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ABSTRAK  

 

 

 

Kaedah span polimerik ialah satu kaedah yang digunakan untuk menyediakan sampel  

hidroksiapatit berliang dengan menggunakan serbuk hidroksiapatit komersial. Kesan-

kesan kadar pensinteran, masa kacauan dan tumpuan hidroksiapatit pada keporosan, 

kekuatan mampatan, kehabluran badan-badan berliang, mikrostruktur, pengikatan 

dan molekul dan suhu akan dikaji. Ia dijangka bahawa peningkatan serbuk yang 

dimasukkan ke dalam komposisi sluri akan mengakibatkan ketumpatan yang lebih 

tinggi dan peningkatan kekuatan mampatan pada badan-badan berliang 

hidroksiapatit. Bagaimanapun, komposisi optimum pemuatan hidroksiapatit akan 

dikaji semasa kajian ini seolah-olah tumpuan serbuk hidroksiapatit di dalam sluri itu 

terlalu tinggi ia akan menghasilkan sluri dengan kelikatan tinggi yang mana 

membawa kepada kesukaran dalam mensenyawakan span berselulosa. Sebaliknya, 

jika tumpuan hidroksiapatit di dalam sluri itu adalah terlalu rendah, jumlah zarah-

zarah hidroksiapatit akan berkurang mengakibatkan kekuatan mampatan lebih rendah 

dan ketumpatan yang rendah. Kadar pemanasan proses pensinteran hidroksiapatit 

berliang juga akan diliputi dalam kajian ini. Dijangka kadar pemanasan yang 

perlahan akan memberi ciri-ciri hidroksiapatit berliang yang lebih baik dalam soal 

ketumpatan, kekuatan mampatan dan kehabluran berbanding dengan pemanasan 

yang lebih cepat. Dalam kajian ini, peningkatan beban serbuk menyebabkan 

peningkatan dalam ketumpatan dari 0.37 g/cm3 sehingga 0.66 g/cm3 dan 

penghabluran. Kajian ini mendapati bahawa kadar serbuk pada 75% adalah 

komposisi optimum untuk hidroksiapatit. Untuk kadar pemanasan, keputusan yang 

diperolehi menunjukkan pemanasan yang lebih lambat memberikan ketumpatan 

lebih tinggi iaitu 0.48 g/cm3 dan penghabluran yang lebih tinggi berbanding 

pemanasan yang lebih cepat. Sebuah masa pengacauan yang lebih lama juga 

menghasilkan keputusan yang sama seperti kadar pemanasan lambat dimana 

mengakibatkan ketumpatan dan penghabluran yang lebih tinggi. 
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ABSTRACT  

 

 

 

Polymeric sponge method is a method that used to prepare porous hydroxyapatite 

sample by using commercial hydroxyapatite powder. The effects of sintering rate, 

stirring time and hydroxyapatite concentration on porosity, compressive strength, 

crystallinity of the porous bodies, microstructure, molecular and bonding and 

temperature will be studied. It is expected that increasing of powder loading in slurry 

composition will result in higher densities and increase of compressive strength of 

the porous hydroxyapatite bodies. However, the optimum composition of 

hydroxyapatite loading will be investigated during this study as if the concentration 

of hydroxyapatite powder in the slurry is too high it will produce slurry with high 

viscosity which leading to difficulty in impregnating the cellulosic sponge. On the 

other hand, if the hydroxyapatite concentration in the slurry is too low, the number of 

hydroxyapatite particles will be less resulting in lower compressive strength and low 

density. Heating rate of sintering process of porous hydroxyapatite also will be 

covered in this study. It is expected that slow heating rate will give better properties 

of porous hydroxyapatite in terms of density, compressive strength and crystallinity 

compared to faster heating. In this study, increase in the powder loading was resulted 

in increase of apparent density from 0.37 g/cm3 to 0.66 g/cm3 and crystallinity. The 

study found that powder loading of 75% is the optimum composition of 

hydroxyapatite. For the sintering rate, results obtained show the slower sintering give 

higher apparent density of 0.48 g/cm3 and crystallinity than faster sintering rate. A 

longer stirring time also yielded the same results as slower sintering rate where it 

resulted in higher apparent density and crystallinity.  
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CHAPTER 1  

INTRODUCTION   

 

 

 

Hydroxyapatite (HA) is one of the most biocompatible ceramics because of its 

significant chemical and physical resemblance to the mineral constituents of human 

bone and teeth (Swain, 2009). The excellent biocompatibility that it has, make it 

meets the requirement of any materials designed for bone repair and augmentation 

(Sopyan, et al, 2007). Its major advantage is that it is biologically active in a skeletal 

site, i.e. bone opposition, rather than fibrous encapsulation, is produced around the 

implant. It is this feature of favourable bioactivity which distinguishes 

hydroxyapatite from the various alloys and polymers used in skeletal implants and 

allows biological, ‘cementless’, fixation with enhanced long-term survival (Bonfield, 

2006). 

 

Hydroxyapatite is a bioactive coating that is usually prepared on the surface of 

biomedical metal implants, most commonly titanium and its alloys (Gilbert, 2008)  to 

render good bioactivity between the host and the implant while the metallic implant 

provides mechanical strength for weight-bearing needs (Cheng, et al, 2006). Plasma 

spraying is the most extensively used for applying a hydroxyapatite coating to a 

metal surface. The hydroxyapatite powder is introduced into a flame that directs the 

particles for deposition onto the metal surface (Wise, 1996). Nevertheless, long term 

stability of the plasma-sprayed coatings is an exigent problem because of their high 

degree of porosities, poor bond strength, non-stoichiometric composition and 

amorphous structure. Then, the other techniques have been develop such as laser 

surfacing, sol-gel, magnetron sputtering, ion-beam deposition, pulse-laser deposition, 

electrochemical deposition and electrophoretic deposition (EPD) (Gilbert, 2008). 
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Hydroxyapatite can be produced into various forms like porous and dense bodies 

(Nicholson, 2002). Porous hydroxyapatite shows strong bonding to the bone 

compared to dense bodies. The pores provide a mechanical interlock leading to firm 

fixation of the material (Sopyan, et al, 2007). The strength of the hydroxyapatite 

implants will increase as the bone tissue grows well into the pores. When compared 

to the dense hydroxyapatite, hydroxyapatite in form of porous is more resorbable and 

more osteoconductive (Swain, 2009). The pores also provide a way for living bone to 

attach itself permanently to an implant (Ain, et al, 2008). 

 

There are a lot of method to produce porous hydroxyapatite, including incorporation 

of volatile organic particles in hydroxyapatite powder, polymeric sponge method, gel 

casting foams, starch consolidation, microwave processing, slip casting and 

electrophoretic deposition technique (Sopyan and Kaur, 2009). In this project, 

polymeric sponge method is used to produce the porous hydroxyapatite. Polymeric 

sponge method is performed by impregnating porous cellulosic substrates (sponge) 

with hydroxyapatite slurry. Slurry is prepared by adjusting hydroxyapatite powder 

loading. 

 

 

1.1 Problem Statement 

 

There are several biocompatible metallic materials that are frequently used as 

implanting materials to replace damaged bone or to provide support for healing 

bones or bone defects such as stainless steel, titanium, aluminum, vanadium, cobalt, 

chromium and nickel (Davis, 2003). However, the main disadvantage of metallic 

biomaterials are their lack of biological recognition on the material surface and 

possibility release of toxic metallic ions and/or particles through corrosion or wear 

possible that lead to inflammatory cascades and allergic reactions, which reduce the 

biocompatibility and cause tissue loss (Alvarez and Nakajima, 2009). For example 

the excessive cobalt may lead to polycythemi, hypothyroidism, cardiomyopathy and 

carcinogenesis. Nickel can lead to eczematous dermatitis, hypersensitivity and 

carcinogenesis. Aluminum also has it drawbacks where it has been associated with 
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anemia, osteomalacia and neurological dysfunction. Titanium that regarded as inert 

has been associated with pulmonary disease (Ratner, 2004).  

 

The limitations of those materials was overcome by the introduction of synthetic 

hydroxyapatite, a calcium phosphate compound which approximates to the bone 

mineral phase that comprises about 45% by volume and 65% by weight of human 

cortical bone (Anonymous, 2010). Then the hydroxyapatite in form of porous are 

then further developed because their interconnected pores can provide a favorable 

environment for bone ingrowth and osseointegration (Jo, et al, 2009). Pores are 

important, they are conduits for blood flow (blood is generated in bone marrow) and 

they allow bones to be strong without being too heavy (Ain, et al, 2008). 

 

 

1.2 Objective 

 

The objectives of this project are: 

 

(i). To characterize the physical and chemical properties of hydroxyapatite 

powder and cellulose sponge used for preparing porous hydroxyapatite. 

(ii). To produce porous hydroxyapatite via polymeric sponge method and 

characterize its physical and chemical properties. 

(iii). To optimize the slurry composition in order to achieve the best properties 

(porosity, compressive strength and crystallinity) of porous hydroxyapatite. 

(iv).  To evaluate the effect of heating rate on porosity, compressive strenght and 

crystallinity of porous bodies. 

 

 

1.3 Scope of Study 

 

Hydroxyapatite powder and cellulose sponge is the main raw material in this project. 

The porous hydroxyapatite was prepared through polymeric sponge method. In 

polymeric sponge method, it involves preparation of slurry where hydroxyapatite 

powder was mixed with distilled water. The cellulose sponge was soaked into the 
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prepared slurry. It follows by drying the samples at room temperature for 72 hours. 

The dried samples were then subjected to heat treatment at 600°C in order to burn 

out the organic matrix. Sintering at 1250°C was then carried out to the samples with 

variation heating rate at 5°C/min and 20°C/min. The evaluation on effect of heating 

rate and hydroxyapatite powder loading on the porosity, compressive strength and 

crystallinity of porous bodies will be implemented. 
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CHAPTER 2 

LITERATURE REVIEW  

 

 

 

2.1 Biomaterial 

 

A biomaterial can be defined as any material used to make devices to replace a part 

or a function of the body in a safe, reliable, economic and physiologically acceptable 

manner. The purpose of using biomaterials is to improve human health by restoring 

the function of natural living tissues and organs in the body (Park and Lakes, 2007). 

Table 2.1 shows the biomaterials classifications and examples. 

 

Table 2.1: Biomaterial classifications (Anonymous, 2001). 

Metals Ceramics Polymers 

316L stainless steel 

Co-Cr Alloys 

Titanium 

Ti6Al4V 

Alumina 

Zirconia 

Carbon 

Hydroxyapatite 

Ultra high molecular weight 

polyethylene 

Polyurethane 

 

Biomaterials are used for some application such as orthopedics applications. All the 

three types of the material that show in Table 2.1 are used in biomaterial 

applications. Metallic materials are used for load bearing members like pins, plates 

and femoral stem. In dental applications, metallic biomaterials are used for anchoring 

tooth implants and as parts of orthodontic devices. Ceramics like hydroxyapatite is 

used for bone bonding applications to assist implant integration, coating on metallic 

pins and to fill large bone voids that caused by disease or trauma. Other ceramic 

materials like alumina and zirconia are used in wear applications such as joint 

replacements. Polymers also used in orthondontic devices such as plates and 
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dentures. Silicones are polymer material that used in cosmetic surgery such as breast 

augmentation (Anonymous, 2001). Table 2.2 shows the summary of the three types 

of the materials (metals, ceramics and polymers) used in orthopedic application. 

 

Table 2.2: Orthopedic biomaterials and their primary use (Basu, et al, 2009). 

 

 

 2.2 Types of Implant Tissue Response 

 

No material implanted in living tissues is inert; all materials elicit a response from 

the host tissue. (Hench and June, 1993). In general, materials can be placed into three 

classes that represent the tissue response they are elicit, which are inert, 

bioresorbable and bioactive (Ain, et al, 2008) as shown in Table 2.3. 

 

 

 

 

 

Material Primary uses 

Metals  

Ti alloy (Ti-6%, Al-4%), Co-Cr-Mo alloy, 

Stainless steel 

Bone plates, screws, total-joint 

arthroplasty (TJA) components, 

cabling 

Polymers 

Poly(methyl methacrylate) (PMMA), 

Ultrahigh-molecular weight polyethylene 

(UHMWPE), PLA, PLGA, HA/PLGA, 

PCL 

Bone cement, low friction inserts for 

bearing surface in TJA, bone tissue 

engineering scaffolds, bone screws 

Ceramics 

Alumina (Al2O3), Zironia (ZrO2) 

Bearing surface TJA components, hip 

joints, coating on bioimplants, bone 

filler, alveolar ridge augmentation 

Composites 

HA/collagen, HA/gelatin, HA/PLGA, 

PLGA 

Bone graft substitute and tissue 

engineering scaffolds. 
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Table 2.3: Classes of biomaterials according to tissue response (Ain, et al, 2008). 

Classes of 

Biomaterial 

Tissue Response Examples 

Bioinert Mechanical interlock, separation by a 

fibrous tissue of various thickness 

Tantalum, Titanium, 

Alumina, Zirconia 

(PSZ), UHMW 

Polyethylene, Stainless 

Steel 

Bioactive Direct biochemical bond High Density 

Hydroxyapatite, Glass 

Ceramics A-W, Certain 

Bioglasses 

Bioresorbable Gradual dissolution, replacement of 

implants by the tissue 

Porous Hydroxyapatite, 

Tricalcium Phosphate 

Polyurethane, 

Polylactic-polyglycollic 

Acid Copolymer 

 

 

2.2.1 Bioactive 

 

Bioactive materials are a group of biocompatible materials that can attach directly 

with body tissues and form chemical and biological bond during early stages of the 

post implantation period (Basu, et al, 2009). The concept of bioactive material is 

intermediate between a bioinert material and biodegradable or resorbable material. 

Upon implantation in the host, surface reactive ceramics form a strong bond with an 

adjacent tissue. The bioactive materials (ceramic, glasses and glass-ceramics) bone to 

living bone through a carbo-hydroxyapatite layer (CHA) biologically active, which 

provides the interface union with the host. This phase is chemical and structurally 

equivalent to the mineral phase of the bone and the responsible of the interface union 

(Caruta, 2006). 
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2.2.2 Bioinert  

 

Bioinert materials are biocompatible materials but cannot induce any interfacial 

biological bond between implants and bone. When a bioinert material is implanted, a 

capsule-like layer forms on the surface of the implant to keep it isolated from the 

living part of the body. For example, bioinert ceramics such as alumina or zirconia, 

develop fibrous capsules at their interface when implanted. However, the thickness 

of an interfacial fibrous layer depends upon motion and the extent of required fit at 

the interace. Therefore, bioinert materials are not useful for long-term application 

(Basu, et al, 2009). 

 

 

2.2.3 Biodegradable / Bioresorbable 

 

Bioresorbable materials are the type of biocompatible materials that are gradually 

resorbed before they finally disappear and are totally replaced by new tissues in vivo. 

This kind of material that is bioresorbable, degrades with time inside the body’s 

environment. The degradation rate should be such that the regeneration rate of new 

tissue will be same as the material resorption rate. Tricalcium Phosphate (TCP) and 

bone cement are the two examples of bioresorbable materials (Basu, et al, 2009). 

 

 

2.3 Metal 

 

 Metal are used as biomedical materials because of their excellent mechanical 

properties and fair biocompatibility but there are some of them that exhibit good 

biocompatibility, i.e. they do not cause serious toxic reactions in the human body 

such as stainless steel, cobalt alloys, titanium alloys and noble metals (Shi, 2006). 

Some metals are used as passive substitutes for hard tissue replacement such as total 

hip and knee joints as shows in Figure 2.1. The figure shows fracture healing aids of 

bone plates and screws, spinal fixation devices and dental implants. Those devices 

have excellent mechanical properties and corrosion resistance. Some metallic alloys 
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