



### FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

#### BORANG PENGESAHAN STATUS LAPORAN

### PROJEK SARJANA MUDA II

Tajuk Projek : Smart Switch

Sesi

Pengajian

: 2009/2010

Saya MOHD KHAIROL AZIZIN BIN TOINGmengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- Sila tandakan ( √ ):

SULIT\* (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD\* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS)

Tarikh: 30 APRIL 2010 Tarikh: 30 APRIL 2010

CHIARULSYAH WASLI

Pensyarah
Fakulti Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka (UTeM)
Karung Berkunci No 1752
Rishat Pos Durjan Tunggal

Rarung Berkung North Pejabat Pos Durian Tunggal
76109 Durian Tunggal, Melaka
(COP DAN TANDATANGAN PENYELIA)

## **SMART SWITCH**

## MOHD KHAIROL AZIZIN BIN TOING

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic Engineering (Industrial Electronic) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

April 2010

### DECLARATION

"I hereby declare that this report is result of my own effort except for works that have been cited clearly in the references."

Signature : .....

Name : MOHD KHAIROL AZIZIN BIN TOING

Date : 30 APRIL 2010

# SUPERVISOR APPROVAL

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Electronic Industrial) with Honours"

Signature : .....

Supervisor's Name : EN CHAIRULSYAH BIN ABD WASLI

## **DEDICATION**

I dedicate to my family for the support, help, cooperation and guidance for this project. I am thankful for their love and never give up on me no matter what happen.

### **ACKNOWLEDGEMENTS**

Syukur Alhamdulillah, praise be to Allah S.W.T for blessing us all together, to succeed things at the very ease after putting each and every efforts that we have poured. Before I go any further, I would like to thank God with the blessing that help me go through the Projek Sarjana Muda and thesis smoothly.

For first of all, I want to wish a appreciation. I would like to thank to my PSM supervisor, Mr Chairulsyah Bin Abd Wasli as he is the one who set things right specially for this course at this semester and his helps and supports for completion of this project. Also, I would like to take this opportunity to express my deepest gratitude to all my friends who has answer my questionnaire as my survey for this project. I am also to thank for all their kindness and guidance on me throughout my project who I do not mention here.

### ABSTRACT

This project was to develop a system switch control automatically. Purpose of this project conducted would be to generate and develop a system to control lighting usage and exhaust by automatic in toilet. Control process light switch and exhaust produced by using 'Programmable Logic Controller (PLC). This software communicated with hardware connected to PLC, for example are such as infrared, ultrasonic and others. Sensor used as key component to receive and sends signals to PLC to control all of this project. FLASH MX software used to show this project in animation. To realize this project a, profoundest study made on sensor, PLC and software. Basic and major study applies in this project including background study, systems development, programmed test field and production.

### **ABSTRAK**

Projek ini adalah untuk membina sebuah sistem pengawalan suis secara automatik. Tujuan projek ini dijalankan adalah untuk menghasilkan dan membangunkan satu sistem untuk mengawal penggunaan lampu dan ekzos secara automatik di dalam tandas. Proses pengawalan suis lampu dan ekzos dihasilkan dengan mengunakan 'Programmable Logic Controller (PLC). Perisian ini berkomunikasi dengan perkakasan yang disambungkan kepadanya, seperti sensor- sensor yang sedia ada. Contohnya adalah seperti infrared, ultrasonic dan lain-lain. Sensor digunakan sebagai komponen utama untuk merima dan menghantar isyarat kepada PLC untuk megawal keseluruhan projekini. Perisisan FLASH MX digunakan untuk menunjukkan projek ini dalam bentuk animasi. Untuk merealisasikan projek ini suatu kenyataaan, kajian yang mendalam dilakukan mengenai sensor-sensor, PLC dan perisisan. Kajian yang asas dan utama yang digunakan dalam projek ini termasuk kajian latar belakang, pembangunan sistem,ujian lapangan dan penghasilan program.

# LIST OF CONTENTS

| CHAPTER | CONTENT                | PAGE |
|---------|------------------------|------|
|         | PROJECT TITLE          | i    |
|         | STATUS FORM            | ii   |
|         | DECLARATION            | iii  |
|         | SUPERVISOR DECLARATION | iv   |
|         | DEDICATION             | v    |
|         | ACKNOWLEDGEMENT        | vi   |
|         | ABSTRACT               | vii  |
|         | ABSTRAK                | viii |
|         | LIST OF CONTENTS       | ix   |
|         | LIST OF TABLES         | xii  |
|         | LIST OF FIGURES        | xiii |
|         | LIST OF ABBREVIATION   | xvii |
| I       | INTRODUCTION           |      |
|         |                        |      |
|         | 1.1 Introduction       | 1    |

2

| 1.3  | Object              | tives of project               | 4  |
|------|---------------------|--------------------------------|----|
| 1.4  | Proble              | em Statement                   | 4  |
| 1.5  | Scope               | of Work                        | 5  |
| 1.6  | Expec               | ted outcomes                   | 5  |
| 1.7  | Metho               | odologies                      | 7  |
| 1.8  | Organ               | ization of Thesis              | 8  |
| LITI | ERATUI              | RE REVIEW                      |    |
| 2.1  | Infrare             | ed Sensor                      | 9  |
|      | 2.1.1               | Infrared Design                | 11 |
|      | 2.1.2               | Pyroelectric Infrared          | 11 |
| 2.2  | Ultras              | onic Sensor                    | 14 |
|      | 2.2.1               | Ultrasonic proximity detectors | 15 |
|      | 2.2.2               | Ultrasonic sensor's timing     | 17 |
| 2.3  | Relay               |                                | 18 |
|      | 2.3.1               | Identifying Relay Function     | 18 |
| 2.4  | Progra              | ammable Logic Controller (PLC) | 20 |
|      | 2.4.1               | Input Devices                  | 24 |
|      | 2.4.2               | Output Devices                 | 24 |
|      | 2.4.3               | Programmable Controller        | 24 |
|      | 2.4.4               | PLC Ladder Diagram             | 25 |
| 2.5  | Macromedia Flash MX |                                |    |
|      | 2.5.1               | Flash Interface                | 27 |
|      | 2.5.2               | Drawing and Coloring with      | 28 |
|      |                     | Macromedia Flash MX            |    |
|      | 2.5.2.              | 1 Drawing Tools                | 28 |

Background Project

1.2

II

|    |      | 2.5.2.2 Brush Tool                 | 29 |
|----|------|------------------------------------|----|
|    |      | 2.5.3 Pen and Sub selection        | 29 |
|    |      | 2.5.4 Animation in Macromedia      |    |
|    |      | Flash MX                           | 30 |
|    |      |                                    |    |
| ш  | PRO  | JECT METHODOLOGY                   |    |
|    | 3.1  | Project methodology workflow       | 31 |
|    | 3.2  | Analysis                           | 32 |
|    | 3.3  | Calculation                        | 38 |
|    | 3.4  | Power Utilization Conservation     | 39 |
|    | 3.5  | Survey analysis                    | 44 |
| IV | RES  | ULT AND ANALYSIS                   |    |
|    | 4.1  | Calculation Result Analysis        | 50 |
|    |      | 4.1.1 Power Utilization Efficiency | 51 |
|    | 4.2  | Animation Result Analysis          | 51 |
|    | 4.3  | Hardware Analysis                  | 54 |
|    | 4.4  | Ladder Diagram Analysis            | 59 |
|    |      |                                    |    |
| v  | DISC | CUSSION AND CONCLUSION             |    |
|    | 5.1  | Discussion                         | 61 |
|    | 5.2  | Conclusion                         | 63 |

| 5.3  | Improvement and suggestion | 63 |
|------|----------------------------|----|
| REF  | ERENCE                     | 64 |
| A DD | FNDIX (A.F)                | 65 |

# LIST OF TABLES

| NO  | TITLE                                       | PAGE |
|-----|---------------------------------------------|------|
| 2.1 | Specifications And Dimension PIR325         | 14   |
| 2.2 | Abbreviated List of Commonly Used Relay     |      |
|     | Device Function Number                      | 19   |
| 2.3 | Commonly Used Suffix Letters Applied to     |      |
|     | Relay Function Numbers                      | 19   |
| 2.4 | Advantages of Programmable Logic Controller | 25   |
| 3.1 | Specification for ultrasonic sensor         | 37   |
| 3.2 | Total power utilization                     | 41   |
| 3.3 | Total electricity usage RM per month        | 41   |
| 3.4 | Time calculation within Smart Switch        | 42   |
| 3.5 | Total power utilization                     | 42   |
| 3.6 | Total electricity usage RM per month        | 43   |
| 3.7 | The summary table of survey analysis        | 48   |
| 4.1 | Input and Output of the Ladder Diagram      | 59   |

# LIST OF FIGURES

| FIGURE | TITLE                                       | PAGE  |
|--------|---------------------------------------------|-------|
| 1.1    | Flow Chart of Methodology                   | 5     |
| 1.2    | Flow Chart                                  | 6     |
| 2.1    | Pyroelectric Infrared                       | 11    |
| 2.2    | PIR System                                  | 12    |
| 2.3    | PIR Funtion                                 | 12    |
| 2.4    | PIR Output Signal                           | 13    |
| 2.5    | Fresnel Lens                                | 13    |
| 2.6    | Ultrasonic sensor                           | 14    |
| 2.7    | An ultrasonic sensor used to detect without | :     |
|        | contact the amount of slack in a ribbon of  |       |
|        | material                                    | 16    |
| 2.8    | Typical of Relay                            | 18    |
| 2.9    | Keyence PLC                                 | 23    |
| 2.10   | Block Diagram Design                        | 24    |
| 2.11   | Ladder Diagram Design                       | 25    |
| 2.12   | Flash Workplace                             | 27    |
| 3.1    | Flow Chart of Methodology                   | 33    |
| 3.2    | Block Diagram of PLC, input and output.     | 34    |
| 3.3    | Ultrasonic movement detector sensor circu   | it 35 |

| 3.4  | Ultrasonic and infrared replacement       | 39 |
|------|-------------------------------------------|----|
| 3.5  | Times using toilet                        | 44 |
| 3.6  | Spending time                             | 45 |
| 3.7  | Exhaust and lamp already on               | 45 |
| 3.8  | User Switch off the lamps and exhaust     | 46 |
| 3.9  | When the toilet is full, are you looking  |    |
|      | for the other toilets                     | 47 |
| 3.10 | Does the lamps and exhaust will waste the |    |
|      | power if turn on continuously             | 47 |
| 4.1  | Describe of the smart switch function     |    |
|      | system off                                | 52 |
| 4.2  | Describe of the smart switch function     |    |
|      | system on                                 | 52 |
| 4.3  | ON and OFF PLC process system,            |    |
|      | OFF condition                             | 53 |
| 4.4  | ON and OFF PLC prosess system             |    |
|      | ON condition                              | 53 |
| 4.5  | Wiring diagram for circuit input, PLC     |    |
|      | and output plant.                         | 54 |
| 4.6  | Ultrasonic sensor transmitter 40T and     |    |
|      | receiver 40R                              | 55 |
| 4.7  | Ultrasonic sensor function                | 55 |
| 4.8  | Output function                           | 56 |
| 4.9  | Flow Chart for project Diagram            | 58 |
| 4.10 | Ladder diagram for the system operation   | 60 |

# LIST OF APPENDICES

| <b>APPENDIX</b> | TITLE                                    | PAGE |
|-----------------|------------------------------------------|------|
| A               | Door Sensors for Automatic               | •    |
|                 | Light Switching System                   | 66   |
| В               | Low Cost Infrared Controlled Energy      |      |
|                 | Saving                                   | 71   |
| C               | Air Ultrasonic Ceramic Transducers       | 73   |
| D               | Electricity Tariff from 1 March 2009     | 75   |
| E               | 3-Terminal 1A Positive Voltage Regulator | 76   |

### LIST OF ABBREVIATION

UTeM - Universiti Teknikal Malaysia Melaka

PLC - Programmable Logic Controller

Amp - ampere

V - voltage

S - second

kWh - kilo Watt hour

CPU - Control Processing Unit

RAM - Random Access Memory

ROM - Read Only Memory

### **CHAPTER I**

### INTRODUCTION

Chapter I start with the introduction and background of the project. It is followed by objectives, scope of the project and problem statements. Research methodologies and organization of the thesis are presented in the last of the part.

## 1.1 Introduction

Smart switch is a system that a switch controls the switching of lightning and exhausting in a toilet automatically. The users of the toilet who come in and come out to the toilet are no need to switch on or switch off the lighting on and off automatically.

Programmable Logic Controller (PLC) is a famous controller system used in controlling process. PLC used control the devices by receiving the input signals, processing the input signals and sending the output signals. This project is to develop a control system that will control the lighting and exhaust system whether to turn on or turn off the lightning and exhaust system.

# 1.2 Background of Project

The function of this equipment is to switch on/off room lamps and other appliance in the room automatically especially suitable used in the house toilet or public toilet. Currently a toilet use manual switch to control on off all the lamps and exhaust fan. It cause high electric consumer where the light still on while there is no body inside. This project used PLC, double sensors that are infrared sensor and ultra sonic sensor and relay and. Infrared will detect moveable and object in this room with the setting the off timer then these sensors could disable current to light and exhaust fan.

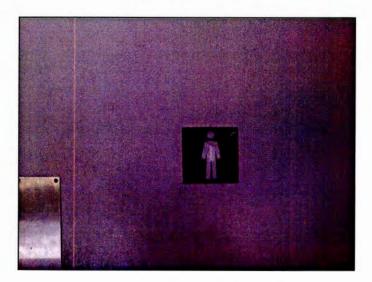



Figure 1.1: Toilet entrance



Figure 1.2: Toilet lamps



Figure 1.3: Toilet exhaust

Figure 1, 2, 3 are pictures of a few public toilet. Every toilet averagely have 12 main lamps and exhaust for public toilet. Then, each toilet only has one main switch that controls the switching of lamps and exhaust toilet. Thus, the lamps and exhaust will continuously on if there no one to turn it off. It was a wasting of electricity utilization that was also wasting power, cost, and will increase power needed by consumer. So, as solution, automatic switching needed to solve this problem and then introduce Smart Switch as the solution for this problem.

PLC act as a main part in this project as it triggers and controls the whole circuit. Process of turning on and turning off will be controlled by PLC. This system is design to detect the toilet user who come in and come out in the toilet. When the user toilet comes in, infrared sensor will detect the user and automatically switch on the lamp and the exhaust. The movement of the user in the toilet will detect of the ultrasonic sensor and keep the lamp and exhaust to on condition. The animation of this system is developed by using software Flash MX.

# 1.3 Objectives of Project

Following are the objectives set in this project:

- To design a circuit that controls the relay to lamp the lamp and exhaust system
- To develop the model of the control system based on the Programmable Logic Controller (PLC).

### 1.4 Problem Statement

The usage of the light and exhaust in a toilet are necessary in a toilet system. However, the usage of the lamp and the exhaust are directly twenty four hour per day without turned it off. Thus, their will cost the usage of the electricity by wasting electricity power even there is no user in the toilet. By then, it will cost of the electricity usage and wasted the power and monthly budget electricity billing. The system in the toilets are still conventional where to switch the lamps and exhaust still needed toilet keeper to switch on or switch off the lamps and exhaust which is manually switching. Thus by design smart switch, the lamps and exhaust will turn on turn off automatically to solve the problem and save more power of electricity.

# 1.5 Scopes of Work

The system designed to detect the user come in and come out to switch on and switch off the lamp and exhaust. The lamps and the exhaust switching used by sensor used in the toilet within the set up of sensors in the toilet. The used of sensor of infrared will detect the user come in and come out into toilet. Then, ultrasonic sensor used to detect the movement of the user in the toilet to keep the lamp and exhaust on or off. This project will involve the research on the temperature controller with PLC. PLC will be the main part of the project as it controls the switching process in the toilet. FLASH software also will be used to develop the animation for smart switch system.

# 1.6 Expected Outcome

The expected outcome for this project is that the automatic switch controller is build. This device use PLC as controller to the output. The animation of the system is build.

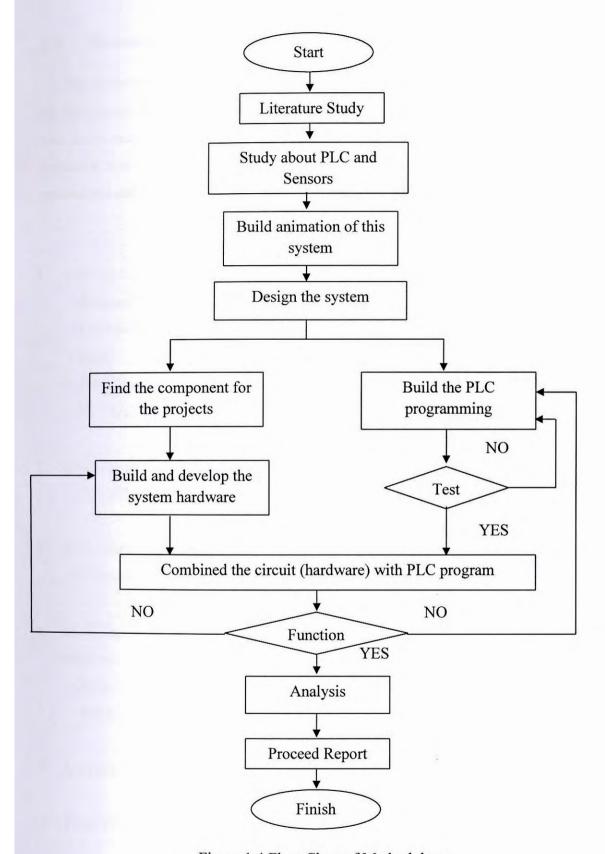



Figure 1.4 Flow Chart of Methodology

# 1.7 Methodologies

The smart switch builds by using PLC as a main component. PLC used to control the all the part in this project. PLC receives the signals from sensors like infrared sensors and sends output signals to control the output of the project. With this system of the lightning and exhausting system can be controlled by the output of the PLC. The procedures and methods used to achieve the project objectives are;

- 1. Literature review and background study
  - Infrared Sensor
  - · Ultrasonic sensor
  - · Relay
  - Programmable Logic Controller (PLC)
  - · FLASH Software
- 2. Studying and develop animation of the project with software.
  - FLASH Software used to develop the animation
- 3. Build switch sensor circuit in order to send the input signals to the PLC.
  - Ultrasonic sensor circuit builds
- 4. Studying and handling the PLC to control the whole project to maintained the water temperature.
  - Studying PLC controller system.
  - Studying and develop PLC program.
- 5. Combine the hardware components with software system which is PLC.
- 6. Field Testing