acceleration
- Z_{wrr} = Rear right unsprung mass vertical displacement

- \ddot{Z}_{wrr} = Rear right unsprung mass vertical acceleration
- φ = Pitch angle at the body C.G.
- $\dot{\varphi}$ = Pitch rate at the body C.G.
- $\ddot{\theta}$ = Pitch acceleration at the body C.G.
- θ = Roll angle at the body C.G.
- $\dot{\theta}$ = Roll rate at the body C.G.
- $\ddot{\theta}$ = Roll acceleration at the body C.G.

CHAPTER 1

INTRODUCTION

This chapter will provide the information on simulating of vehicle when pitching and rolling. The importance of these simulating will be present in this chapter. The problem statement, objective and scope of this project will also be included.

1.1 Background

A vehicle will move naturally in pitching and rolling during cornering and braking. Too much pitching and rolling will reduce ride comfort and also cause driver hard to control and maintain the direction of motion of the vehicle.

During braking, the weight of the vehicle will transfer from rear tires to the front tires. This will make front vehicle move downward and rear vehicle to the upward. This motion is known as dive motion. When vehicle turn to the left, the weight will transfer from the left tires to the right tires. This weight transfer will happen in opposite way if vehicle turn to the right. This motion is known as roll motion. These motions are depend on driver input on vehicle, such as accelerating and also steering.

1.2 Problem statement

The behavior of vehicle motion due to the hard braking, cornering and others road condition will affect the vehicle handling and stability of the vehicle. This vehicle behavior especially pitching and rolling during braking and cornering are being analyzed and studied. A mathematical modeling based on vehicle model is build to represent the actual vehicle behavior while cornering, braking and other road condition. This mathematical modeling is then used to study and control the pitching and rolling of vehicle during braking and cornering.

1.3 Objective

The objective of this project is to study and control the pitching and rolling of a vehicle during braking and cornering.

1.4 Project scope

The scope of this project is developing a 7 DOF mathematical modeling ride model based on vehicle model. MATLAB Simulink Software will be chosen as computer design tools and also will use to simulate the dynamics behavior and evaluate the performance of the control structure. The research methodology implemented in this project takes the following steps of works; literature review on related field, study some previous works and the latest development on active suspension, development of equation of motion, simulation and comparison with the passive system.

C Universiti Teknikal Malaysia Melaka

1.5 Project Gantt chart

		WEEK															
NO	TASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Confirming title																
2	Literature review																
3	Collect The Data From Previous Study																
4	Solving problems																
7	Review study on 7 DOF of vehicle model																
8	Preparation of progress report																
9	Develop mathematical equation							-									
10	Preparation on technical report																
11	Edit technical report																
12	Submission of technical report																

Table 1: PSM 1 Gantt chart

