DESIGN AND DEVELOPMENT OF COMPOSITE SUSPENSION PUSH ROD FOR FORMULA STUDENT RACE CAR

MOHD HAFIZI B. ABDUL RAHMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF COMPOSITE SUSPENSION PUSH ROD FOR FORMULA STUDENT RACE CAR

MOHD HAFIZI BIN ABDUL RAHMAN

This technical report is submitted in accordance with the requirements of the Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

MAY 2009

CONFORMATION

I admit that have read this work and in my opinion this work was adequate from scope aspect and quality to award in purpose Degree of Bachelor of Mechanical Engineering (Automotive)

Signature	:	 • • • •	 		
1 st Supervisor's name		 	 	••••	
Date	:	 	 		

DECLARATION

"I hereby, declare this thesis entitled Design and Development of The Composite Suspension Push Rod for Formula Student Race Car is the result of my own research except as cited in the reference"

Signature:Author name: MOHD HAFIZI B. ABDUL RAHMANDate: 12 MAY 2009

DEDICATION

To my beloved father,

Tuan Haji Abdul Rahman b. Haji Abdul Razak

And to my beloved mother,

Puan Hajjah Noor Azian bt. Haji Nasiruddin

who keep me continuously motivated with their great support and encouragement throughout my Bachelor Degree program.

ACKNOWLEDGEMENT

Alhamdulillah and Thank to Allah S.W.T. with all His Gracious and His Merciful forgiving me strength and ability to accomplish this research project successfully. I would like to take the outmost opportunity to express my sincere and gratitude to my supervisor, Mr. Muhd Ridzuan bin Mansor who is always giving me supports and guidance in completing this Final Year Project until up to this stage in victory.

Also with the greatest thanks to my beloved parents and Family who always pray and give the encouragement while pursuing my research and project. Their sacrifices are never being forgotten.

My greatest thanks also credited to Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka because give me a chance to get a lot of knowledge and helpers to complete my research project and also my study.

And last but not least, to all my fellow friends who involves direct or indirectly that always stand strong beside me in giving opinions and supports throughout our relationship, I really thankful and appreciate it. All yours are the most valuable things for the rest of my life.

ABSTRACT

The contemporary Formula Student racing car makes extensive use of advanced composite materials in its construction. The design, manufacture and performance testing of the composite suspension push-rods that typically could be used in a Formula Student racing car are described in this report. The design of the push rod is based on the current design use by Formula 1 race car and also current Formula Student race car. This push rod was fabricated by manual hand lay-up technique using glass fiber and polyester resin as the composite materials. The push-rod was manufactured using uniform lay-up of woven cross-ply technique. The component performance evaluations were conducted using three point bending and tensile test to determine the strength of push rod suspension when the maximum load is applied. Results obtained shows that the developed composite suspension push rod are able to function successfully according to the required specification for the Formula Student race car.

ABSTRAK

Kebanyakan kereta lumba bagi Formula Pelajar menggunakan bahan komposit dalam pembuatan kereta tersebut. Merekabentuk, pembuatan dan juga menganalisis kekuatan bahan komposit itu diutarakan dalam laporan ini. Rekabentuk rod penolak dalam projek ini adalah berdasarkan rekabentuk semasa yang digunakan pada kereta lumba Formula 1 dan juga kereta lumba Formula Pelajar. Rod penolak ini akan di fabrikasi menggunakan teknik 'lay-up' untuk 'fiberglass' dan juga 'polyester resin'. Eksperimen 'three point bending' dan juga tegangan akan dijalankan untuk mengetahui ketahanan rod penolak tersebut apabila daya maksimum dikenakan pada rod penolak. Keputusan dari eksperimen ni akan menunjukkan samada pembangunan rod penolak menggunakan bahan komposit berfungsi dengan baik mengikut ketetapan yang telah ditetapkan bagi Formula Pelajar.

TABLE OF CONTENT

CHAPTER	TITLE	PAGES
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENT	vi
	LIST OF TABLE	xii
	LIST OF FIGURE	xiii
	LIST OF SYMBOLS	xvi
	LIST OF APPENDIX	xvii
CHAPTER 1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives	2
	1.4 Scope of Study	3

	1.5	Expec	ted Results	3
CHAPTER 2	LIT	ERAT	URE REVIEW	4
	2.1	Histor	ry of Formula Student	4
	2.2	Form	ala Student Race Car Specification	5
	2.3	Suspe	nsion System	6
		2.3.1	History of Suspension	6
		2.3.2	Function of Suspension	7
		2.3.3	Types of Suspension	8
			2.3.3.1 MacPherson Strut Suspension System	8
			2.3.3.2 Double Wishbone Suspension System	9
			2.3.3.3 Multi Link Suspension	10
	2.4	Suspe	nsion Push Rod	11
		2.4.1	Push Rod and Pull Rod	12
		2.4.2	Push Rod Design	12
		2.4.3	Load at the Push Rod	14
		2.4.4	Composite Suspension Push Rod	15
	2.5	Comp	osite Material	15
	2.6	Fibers	for Reinforcement Plastic Composite	16
		2.6.1	Glass Fiber Reinforcement Plastic	17
		2.6.2	Carbon Fiber Reinforcement Plastic	18
		2.6.3	Comparison of Mechanical Properties Between	20

			Carbon Fiber and Glass Fiber Reinforcement	
	2.7	Open	Mold Process for Fiber Reinforcement Plastic	22
		2.7.1	Hand Lay-up Process	22
		2.7.2	Spray-up Processes	24
		2.7.3	Vacuum Bag Process	25
		2.7.4	Resin Transfer Molding	26
CHAPTER 3	TH	EORY	AND LOAD CALCULATION	28
	3.1	Theor	y of Suspension Push Rod Loading	28
		3.1.1	Position of Center Gravity	28
		3.1.2	Calculation of Weight Transfer	31
			(Case 1 = Braking)	
			Calculation of Weight Transfer	32
			(Case 2 = Cornering)	
	3.2	Calcu	lation of Load at Suspension Push Rod Link	33
		3.2.1	Calculation for Center Gravity	34
		3.2.2	Calculation of Weight Transfer	36
			(Case 1 = Braking)	
		3.2.3	Calculation of Weight Transfer	36
			(Case $2 = Cornering$)	
	3.3	Load	Calculation using Quasy Static	39
	3.4	Theor	y of Composite Calculation	42
		3.4.1	Composite Calculation	44

CHAPTER 4	RES	SEARC	CH METHODOLOGY	46
	4.1	Introd	uction	46
	4.2	Proces	ss Planning	46
	4.3	Expla	nation on Each Process Planning	49
		4.3.1	Problem Statement Identification	49
		4.3.2	Literature Review	49
		4.3.3	Identification on Related Parameter for	50
			Composite Suspension Push Rod	
		4.3.4	Design Suspension Push Rod	50
			4.3.4.1 Identify the Related Data to Design Push Rod	51
			4.3.4.2 Sketches Concept Design of Push Rod	52
			4.3.4.3 Design Push Rod using CAD Software (CATIA)	52
		4.3.5	Load Calculation for Suspension and Push Rod	52
		4.3.6	Composite Calculation for Push Rod	54
		4.3.7	Fabrication of Composite Push Rod	55
		4.3.8	Flexural Composite Test using Three Point Bending and Tensile Test	56
CHAPTER 5	SUS	SPENS	ON PUSH ROD CONCEPT DESIGN	57
	5.1	Desig	n Requirement	57
	5.2	Conce	pt Design	58

		5.2.1 Design Iteration 1	59
		5.2.2 Design Iteration 2	59
		5.2.3 Design Iteration 3	60
	5.3	Comparative Design Analysis	61
	5.4	Final Design	62
CHAPTER 6	FAI	BRICATION PROCESS AND FLEXURAL	64
	TES	ST OF COMPOSITE SUSPENSION PUSH ROD	
	6.1	Introduction	64
	6.2	Applying Glass Fiber Reinforcement Plastic	65
	6.3	First Stage of Fabrication Process	66
	6.4	Second Stage of Fabrication Process	69
	6.5	Third Stage of Fabrication Process	71
	6.6	Flexural Test for Composite Suspension Push Rod	72
		6.6.1 Tensile Test	73
		6.6.2 Three Point Bending Test	75
CHAPTER 7	RES	SULTS AND ANALYSIS	77
	7.1	Introduction	77
	7.2	Tensile Test	77
	7.3	Three Point Bending Test	80

х

CHAPTER 8 DISCUSSION

	8.1	Introduction	83
	8.2	Concept Design Process	83
	8.3	Fabrication Process	84
	8.4	Joining Process	85
	8.5	Flexural Test	85
	8.6	Load Analysis	86
	8.7	The Area of Failures	87
	8.8	Weight of Composite Suspension Push Rod	88
CHAPTER 9	CO	NCLUSION AND RECOMMENDATION	90
	9.1	Conclusion	90
	9.2	Future Recommendation	91
	REI	FERENCES	92
	APH	PENDIX	94

83

LIST OF TABLES

NO	TITLE	PAGES
2.1	Formula SAE race car specification	6
	(http://student.sae.org/, 2008)	
2.2	Comparative yarn properties for fiber reinforcement plastic	21
	(Smith, 2006)	
5.1	Quality Function Deployment (QFD) design criteria	61
5.2	QFD Indicator	61

LIST OF FIGURES

NO	TITLE	PAGES
1.1	The original composite F1 chassis, McLaren MP4-1	2
	(Savage, 2008)	
2.1	MacPherson Strut suspension system (Longhurst, 2006)	9
2.2	Double wishbone suspension system (Longhurst, 2006)	10
2.3	Multi link suspension system (Longhurst, 2006)	11
2.4	Push rod mechanism (F1 suspension design case study, 2007)	11
2.5	Cylindrical shape of push rod suspension	13
	(http://zeept.wordpress.com/, 2006)	
2.6	Elliptical shape for push rod suspension (Savage, 2008)	13
2.7a	Pinned column under axial load (Savage, 2008)	14
2.7b	Fundamental case of buckling (Savage, 2008)	14
2.8	Carbon fiber suspension push rod Honda F1 race car	15
	(Savage,2008)	
2.9	Fiber glass woven roving	17
	(www.lakewoodconferences.com/, 2007)	
2.10	Process to produce glass fiber (Smith, 2006)	18
2.11	Carbon fiber woven (http://en.wikipedia.org/wiki/Carbon_fiber,	19
	2009)	
2.12	Application of carbon fiber used in motorcycle front disc guard	20
	(http://parts.motorcycle-superstore.com/, 2009)	
2.13	Stress-strain behavior of various types of reinforcement fibers	21
	(Smith, 2006)	

2.14	Hand Lay-up procedures (Akavoli, 2001)	23
2.15	Spray-up process (Akavoli, 2001)	24
2.16	Schematic of vacuum bag process (www.azom.com/, 2000)	25
2.17	General Process of bag molding (www.niir.org/, 2004)	26
2.18	Resin transfer molding process	27
	(www.jhmtechnologies.com, 2003)	
3.1	Normal force on tire in static condition (Azman, 2006)	29
3.2	Vertical position at inclination plane (Azman, 2006)	30
3.3	Forces during braking (Azman, 2006)	31
3.4	Force at suspension link (Hudha, 2008)	33
3.5	Distribution force at suspension link (Hudha, 2008)	39
4.1	PSM 1 flow chart	47
4.2	PSM 2 flow chart	48
4.3	Design process flow chart	51
4.4	Load calculation flow chart	53
4.5	Composite calculation flow chart	54
4.6	Fabrication process flow chart	55
5.1	CAD model of the suspension push rod design iteration 1	59
5.2	CAD model of the suspension push rod design iteration 2	60
5.3	CAD model of the suspension push rod design iteration 3	60
5.4	Final design of suspension push rod	62
5.5	Assembly drawing of suspension push rod with universal joint	63
5.6	Dimension of the suspension push rod	63
6.1	Mold release wax	65
6.2	Weighted the weight of polyester resin and hardener	66
6.3	Set up the resin	66
6.4	Add hardener to the resin about 90:10 weight ratio	67
6.5	Applying the mold release wax on the surface of the mold	67
6.6	Applying one ply of woven glass fiber	68
6.7	Applying the resin on the surface of woven glass fiber	68
6.8	Applying chopped strand mat and resin on it	69

6.9	Rolled the layer using roller to remove the entrapped air	69
6.10	Put the universal join on the glass fiber	70
6.11	Continue applying the woven glass fiber and the	70
	chopped strand mat on the top of universal joint	
6.12	Curing process in room temperature	71
6.13	Mark the cutting area at the product	71
6.14	Trimming process using hand grinder to get the desired shape	72
6.15	Final product	72
6.16	INSTRON universal test machine	73
6.17	Tensile test for composite suspension push rod	74
6.18	The suspension push rod failed laterally	74
6.19	The support span is set	75
6.20	The specimen is placed on the support span	76
6.21	Cracking area when the specimen start to buckle	76
7.1	Graph of tensile test for specimen 1	78
7.2	Graph of tensile test for specimen 2	78
7.3	Graph of tensile test for specimen 3	79
7.4	The push rod suspension typically failed laterally	80
7.5	Graph of three point bending test for specimen 1	81
7.6	Graph of three point bending test for specimen 2	81
7.7	Graph of three point bending test for specimen 3	82
7.8	The cracking area of the specimen	82
8.1	Fabrication process	84
8.2	The surface of the thread was grind to flat the surface	85
8.3	Sliding occurred at the clamp holder	86
8.4	Failure area of the glass fiber suspension push rod	87
8.5	Tensile specimens for GFRP and CFRP fail at gage area	88
	(Wonderly, 2005)	
8.6	Weighing the composite suspension push rod	89

LIST OF SYMBOLS

F tire	=	Force act at front tire
K_{Tf}	=	Front Roll Stifness
Φ	=	Roll angle
F _{FZM}	=	Weight transfer due to roll moment
F _{FZL}	=	Weight transfer due to lateral force
v	=	Vehicle speed
\mathbf{W}_{f}	=	Force at front
\mathbf{W}_{r}	=	Force at rear
r	=	Radius of cornering speed
A_{ij}	=	Extensional stiffness matrix [A]
h	=	Laminates of composite
k	=	Number of ply
[Q]	=	Stiffness matrix
[<i>T</i>]	=	Transformation matrix
[R]	=	Matrix transform of engineering shear strain
I_x	=	Moment of inertia
r _x	=	Radius of gyration
$\sigma_{critical}$	=	Critical stress

LIST OF APPENDIX

NO	TITLE	PAGES
А	PSM 1 Gantt Chart	94
В	PSM 2 Gantt Chart	95
С	Design Iteration 1	96
D	Design Iteration 1 Technical Drawing	97
E	Design Iteration 2	98
F	Design Iteration2 Technical Drawing	99
G	Final Design for Suspension Push Rod	100
Н	Final Design Technical Drawing	101
Ι	Value for Cornering Speed Radius	102
J	Universal Joint Standard Drawing	103
K	Data Sheet for GFRP Chopped Strand Mat	104
L	Data Sheet for GFRP Woven Roving	105
М	Data Sheet for Resin	106
N	Tensile Test Results for Glass Fiber Suspension Push Rod	108
0	Three Point Bending Results for Glass Fiber Suspension Push Rod	113

CHAPTER 1

INTRODUCTION

1.1 Introduction

Formula Student is the event that challenges university students to design, build, develop and compete as a one team and come out with a small single seat racing car. The purpose of this tournament is to give the experiences to the students about the real life as an engineer. They will face the real engineering life start from design until manufacture the racing car.

Nowadays, the formula student race car has makes a lot of improvement especially in term of weight from the heavyweight body chassis and components to lightweight components. This is because the minimum body car weight can gives higher performances for the car especially in handling performances. Before this, the components such as suspension system use metal. Now, many race car components use composite material such as carbon fiber and fiber glass to reduce the weight.

The suspension system material also has made some improvement from using material like steel to composite material such as fiber glass. Many of team in formula one such as Ferrari team using composite as a material at suspension system. The most important reason using composite material at the suspension system is the handling performances. Reducing the weight of the components can give a higher performance to car (Savage, 2008).

Figure 1: The original composite F1 chassis, McLaren MP4-1 (Savage, 2008)

1.2 Problem Statement

In order to makes some improvement in performances of car especially in term of reducing weight, sufficient understanding about the composites material especially in fiber glass composite and also understanding about the function of push rod suspension is a subject matter to complete this project. Thus, analysis using Finite Element Analysis (FEA) software is required to analyze the force for tension and compression at the push rod suspension.

1.3 Objectives

An objective of this project is to produce a composite push rod suspension for a Formula Students race car.

1.4 Scope of Study

The scopes of this project are:

- a) To design the push rod suspension using CAD software, CATIA.
- b) Fabricate sample of composite push rod suspension using glass-fiber reinforced polymer composite.
- c) Test the sample using 3-point bending and tensile test.

1.5 Expected Result

In order to reduce the weight for the current steel push rod suspension, the final result is to produce the lightweight glass-fiber reinforced polymer composite push rod suspension for UTeM's Formula Student race car.

CHAPTER 2

LITERATURE REVIEW

2.1 History of Formula Student

First Formula Student or Formula Society of Automotive Engineers (SAE) was held in 1979 at University of Houston and conceived by Dr. Kurt M. Marshek. Before this, the formula SAE was known as SAE Miny-Indy (Formula SAE, 2007). Miny-Indy means the car was small compared to the Formula 1 race car. First car entered this competition was made out of wood and used five horsepower engine. The engineering students who had entered this first Formula SAE competition must designed and build a small race car using the same engine power. For the first formula SAE competition, thirteen universities were entered but only eleven universities had completed this race. University of Texas is the first university has won his race.

On 1980, three students from University of Texas at Austin had proposed a new rules and regulation and also new concept of Mini-Indy. All the engine must used four stroke engines with 25.4 intake restriction (Formula SAE, 2007). Then, Dr. Robert Woods from University of Texas changed the concept of the competition. He wanted students to design and build a race car for limited series production.

Starting from this until now, the Formula SAE has make a lot of changes in term of concept, rules and regulation and also many more. Now, a formula SAE has become more establish and attracts many schools and universities to join this competition.