MECHANISM DESIGN OF ACTIVE GEOMETRY CONTROL

SUSPENSION SYSTEM

MUHAMMAD SYUKRI BIN ABDUL LATIB

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

"I admit that have read this work and in my opinion this work was adequate from scope aspect and quality to award in purpose Degree of Bachelor of Mechanical Engineering (Automotive)"

Signature:1st Supervisor's name : Dr Khisbullah HudhaDate: 24 May 2010

MECHANISM DESIGN OF ACTIVE GEOMETRY CONTROL SUSPENSION SYSTEM

MUHAMMAD SYUKRI BIN ABDUL LATIB

This technical report is submitted in accordance with the requirements of the Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

MAY 2010

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby, declare this thesis entitled Mechanism Design of Active Geometry Control Suspension System is the result of my own research except as cited in the reference"

Signature:Author name: MUHAMMAD SYUKRI BIN ABDUL LATIBDate: 24 MAY 2010

ii

DEDICATION

To my beloved family especially my father, Abdul Latib Bin Abdullah And also to my beloved mother, Noriah Binti Shaari Who keep me continuously motivated with their great support and encouragement through out my Bachelor Degree program

ACKNOWLEDGEMENT

Alhamdulillah and Thank to Allah S.W.T. with all His Gracious and His Merciful forgiving me strength and ability to accomplish this research project successfully. Firstly, I would like to express my deep and great thanks to my supervisor, Dr. Khisbullah Hudha in term of his wide knowledge and his logical way of thinking have been of great value for me. He always gives me the understanding, encouraging and personal guidance has provided a good basis for the present project. Besides that, I would like to thank to the master student, Luqman for his guideline and knowledgement.

I warmly thank to my beloved parents and family who always pray and encourage me while pursuing my study and project. My sincere thanks are due to Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka because give me a chance to gain a lot of knowledge, experience and also helping me with my research and project. Thank to my entire friend for giving support until finished my report.

During this work I have collaborated with many colleagues for whom I have great regard and I wish to extend my warmest thanks to all those who have helped me with my work. All support I have received is most valuable thing is my life.

ABSTRACT

This research is concerned on the effect of varying the toe angle and camber angle on the wheel of the Active Geometry Control Suspension (AGCS) system. AGCS system is one of conventional suspension system which the system is based on the ride handling performance of the vehicle. In this report, it will vary the toe and camber angle of the wheel in the McPherson Strut or Double Wishbone suspension system. In order to determine the effect of adjusting the toe and camber angle, it can be tested on the software called CarSim. Much type of data or parameters can be inserting into the software in term to get the result that wanted. As the project experiment, the range of data of toe and camber angle are taken to insert into the software and will be tested and simulate. After gaining the result from the software, it can be conclude either to change the toe and camber angle. Therefore to practical the varying the effect of toe and camber angle, the conceptual design is created and each of design is evaluate by the scoring method. After considering the entire criterion, the best conceptual design is choose for report. There is also some detailed design for the best conceptual design due to explain more towards the important components use in the mechanism. This design also undergoes with the structural analysis due to test the strength of the structure. As the result, it can determine the best design for the suspension system.

ABSTRAK

Kajian ini mementingkan dan meliputi perkara mengenai kesan terhadap pengubahsuai sudut kamber dan sudut toe ke atas roda di dalam Sistem Gantungan Kawalan Geometri Aktif.Sistem Gantungan Kawalan Geometri Aktif adalah salah satu sistem gantungan kesesuaian di mane sistem ini berdasarkan pretasi kawalan memandu ke atas kenderaan.Sistem ini mengawalkesan terhadap keadaan kenderaan dan menyebabkan sistem kenderaan stabil.Di dalam laporan ini,perubahan sudut toe dan sudut kamber ke atas roda sama dipraktikkan di dalam sistem gantungan McPherson atau sistem gantungan tulang selangka berganda. Bagi menentukan kesan perubahan sudut kamber dan sudut toe, ia boleh diuji dengan perisian yg dipanggil CarSim.Pelbagai data dan parameter boleh dimasukkan ke dalam perisian tersebut untuk mendapatkan keputusan yang dikehendaki.Bagi uji kaji yang dijalankan di dalam laporan ini,data ditentukan untuk disimpan ke dalam perisian bagi mendapatkan simulasi yg sesuai.Setelah mendapat keputusan daripada perisian, janya boleh menentukan sama ada untuk mengubah sudut toe dan sudut kamber.Oleh itu beberapa konsep rekaan telah disediakan bagi menentukan rekaan terbaik yang akan digunakan untuk laporan nanti.Konsep rekaan yang telah dihasilkan akan dinilai dari segi criteria yang ditetapkan di dalam kaedah skor.Selepas mengambil kira penilaian terhadap kaedah skor,satu rekaan yang terbaik akan dipilih.Disamping itu,terdapat juga penerangan yang lebih terperinci mengenai konsep rekaan yang dipilih bagi memberitahu dan menerangkan komponen penting di dalam mekanisme tersebut. Rekabentuk ini juga mengalami dengan analisis struktural kerana untuk menguji kekuatan struktur. Akibatnya, dapat menentukan rekabentuk terbaik untuk sistem suspensi.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGE		
	DECLARATION			
	DEDICATION	ii		
	ACKNOWLEDGEMENT	iii		
	ABSTRACT	iv		
	ABSTRAK	v		
	TABLE OF CONTENT	vi		
	LIST OF FIGURES	ix		
	LIST OF TABLES			
	NOMENCLATURE	xii		
CHAPTER I	INTRODUCTION			
	1.1 Problem Statement	1		
	1.2 Objective	2		
	1.3 Scope of Project	2		
CHAPTER II	LITERATURE REVIEW			
	2.1 AGCS System concepts	3		
	2.2 Active Suspension	6		
	2.3 4-wheel Steering	7		
	2.4 History of suspension system	9		
	2.5 Function of suspension system	9		
	2.6 MacPherson Strut suspension	12		
	2.7 Double Wishbone Suspension	14		
	2.8 Important properties in AGCS sys	tem 15		
	2.9 Simplified Calspan Tire Model	21		

2.10	Vehicle Model	23
2.11	Cast Iron	27

CHAPTER III METHODOLOGY

3.1	Introduction	30
3.2	Process Planning	30
3.3	Explanation on each process planning	33
3.4	AGCS design criteria	34
3.5	Conceptual design 1	37
3.6	Conceptual design 2	38
3.7	Conceptual design 3	39
3.8	Conceptual design 4	40
3.9	Component of conceptual design 1	41
3.10	Component of conceptual design 2	43
3.11	Component of conceptual design 3	45
3.12	Component of conceptual design 4	47
3.13	The weighted objective method	49
3.14	Design modification	53
3.15	Calculation for tire force	54
3.16	Calculate load on suspension	61
3.17	Structural analysis	68
3.18	Safety factor calculation	77

4.1	Front toe angle and camber angle	
	Analysis	79
4.2	Camber graph	81
4.3	Toe graph	82
4.4	Comparison between camber and toe	
	graph	83
4.5	Graph discussion	83
4.6	Tire forces result analysis	84
4.7	Graph validation between Matlab	
	simulink diagram and Carsim	85
4.8	Force on suspension system	90
4.9	Structural analysis	101
5.0	Safety factor	109
5.1	Detailed of 2 nd conceptual design	112
5.2	Finzalized mechanical design AGCS	113

CHAPTER IV	CONCLUSION AND RECOMMENDATION	120
REFFERENCE		122
BIBLOGRAPHY		124

LIST OF FIGURE

NO.	TITLE	NO PAGE
2.1	AGCS system layout	4
2.2	Bump toe characteristic	5
2.3	Active Suspension System	7
2.4	4-wheel steering system	8
2.5	MacPherson Strut Suspension	12
2.6	Double Wishbone suspension	14
2.7	Toe angle layout	16
2.8	Camber angle layout	17
2.9	Roll center with non parallel arms	18
2.10	Roll center of a car with Pan Hard Bar	19
2.11	Nodular cast iron	27
2.12	Ductile cast iron	27
3.1	Flowchart of AGCS process	32
3.2	Hierarchical diagram	34
3.3	Hand sketching of design 1	37
3.4	3D drawing of design 1	37
3.5	Hand sketching of design 2	38
3.6	3D drawing of design 2	38
3.7	Hand sketching of design 3	39
3.8	3D drawing of design 3	39
3.9	Hand sketching of design 4	40
3.10	3D drawing of design 4	40
3.11	Calspan tire model	59

3.12	Vehicle ride model	60
3.13	Double wishbone suspension joining part	62
3.14	Joining part	62
3.15	Modeling part	70
3.16	Meshing of the components	72
3.17	Boundary condition	73
3.18	Isometric view of free body diagram	74
3.19	Side view of free body diagram	74
3.20	Force acting at y-axis	76
4.1	Camber alteration of Ay acceleration (g)	81
	against time(s)	
4.2	Camber alteration of body roll(deg)	81
	against time (s)	
4.3	Camber alteration of yaw rate (deg/s)	81
	against time (s)	
4.4	Toe alteration of Ay acceleration (g)	82
	against time(s)	
4.5	Toe alteration of body roll(deg) against	82
	time (s)	
4.6	Toe alteration of yaw rate (deg/s) against	82
	time (s)	
4.7	Graph tire force, Fzfl (N) against time (s)	85
4.8	Graph tire force, Fzfr (N) against time (s)	85
4.9	Graph tire force, Fzrl (N) against time (s)	86
4.10	Graph tire force, Fzrr (N) against time (s)	86
4.11	Graph tire force, Fyfl (N) against time (s)	87
4.12	Graph tire force, Fyfr (N) against time (s)	87

4.13	Graph tire force, Fyrl (N) against time (s)	88
4.14	Graph tire force, Fyrr (N) against time (s)	88
4.15	Fx of bushing 1	92
4.16	Fx of bushing 2	92
4.17	Fx of bushing 3	92
4.18	Fx of joint 3	92
4.19	Fx of joint 4	93
4.20	Fx of joint 8	93
4.21	Fx of joint 9	93
4.22	Fx of joint 10	93
4.23	Fy of bushing 1	94
4.24	Fy of bushing 2	94
4.25	Fy of bushing 3	94
4.26	Fy of joint 3	94
4.27	Fy of joint 4	95
4.28	Fy of joint 8	95
4.29	Fy of joint 9	95
4.30	Fy of joint 10	95
4.31	Fz of bushing 1	96
4.32	Fz of bushing 2	96
4.33	Fz of bushing 3	96
4.34	Fz of joint 3	96
4.35	Fz of joint 4	97
4.36	Fz of joint 8	97
4.37	Fz of joint 9	97
4.38	Fz of joint 10	97
4.39	Joining on suspension	98
4.40	Double wishbone suspension	99

4.41	Maximum stress for shaft	104
4.42	Maximum stress for knuckle	104
4.43	Maximum stress for upper arm	105
4.44	Maximum stress for lower arm	105
4.45	Maximum displacement for shaft	106
4.46	Maximum displacement for knuckle	106
4.47	Maximum displacement for upper arm	107
4.48	Maximum displacement for lower arm	107
4.49	Detailed design of mechanism	112
4.50	Components of finalized design	113
4.51	Upper arm modification	114
4.52	Lower arm modification	115
4.53	Gear shaft modification	116
4.54	3D drawing of stepper motor	117
4.55	Stepper motor	117
4.56	3D drawing of spur gear	118
4.57	Spur gear	118
4.58	3D drawing of bracket	119
4.59	Bracket	119

xiii

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Comparison Between Active Suspension and	
	Passive suspension	11
2.2	Advantages and disadvantages of MacPherson	
	Strut	13
2.3	Advantages and disadvantages of Double	
	Wishbone	15
2.4	Comparative qualities of cast irons	29
3.1	List of components in design 1	41
3.2	List of components in design 2	43
3.3	List of components in design 3	45
3.4	List of components in design 4	47
3.5	The weighted objective method	49
3.6	Design modification	54
3.7	Calspan tire model parameter	57
3.8	Vehicle ride model parameter	58
3.9	Properties of cast iron	69
3.10	Force acting on suspension	75
3.11	Y-axis force distribution	76
4.1	Camber alteration	80
4.2	Toe alteration	80
4.3	Load case	90
4.4	Cornering case	91
4.5	Part join	98
4.6	Force on suspension	99
4.7	Material comparison	102

4.8	Maximum stress value	108
4.9	Maximum displacement value	108
4.10	Safe stress	108
4.11	Safe displacement	108
4.12	Validate with safe stress	109
4.13	Validate with safe displacement	109
4.14	Safety factor	109

XV

NOMENCLATURE

AGCS	=	Active Geometry Control Suspension
CATIA	=	Computer Aided Tridimensional Application
ECU	=	Electronic Control Unite
4WS	=	Four Wheel Steering
CarSim	=	Car Simulation
ADAMS	=	Multibody Dynamics
MATLAB	=	Matrix Laboratory
Fzfl	=	Tire vertical force at front left wheel
Fzfr	=	Tire vertical force at front right wheel
Fzrl	=	Tire vertical force at rear left wheel
Fzrr	=	Tire vertical force at rear right wheel
Fyfl	=	Tire lateral force at front left wheel
Fyfr	=	Tire lateral force at front right wheel
Fyrl	=	Tire vertical force at front rear left wheel
Fyrr	=	Tire vertical force at front rear right wheel
Mb	=	Total vehicle mass
Ms	=	Total sprung mass
tf	=	Rear track width
tr	=	Front track width
l	=	Total wheelbase
b	=	Distance of vehicle C.G from front axle

xvi

С	=	Distance of vehicle C.G from rear axle
h	=	the height of vehicle C.G from the ground
V_X	=	Vehicle longitudinal speed
J_{sy}	=	Pitch moment of inertia
J_{sx}	=	Roll moment of inertia
J_z	=	Yaw moment of inertia
g	=	Gravitational acceleration
κφ	=	Roll damping constant
$\kappa heta$	=	Pitch damping constant
eta arphi	=	Roll stiffness constant
eta heta	=	Pitch stiffness constant
V _x	=	Longitudinal speed
V_y	=	Lateral speed
\dot{V}_x	=	Longitudinal acceleration
$\dot{V_y}$	=	Lateral acceleration
γ	=	Yaw rate
γ̈́	=	Yaw acceleration
Iz	=	Inertia in yaw direction
${\delta}_{_f}$	=	Steer angle
C_{f}	=	Cornering stiffness of front tires
Cr	=	Cornering stiffness of rear tires
$lpha_{_f}$	=	Front wheel side slip angle
ar	=	Rear wheel side slip angle

C Universiti Teknikal Malaysia Melaka

APPENDICES

NO.	TITLE	PAGE
А	PSM 1 Gantt chart	125
В	PSM 2 Gantt chart	126
С	Conceptual design 1	127
D	Conceptual design 2	128
E	Conceptual design 3	129
F	Conceptual design 4	130
G	Finalized result	131

CHAPTER 1

INTRODUCTION

1.0 Introduction

Nowadays, the vehicle stability has been studied with intend to development of high-power vehicles. For example, the automotive industry have been introduced the 4WS (4 Wheel Steering) system which is develop the high-speed cornering performance by adjusting a front and rear wheel steer angle. Four-wheel steering is a system introduce by some vehicles to improve steering response, increase vehicle stability while cornering at high speed, or to decrease turning radius at low speed. However, 4WS components are very complicated and expensive because it requires much power in controlling the system.

Therefore, the automobiles industry has offering Active Geometry Control Suspension (AGCS) characteristics to overcome the problem. AGCS is an active device whose objective is to improve vehicle response by modifying the level of toe angle or camber angle variation of the rear or front suspension. (www.wikipedia.com)

The AGCS system is the effective method for the conventional suspension system to determine the stability of the vehicle. The AGCS system is been tested on the double wishbone suspension which some modification of the mechanism have been done to the upper arm of the front suspension. There are some analysis been done using the CARSIM software to determine which adjustment of the camber angle or toe angle can decrease the height of the centre of the gravity. If the centre of the gravity of vehicle is low, the vehicle stability will increase while cornering .Its means that with AGCS system, the performance of the vehicle can increase. In order to have better ride handling performance, a mechanism have been created to modify the suspension system.

1.2 Problem Statement

The purpose of the report is to varying the effect of the toe and camber angle on the front wheel .Then, to determine the performance of the vehicle after the changes of the toe and camber angle. Moreover, it is intended to perform the conceptual design due to choose the best design for the report and to understand the operation and system of the Active Geometry Control suspension (AGCS).

1.3 Objectives

The objective is to study the effect of changing the toe and camber angel for the front suspension and to design mechanism that related to the AGCS system.

1.4 Scope

The scope of the project is to investigate on the performance of changing the toe and camber angle of the front suspension system. Then, create and design the 3D detailed design using CATIA V5R16 software. Then designed model using MATLAB to determine the tire forced. Calculate force on the suspension using ADAMS software. Finally, structural analysis been done to the design,

CHAPTER II

LITERATURE REVIEW

2.1 Active Geometry Control Suspension System Concepts

Active Geometry Control Suspension System (AGCS) is one of the mechanism that determine the vehicle stability while cornering .The AGCS system is a device to that will varying the toe angle, camber angle and roll center of the wheel by controlling the position of a front or rear suspension link. The system consists of actuator or motor as power source of the device. The AGCS is installed in the suspension either in the Macpherson strut suspension or the double wishbone suspension. For the MacPherson strut suspension, it been installed in the bottom of the suspension at the lower arm. Then, for the double wishbone suspension, it will install above the suspension at the upper arm. (Lee,S. 2005)

The systems involve with actuators, control lever and Electric Control Unit (ECU) as shown in Figure 2.1. ECU is adjusting actuator stroke based on the vehicle speed and steering angle. Then the control lever is rotating downward or upward around hinge. It moves the inboard mounting point of the rear wheel assist link to maintain optimal bump toe-in value. (Lee,S. 2005)

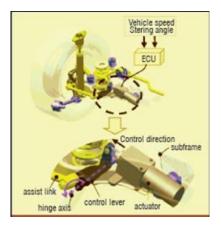


Figure 2.1: AGCS system layout (Lee, S. 2005)

In this system it consists of sensor part such as vehicle speed sensor and steering angle sensor. Vehicle speed sensor reads the vehicle speed and the steering angle sensor reads the driver steering amount. Control part commands the actuator by estimating lateral acceleration acting on the vehicle based on the data from the vehicle speed sensor and the steering angle sensor. (Lee,S. 2005)

The concept of AGCS is intelligent and it overcomes many negative points of conventional active suspension systems. AGCS has simple control logic and hardware component. Moreover, if energy supply goes off in conventional system the performance becomes failure mode but in AGCS, vehicle performance will be equal to passive suspension. (Lee,S. 2005)

In the AGCS system, it will estimates lateral acceleration acting on the vehicle based on the data from vehicle speed sensor and steering angle sensor. Based on the estimated lateral acceleration, it moves the actuator to increase rear outside. Since abrupt steering at high speed produces large centrifugal force on the vehicle, the rear part of the vehicle slips outward.