

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF AUTONOMOUS LINE TRACKING ROBOT USING MICROCONTROLLER

Thesis submitted in a accordance with the requirements of the Universiti Teknikal Malaysia Melaka for the Degree of Bachelor of Engineering Manufacturing (Robotic & Automation) with Honours

By

MUHAMMAD AZRI BIN OTHMAN

Faculty of Manufacturing Engineering MAY 2008

ABSTRACT

This project is about the design and development of an autonomous line tracking robot using microcontroller. Basically, this type of robot is used as a global planning method for their navigation system in order to perform a required task. This project highlighted three objectives which are to design and develop a suitable mechanical structure of an autonomous mobile robot, to develop electronics hardware that is able to integrate both sensors and electrical motor with the micro controller and to develop a complete program for the microcontroller to achieve the required task of line tracking. The project flow started by conducting a literature review regarding to the project topic using books, internet articles, thesis, journals and other sources in order to get the valuable information to guide in the project development. Acrylics and aluminum are the main materials used to build the structure of the robot. To support robot navigation, infrared (IR) sensor has been installed on the robot. Microcontroller PIC16F877A was used to process the input from sensor and than execute the program to control two geared DC motors. Three main tests were developed in this project in order to observe the capability of the robot to track the printed line. They are the straight line, curve line and junction test. This project has successfully achieved the aims of this project with some technical aspects still can be improved in the future

ABSTRAK

Projek ini berkenaan dengan merekabentuk dan membangunkan automatik robot yang memiliki kemampuan untuk mengesan garisan mengunakan pemprosesan mikro. Kebiasaanya, jenis robot ini mengunakan kaedah perancangan global dalam menyokong perjalanannya dalam melakukan sesuatu tugasan yang diperlukan. Projek ini mengariskan tiga objektif iaitu, merekabentuk dan membangunkan rangka mekanikal robot yang sesuai, membangunkan pekakasan elektronik yang boleh berinteraksi antara sistem penderiaan dan motor elektrik kepada pemprosesan mikro, membangunkan satu program yang lengkap untuk pemprosesan mikro. Projek ini bermula dengan melakukan kajian ilmiah berkenaan dengan tajuk projek, dimana buku, artikel dari internet, tesis, jurnal atau sumber yang lain telah digunakan bagi mendapatkan maklumat yang bernilai bagi membimbing pembangunan projek. "Acrylics" dan aluminium merupakan bahan utama yang digunakan bagi membangunkan struktur mekanikal bagi projek ini. Bagi menyokong perjalanan robot, penderiaan infra merah (IR) telah dipasang kepada robot. Pemprosesan mikro PIC16F877A telah digunakan bagi mengolah data dari penderia dan kemudiannya melaksana pengatucaraan yang bersesuaian bagi mengawal dua motor arus terus bergear. Terdapat 3 jenis ujian telah dilakukan didalam projek ini bagi melihat sejauh mana kebolehupayaan robot menjejak dan mengikuti garisan, ujian garis lurus, ujian garisan bengkok dan ujian persimpangan. Projek ini telah berjaya mencapai objektif yang di tetapkan namun masih terdapat ruang dari segi teknikal yang boleh ditingkatkan di masa hadapan

ii

DEDICATION

For my beloved parents: Othman bin Mohamad Kalsum bt Chayos

And for my adored brother and sisters: Nurehan bt Othman Muhammad Yazid bin Othman Nurhafizah Bt Othman

ACKNOWLEDGEMENTS

Firstly, I would like to convey my gratitude towards the Al-Mighty for giving me the strength and perseverance to complete my PSM I report. Then, I would like to express my appreciation to those who has been great surprised and helpful for PSM I completion. Thus, I feel comfortably to take this golden opportunity to express my millions of acknowledge and gratitude to my supervisor, Mrs. Syamimi Bt Shamsuddin for her kindly advice and guidance without tireless effort during this PSM I completion.

Last but not least, I would like to special thanks to my parents, Mr. Othman Bin Mohamad and Mrs Kalsum Bt Chayos, who has been the loveliest advisor to give continual support and inspiration throughout my student life. With this my sincere and genial thanks to everyone I have not mentioned above from bottom of my heart. Thank you all.

TABLE OF CONTENTS

Abstract	i
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Figures	X
List of Tables	xiii
Sign and Symbols	xiv
1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Statements	2
1.3 Objectives	3
1.4 Scope	4
1.5 Project Schedule	5
1.5.1 PSM 1 Gantt chart	
1.5.2 PSM 2 Gantt chart	
1.5.3 Schedule Details	
1.5.3.1 Title Selection	7
1.5.3.2 Proposal	7
1.5.3.3 Problem review	8
1.5.3.4 Problem analysis	
1.5.3.5 Data collection	
1.5.3.6 Data analysis	
1.5.3.7 Final analysis	9
1.5.3.8 Design	9
1.5.3.9 Project development	9
1.5.3.10 Testing and modification	

2. LITERATURES REVIEW	11
2.1 Introduction	
2.2 Robotics	
2.3 Types of Robots	
2.3.1 Industrial robots	14
2.3.1.1 Cartesian robot or Gantry robot	14
2.3.1.2 Cylindrical robot	
2.3.1.3 Spherical or Polar robot	16
2.3.1.4 Articulated robot	16
2.3.1.5 SCARA robot	
2.3.1.6 Parallel robot	18
2.3.2 Nano Robots	18
2.3.3 Humanoid Robots	
2.3.4 Mobile Robot	20
2.3.4.1 Manual robot	21
2.3.4.2 Autonomous robot	22
2.3.4.2.1 Line tracking robot	23
2.3.4.2.2 Self localization robots	23
2.4 Control system	
2.4.1 Open loop system	
2.4.2 Feedback control system	27
2.5 Controller unit	28
2.5.1 Microcontroller	28
2.5.1.1 PIC 16F877A	29
2.5.1.2 Atmel - ATMEGA128	31
2.5.1.3 MC68HC908KX8	32
2.5.2 PLC	34
2.5.3 Timers	34
2.4.4 Counters	35

2.6 Motion trajectory	35
2.6.1 Two pairs of sensory input arrange close together	36
2.6.2 Three pairs of sensory input arrange at one straight line	37
2.6.3 Four pairs of sensory input arrange at one straight line	38
2.7 Electrical motor	38
2.7.1 DC Servo motor	39
2.7.2 Stepper motor	40
2.7.3 Brushless DC motor	41
2.8 Sensors	43
2.8.1 Infra red sensor	44
2.8.2 Photo resistor	45
2.8.3 Phototransistor	46
2.9 Programming	47
2.9.1 High level programming language	48
2.9.2 Low-level programming language	49
2.10 Previous Research	49
2.10.1 Journal on construction of an Autonomous Robot	
using Microcontroller PIC17C44	49
2.10.2 Journal on development of an Autonomous Robot	
using Microcontroller PIC18F2431	51
2.10.3 Journal on Prototype Development of an Intelligent	
Follower Mini Robot System using Microcontroller AT90S1200	52
2.11 Component selection summary	54
3. METHODOLOGY	56
3.1 Introduction	56
3.2 Project planning	56
3.2.1 Data Collection	58
3.2.2 Literature Review	59
3.2.3 Analysis and component consideration	59

3.2.4 Methodology	60
3.2.5 Project design and development	60
3.2.5.1 Electrical Circuit	60
3.2.5.2 Mechanical Structure	61
3.2.5.3 Programming	
3.2.6 Testing	
3.2.7 Thesis summation and final presentation	63
3.3 Project tools	
3.3.1 Research and study tools	64
3.3.1.1 Journals, books & thesis	64
3.3.1.2 Articles, manual & magazines	64
3.3.1.3 Internet	65
3.3.2 Flow chart	65
3.3.3 Designing tools	66
3.3.3.1 Solidworks 2005	
3.3.3.2 MPLAB IDE v7.40	
3.3.3.3 Express PCB	73
4. DESIGN AND DEVELOPMENT	75
4.1 Introduction	
4.2 Design and Development of mechanical structures	75
4.2.1 Base Frame	
4.2.2 Driven Train	
4.2.3 Body	
4.3 Electrical Circuit	<u></u> 86
4.3.1 Control Board	<u></u> 87
4.3.2 Motor Driver	
4.3.3 Infrared Sensor	
4.4 Program Development	<u>92</u>
4.4.1 Program Flowchart	93

4.4.2 Program Setup	<u>96</u>
4.4.3 Declaration of Prototype Function	<u>97</u>
4.4.4 Main Program, Data Type, Input and Output Declaration	98
4.4.5 Line Following Program	100
4.4.6 Function	102
4.4.7 Junction and Count Program	103
4.5 Bill of Material	105
5. TESTING, RESULT AND DISCUSSION	107
5.1 Introduction	107
5.2 Test 1: Straight Line	107
5.3 Test 2: Curve Line	109
5.4 Test 3: Junction and Grids Detection Test	111
6. CONCLUSION AND FUTURE WORKS	114
6.1 Conclusion	114
6.2 Future Works	115
REFERENCE	<u>_</u> 116
APPENDICES	

LIST OF FIGURES

1.1	PSM 1 Gantt chart	5
1.2	PSM 2 Gantt chart	6
2.1	Debeties og e multidissiplinent field	12
2.1		13
2.2	Cartesian robot structures diagram	15
2.3	Cylindrical robot structure diagram	15
2.4	Polar robot diagram	16
2.5	Articulated robot diagram	17
2.6	The Adept Cobra [™] s350 SCARA robot	17
2.7	Parallel robot diagram	18
2.8	Nano-robot	19
2.9	Humanoid robot (Asimo)	20
2.10	Pebbles mobile robot	21
2.11	Manual robot controlled using cable joystick	22
2.12	The open loop control system block diagram	26
2.13	The closed loop control system block diagram	27
2.14	Microcontroller PIC16F877A	30
2.15	Microcontroller ATmega128	32
2.16	Microcontroller MC68HC908KX8	33
2.17	Two pairs of sensor arrangement	36
2.18	Two pairs of sensor arrangement at a slight angle	37
2.19	Three pairs of sensor arrangement	37
2.20	Four pairs of sensor arrangement	38
2.21	Servo motor components	40
2.22	Stepper motor state for motion	41
2.23	Brushless DC motor	42
2.24	Sensor measurement system	44

2.25	Circuit diagram of Photoresistors	46
2.26	Phototransistors	47
2.27	Program language hierarchy	48
2.28	Side view of the robot	50
2.29	H-bridge	52
2.30	Transmission system and sensors location within the prototype	53
3.1	Project flow chart	57
3.2	SolidWork 2005 start menu	66
3.3	SolidWork 2005 window	67
3.4	SolidWork drawing tools window	67
3.5	SolidWorks 'part'drawing window	68
3.6	Figure 3.6: MPLAB IDE v7.40 start menu	69
3.7	MPLAB window	69
3.8	Project wizard window	70
3.9	Step1 (Device selection window)	70
3.10	Step 2 (Language toolsuite selection window)	71
3.11	Step 3 (Project name and directory set up	71
3.12	Step 4 (add files)	72
3.13	New project Summary	72
3.14	New Project window	73
3.15	ExpressPCB start menu	74
3.16	ExpressPCB window	74
4.1	Design of base frame	76
4.2	Wheel	78
4.3	Geared DC motor	78
4.4	Drive mechanism concept	79
4.5	Drive shaft	81
4.6	Motor coupling	81

4.7	Dimension of wheels coupling	82
4.8	Wheels coupling	83
4.9	Drive system	83
4.10	Castor wheels	84
4.11	Robot body	85
4.12	Autonomous Line Tracking robot	86
4.13	SK40B Start-Up kit	88
4.14	MD 10A motor driver	89
4.15	7 pair sensor layout	90
4.16	Sensor location	91
4.17	Sensor Control board	92
4.18	Flowchart symbols	94
4.19	Program Flowchart	95
4.20	Program Setup	96
4.21	PIC16F877A configuration	97
4.22	Function declaration	98
4.23	PIC16F877A pin diagram	99
4.24	Set- up PIC16F877A pins	100
4.25	Line Tracking program	101
4.26	Junction detection	102
4.27	Function program	103
4.28	Junction counting program	104
5.1	Straight line printed on the dark background	108
5.2	Initial state of robot	108
5.3	Sensor position	109
5.4	Curve line testing field layout	110
5.5	Start position	110
5.6	Junction field test	112
5.7	Turn position	112

LIST OF TABLE

3.1	Component selection	54
4.1	Motor specification	79
4.2	Sensor board component	90
4.3	Sensor control board component	91
4.4	Electrical and Mechanical components	105
4.5	Material	106

SIGN AND SYMBOLS

-	automated guided vehicles
-	Yaw
-	Roll
-	Pitch
-	Two Dimensional
-	Three Dimensional
-	Programmable Logic Circuit
-	Personal Computer
-	Direct current
-	Selective Compliant Articulated Robot Arm
-	Brussless Direct Current
-	Projek Sarjana Muda
-	Microcontroller unit
-	Random Access memory
-	Static random access memory
-	Read only memory
-	Programmable read-only memory
-	Erasable programmable read-only memory
-	Electrically erasable programmable read-only
-	Real time counter
-	Pulse-width modulation
-	Input and output
-	Infrared
-	Reduced Instruction Set Computer
-	Central computer unit
-	Complementary metal-oxide semiconductor
-	Analog to digital converter

xiv

CHAPTER 1 INTRODUCTION

1.1 Back ground

In the modern life system, manufacturing takes place under all types of economic system. Manufacturing comes from Latin word "*manu factura*" that means making by hand. The term refer to the human activity to produce something that useful and have a commercials value, whether it's in a small scale activity in such handicraft until to high technology activity [1]. In the simplest word, manufacturing is an activity that related to process added material value. Typically, manufacturing is directed toward the mass production of products for sale to consumers and it's become very important to us. When look around us; we can saw there are many types of manufacturing products with variety purpose. .Modern manufacturing includes all intermediate processes required for the production and integration of a product's components.

Robotics is a new technology that largely used in the manufacturing field. This new technology has found entrance to many industries. Besides that, robots are also employed in the nuclear industry, civil engineering, marine work, orbital space missions, ship building, agriculture and security super vision [2].

When we talk about applied robotics technology in manufacturing system, we cannot escape from descript or talk about an industrial robots or robotics arm. Industrial robot is a programmable machine designed to increase productivity, improve quality and also reduce direct labor (human) cost. Industrial robots are very familiar to most type of industries because the capability to provide services or perform their job that human cannot make it such as in hazardous environment, heavy or dangerous [3].

The new type of robot is concern about strategic. Autonomous mobile robots are the electromechanical systems that have capability to perform their task in an unknown environment [2]. In the industrial environment, autonomous mobile robots work in conjunction with material conveyors, part buffers, stationary robots and production machine. This autonomous mobile robot, also called automated guided vehicles (AGVs). Mostly AGVs task is to transport workpieces, parts and tools for machining. AGVs navigations can be guided using line printed on the floor or self localization with their environment.

1.2 Problem Statement

The design and development of an autonomous line tracking robot is a very complicated task. There are many aspects that should be considered such as mechanical system, electrical circuit and microprocessor programming. All these aspects need to be fully integrated between each other. So that, the autonomous robot can be perfectly functional to achieve the tasks provided.

In order to make sure this autonomous robot system fully integrate, the challenges are to decide and choose the best device should be implemented in this autonomous robot system. Furthermore, there are many types of microcontroller, sensor device and driven motor in the market. Each of them has difference specifications, capability and functions.

The biggest obstacle is to program the microcontroller based on the information gathered from the robot's line sensors. Basically each sensor provides the information

to controller based on the signal that they got and the controller will decide what to do base on the programming loaded.

For line sensor case, its information based on the rate of reflected light that have been detected by detector. In different environment or brightness of area, the rate of light detected by detector is fully different. So, the strong programming languages knowledge are needed to synchronize environment changes with the execute program in the microcontroller.

1.3 Objectives

The main aim of this project is to design and develop an autonomous line tracking robot using microcontroller. This is achieved through these objectives:

- 1. To design and develop a suitable mechanical structure of an autonomous mobile robot.
- 2. To develop electronics hardware that is able to integrate sensor and electrical motor with the micro controller.
- 3. To develop a complete program for the microcontroller to achieve the required task of line tracking.

1.4 Scopes

In order to design and development an autonomous line tracking robot using microcontroller, project scopes need to be defined for assist and guide the development of the project. The main scopes for this project are:

(a) Data collection:

Collect necessary data through literature review on existing autonomous line tracking robots, microcontroller, line sensor, driven motor and circuit design.

(b) Design electronics and mechanical system:

Create a circuit diagram for electronics part and design robot structure.

(c) Integration:

Build a complete set of autonomous robot by integrate the mechanical structure and electronics device.

(d)Programming and Testing

Build the complete set of program for microcontroller unit and run the testing for the complete autonomous robot

1.5 Project Schedule

1.5.1 PSM 1 Gantt chart

TASK	PERIOD	D WEEKS															
		WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13	WK14	WK15	WK16
1.0 PROJECT SELECTION	2 Weeks	•	•														
2.1 Title selection																	
2.2 Proposal preparation																	
2.0 CHAPTER 1	6 Weeks		<														
2.1 Problem review																	
2.2 Problem analysis																	
2.3 Chapter 1 writing and submition																	
3.0 CHAPTER 2	8 Weeks		•					-	-								
3.1 Data collection																	
3.2 Data analysis and case study																	
3.3 Chapter 2 writing and submition																	
4.0 CHAPTER 3	4 Weeks									•				•			
4.1 Final analysis																	
4.2 Chapter 3 writing and submition																	
5.0 PSM 1 PRESENTATION	6 Weeks											-					
5.1 Planning & drafting																	
5.2 Design PSM 2 presentation																	
5.3 Project Presentation																	
5.4 Report Submission																	

Figure 1.1: PSM 1 Gantt chart

1.5.2 PSM 2 Gantt chart

TASK	PERIOD	WEEKS															
		WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13	WK14	WK15	WK16
1.0 DESIGN	3 Weeks	•	•	•		•											
1.1 Mechanical																	
1.2 Electrical circuit																	
2.0 PROJECT DEVELOPMENT	7 Weeks			•													
2.1 Electrical																	
2.1.1 IR sensor																	
2.1.2 Motor driver																	
2.1.3 Control board																	
2.2 Mechanical																	
2.2.1 Body																	
2.2.2 Mechanism																	
2.3 Full assembly																	
2.4 PIC programming																	
3.0 TESTING AND MODIFICATION	3 Weeks										<			•			
3.1 Line following																	
4.0 PSM 2 REPORT	6 Weeks							•						•			
4.1 Chapter 4																	
4.2 Chapter 5																	
4.3 Chapter 6																	
5.0 PSM 2 PRESENTATION	5 Weeks											•					
5.1 Planning & drafting																	
5.2 Design PSM 2 presentation																	
5.3 Project Presentation																	
5.4 Report Submission																	

Figure 1.2: PSM 2 Gantt chart

Gantt chart above describe about the planning and flow of Projek Sarjana Muda (PSM). This Gantt chart shows the required topics, action and time needed in order to fulfill the PSM scope and objectives.

1.5.3 Schedule details

The detail of each element that stated in the Gantt chart was explained more clearly below.

1.5.3.1 Title Selection

Title selection have been done in the first week of 2007/2008 academics weeks. During this time, students need to find the PSM title and the supervisor that wills in charge and supervise their project until finish. Students can come out with their own title or pick PSM title that publishes in Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka website. If student interest to select one of the titles has been published, they need to meet the owner of the title and discuses requirement and the detail about the title. If student need propose their own title, they need to find the lecture that interest with their project and consenting to be their PSM supervisor.

1.5.3.2 Proposal

Proposal is a first documentation that student need to submit to their supervisor. This documentation show the rate of student understanding about the project that their chosen. Proposal contains the background of the project, objective project, problem statement and scope. All the information from the proposal such as problem statement and scope show the basic element should be covered in the project. And, the objective represented the main element should be achieved in the end of the project.

1.5.3.3 Problem review

Problem review is a hypothesis method used to predict all the problem will come out during this project being progress until its finish. It more to basics movement of the project by observe and view the project from the different type of angle.

1.5.3.4 Problem analysis

The entire problem that counted in problem review will be analyzed during this section.

The main purpose of problem analysis is to categories the problem in the subgroup based on their features and significances. So, the process to collect all data and information needed for solve all the outgoing problem can plan. The side purpose is to measure student understanding about all the element in their project.

1.5.3.5 Data collection

Where all the information and data needed to support the developing of the project is listed based on the problem has been analyze before. Journals, books, articles, thesis or conference paper that related with this project is collected.

1.5.3.6 Data analysis

Data analysis is the process to read and analysis all the data has been collected before. Journals and thesis are the main source of the data and information need to analyze. It's because journals and thesis are publish based on the previous research has been done a years before. So, it can be categories as a new technology has been founded in the world.

8

Beside that, other kind of documentation or information also important to support the developing knowledge to solve the problem that counted before. All the data being analysis is used to find the best solution to solve the problem.

1.5.3.7 Final analysis

All the data and solution gather from the data analysis have been analyzing secondly in this time. Final analysis used to make sure that solution is the best among the existing data and solution. Thus, the autonomous robot can achieve the objective successfully without huge technical problem.

1.5.3.8 Design

At this stage, design process has been occurred. The design process was included the whole system of the robot that divided into 2 main portion which is mechanical and electrical aspects. In designing mechanical aspects, there are two main elements had been considered that are robot body structure and mechanism. Whereas for electrical aspects, the designing process was focusing to 3 main element which is sensor, main board and motor driver circuit.

1.5.3.8 Project development

The development process of an autonomous line tracking robot was divided into 3 phase. At the first phase, the development process is more focusing on the body structure and mechanism. Than followed by electrical circuit development at the second phase and microcontroller programming at the last phase of development.