THE DEVELOPMENT OF COMPOSITE BODYWORK OF NOSE CONE PANEL FOR FORMULA VARSITY RACE CAR

MOHD HAFIDZ B. ZAKARIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

'Saya akui bahawa telah membaca karya ini dan pada pandangan saya karya ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Automotif)'

Tandatangan	:
Nama Penyelia I	:
Tarikh	:

THE DEVELOPMENT OF COMPOSITE BODYWORK OF NOSE CONE PANEL FOR FORMULA VARSITY RACE CAR

MOHD HAFIDZ B. ZAKARIA

Laporan ini dikemukakan sebagai memenuhi sebahagiaan daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Automotif)

Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka

APRIL 2009

C Universiti Teknikal Malaysia Melaka

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya"

Tandatangan	:
Nama penulis	:
Tarikh	:

To my parents..

ACKNOWLEDGEMENT

Greatest thanks to Allah Almighty for giving me strength while doing this project. This project could not have been done without Mr. Nurfaizey Bin Abd. Hamid, who not only served as my supervisor but also encouraged and challenged me throughout my academic program. He patiently guided me through the study process, never accepting less than my best efforts. I want to express my gratitude to my friends, family and colleagues, whose support and good will kept me going through the project. My biggest thanks go to my project team, Muslim and Firdaus who always gave moral support in my difficult time. During the slow and often interrupted evolution of this project I have accumulated many debts, only a proportion of which I have space to acknowledge here. I am grateful to many people for help, both direct and indirect, in writing this technical report.

Thank you.

2nd April 2008

ABSTRACT

This project is about the development of bodywork of the new nose panel of Formula Varsity race car by using composite material which is fiberglass/polyester laminated. The developments that has been planned in the bodywork are the refreshing new design for the nose cone panel which more focus on the element of aerodynamic and plus the weight reduction of the panel since the composite material replace the sheet metal. Furthermore, there is some analysis which known as Flexural Test that has been done in order to find the right type of layer for fiberglass. The test result show the flexural strength of each type of layer and based on the comparison between each specimen, only one specimen that have good flexural strength will be chosen in the fabrication process. The fabrication process used in this project is hand lay-up which has the lowest manufacturing cost but can produce the high quality of product.

ABSTRAK

Projek ini adalah berkaitan dengan penambahbaikan bahagian luar kereta lumba Formula Varsity iaitu komponen hadapan kereta lumba ("nose cone") dengan menggunakan campuran gentian kaca dan polyester. Antara penambahbaikan yang telah dirancang adalah merekabentuk komponen dengan bentuk baru yang lebih mementingkan nilai aerodinamik. Selain itu pengurangan terhadap berat komponen juga dilakukan memandangkan kepingan logam yang digunakan sebelum ini diganti dengan penggunaan bahan komposit. Di samping itu, satu analisis yang dikenali Ujian Lentur telah dilakukan dalam usaha mencari jenis lapisan gentian kaca yang sesuai. Keputusan ujian menunjukkan darjah kelenturan bagi setiap jenis lapisan dan berdasarkan kepada keputusan tersebut, satu jenis bahan ujian sahaja yang dipilih untuk digunakan dalam proses fabrikasi. Proses fabrikasi yang digunakan dalam projek ini ialah fabrikasi menggunakan tangan yang mempunyai kos pembuatan yang rendah tetapi mampu menghasilkan produk yang berkualiti tinggi.

CONTENTS

CHAPTER ITEMS

	PENGAKUAN	ii
	DEDIKASI	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiv
	LIST OF APPENDICES	XV
CHAPTER I	INTRODUCTION	
	1.1 Background of Project	1
	1.2 Project Significant	2
	1.3 Problem Statement	2
	1.4 Objectives	3
	1.5 Scopes	3
	1.6 Planning and execution task	4
	1.6 Summary of Technical Report	6
CHAPTER II	LITERATURE REVIEW	
	2.1 Composite material	7

PAGE

2.2	Fiber reinforced composite		7
	2.2.1	Glass fiber	10
	2.2.2	Matrix material	12
2.3	Fabric	ation of composite part	12
	2.3.1	Hand lay-up	13
2.4	Testi	ng method	14

CHAPTER III METHODOLOGY

3.1	Introduction 16		
3.2	Projec	et activities	16
3.3	Findir	g information	17
3.4	Design 1		
	3.4.1	Analysis of problem	20
	3.4.2	Conceptual design	20
	3.4.3	Selected scheme	22
	3.4.4	Detailing	22
	3.4.5	Working drawing	23
3.5	Flexu	ral test	24
3.6	Fabric	eation process	26
	3.6.1	Plug making	27
	3.6.2	Mold making	33
	3.6.3	Finish product	37

CHAPTER IV RESULT

4.1	Flexural testing	40
	4.1.1 Specimen selection	41
4.2	Fabrication	42

PAGE

CHAPTER	ITEMS	PAGE
CHAPTER V	DISCUSSION	
	5.1 Fabrication Problem	46
	5.1.1 Mould problem	47
	5.2 Comparison between actual end	52
	product and design	
CHAPTER VI	CONCLUSION	53
	REFERENCES	54
	BIBLIOGRAPHY	56
	APPENDICES	57

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TITLE	PAGE
Gantt chart for PSM I	4
Gantt chart for PSM II	5
Comparative yarn properties for fiber	8
reinforcement for plastic	
(Source: Smith & Hashemi, 2006)	
Design matrix	22
Design requirement for nose cone panel	23
Specimen parameters for flexural test	24
Flexural Testing Result	40
Comparison of dimension between design	50
and actual product	
	Gantt chart for PSM II Comparative yarn properties for fiber reinforcement for plastic (Source: Smith & Hashemi, 2006) Design matrix Design requirement for nose cone panel Specimen parameters for flexural test Flexural Testing Result Comparison of dimension between design

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Section of outer panel Formula Varsity	1
	Race Car	
2.1	Compression-molded SMC trunk of	9
	Cadillac Solstice [3]	
2.2	Woven roving fiberglass [5]	11
2.3	Chopped strand mat fiberglass [6]	11
2.4	Chopped strand fiberglass [5]	11
2.5	Hand lay-up process [10]	14
2.6	Flexural test arrangements in three-point	15
	bending. [3]	
3.1	Flow of project activities	17
3.2	Block diagram of design process	19
3.3	First conceptual design	20
3.4	Second conceptual design	21
3.5	Third conceptual design	21
3.6	Schematic diagram of nose panel	23
3.7	Specimen	25
3.8	Instron 5585	25
3.9	Testing on specimen	26
3.10	Hand lay-up process	26
3.11	Dry foam	27
3.12	Latex glue	27
3.13	Sand paper	27
3.14	Brush	27
3.15	Plywood	27

NO.	TITLE	PAGE
3.16	Mounting board	27
3.17	White floor cement	28
3.18	Scrapper	28
3.19	Automotive poly putty	28
3.20	Thinner	28
3.21	Scissor	28
3.22	Undercoat paint spray	28
3.23	Section cut	29
3.24	Cutting section cut	29
3.25	Plywood with bottom view	30
3.26	Pasting foam on plywood	30
3.27	Complete applying foam	31
3.28	Sanding foam	31
3.29	Applying white floor cement	32
3.30	Applying automotive poly putty	32
3.31	Plug after finish sanded	33
3.32	Roller	33
3.33	Brush	33
3.34	CSM Fiberglass	34
3.35	Polyester resin	34
3.36	Release wax	34
3.37	MEKP hardener	34
3.38	Scrapper	34
3.39	Applying release wax	35
3.40	Applying first layer of fiberglass	35
3.41	Applying resin	36
3.42	Removing air bubble using roller	36
3.43	Remove mould from plug	37
3.44	Applying release wax	37
3.45	Applying first layer of fiberglass	38
3.46	Applying resin on the fiberglass	38
3.47	Finish lay-up process	39

NO.	TITLE	PAGE
4.1	Side view of drawing	42
4.2	Side view of actual product	42
4.3	Top view of drawing	43
4.4	Top view of actual product	43
5.1	Fabrication problem	44
5.2	Dried edge in mould making	45
5.3	Bump at mould surface	46
5.4	Air bubbles	47
5.5	Mould after disassemble from plug	48
5.6	Crack on the mould	49
5.7	Mould after repaired	49

LIST OF SYMBOLS

σ	=	Flexural strength
P _{max}	=	maximum load at failure
b	=	specimen width
h	=	specimen thickness
L	=	specimen length between the two support points

LIST OF APPENDICES

NO.	TITLE	PAGE
А	Detail drawing	56
В	Specimen data for flexural test	57
С	Chopped Strand Mat Description	58
D	Woven Roving Description	59
Е	Polyester resin Description	60

xv

CHAPTER I

INTRODUCTION

1.1 Background of Project

Formula Varsity Race Car is constructed by student from Faculty of Mechanical for Formula Varsity Race each year between the local universities in Malaysia. The outer panel of the car is divided into two sections. Front section is called as nose cone while the middle section is called side port as shown in the Figure 1 below.

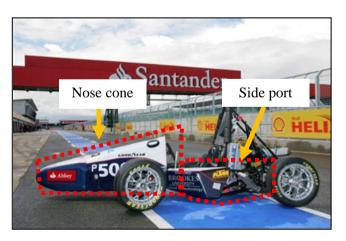


Figure 1: Section of outer panel Formula Varsity Race Car [1]

This project is actually involved with the nose cone panel only. The construction of the new nose cone panel will consider the following factors:

C Universiti Teknikal Malaysia Melaka

- i. Material quality which determine the lifetime of the panel.
- ii. Aerodynamic effect to enhance the speed performance.
- iii. Manufacturing process which limited by the cost of the manufacturing and the ability to manufacture it.

If compare to Formula Student car that been made by university from other country, it has already used composite material. The bodywork also has achieved a high standard of quality. So, the development that will be made through this project will open a new potential to experience the new type of material for bodywork of Formula Varsity race car which using composite material instead of using sheet metal.

1.2 Project Significant

This project will result to the development of the nose cone panel for Formula Varsity Race Car. The new composite material used in the fabrication will replace old method of fabrication which is use sheet metal. The composite material will give a lot more advantages compare to sheet metal. In design aspect, old design will be replace by this new design which has more aerodynamic effect and also good looking. Furthermore, the composite material that will be used will provide weight reduction to the total weight of race car. Through this project, there are chance to explore in composite manufacturing. The new panel that used composite material will be used in the next construction of Formula Varsity Race Car after this.

1.3 Problem Statement

Previous car project developed by the Faculty of Mechanical student had used bodywork made of sheet metal. Even though sheet metal can provide the mechanical properties needed for the application, the major draws back are it is heavy and difficult to shape. This project is about the development of the composite bodywork for nose cone panel using glass fiber polyester laminates.

1.4 Objectives

The objective of this project is to develop nose cone panel for Formula Varsity race car by using composite material which is glass fiber polyester laminated.

1.5 Scope

There are five scopes in this project in order to achieve the project objective.

- **a.** Study about the types of fiberglass and the method that already been used in fabrication of fiberglass. The study also includes the principle theory of fiberglass and the latest development in fiber glassing.
- **b.** To create design of nose cone panel using computer aided drawing software. The design must include aerodynamic effect.
- **c.** Find the right method for fabrication process based on normally used method or create new method as long as all the criteria are achieve.
- **d.** Analysis of flexural test is needed in order to prove that which method will give an appropriate result.
- e. To fabricate nose cone panel using the chosen composite material and the chosen method.

1.6 Planning and execution task

	2008																	
Activity	July						Au	gust				Septembe	er	October				
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
Project title confirmation																		
Meeting with supervisor																		
Gathering information																		
-type of composite material																		
-basic concept of glass fiber																		
-fabrication method																		
-testing method																		
Meeting with supervisor																		
Method planning																		
-design consideration																		
-sketching conceptual design																		
-testing method determination																		
-planning fabrication process																		
Meeting with supervisor																		
Submitting draft technical report to																		
supervisor																		
Writing final report																		
Submitting final report to supervisor																		
Submitting final report to faculty																		
Seminar																		

Table 1.1: Gantt chart for PSM I

	2008													2009 March April												
Activity	November			December			January				February				March				April							
	Week 1-4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2						
Revision on previous																										
report																										
Correction on previous																										
report																										
Detailing design																										
	<u> </u>																									
Meeting with supervisor	\triangleleft																									
	EAK																									
Correction to detail design																										
Flexural Test	Ř																									
-create sample	Ω																									
-do testing																										
-analysis data																										
	~																									
Meeting with supervisor	L	_																								
Fabrication																										
-Plug making																										
-Mould making																										
-End product making	MEST																									
Meeting with supervisor		_																								
Submitting draft technical	~																									
report to supervisor	ш																									
	S																									
Writing final report																										
Submitting final report to																										
supervisor		<u> </u>																								
Submitting final report to																										
faculty			I																							

Table 1.2: Gantt chart for PSM II

1.7 Summary of technical report

This technical report is basically described about how to fabricate nose cone panel for Formula Varsity Race Car. This report has six chapters which is the first section is introduction. In this chapter, there are stated about the objective and scopes of the project. There are also planning activities that will be done throughout the project. Second chapter is literature review which explains about the study that has been done in order to get the information about basic theory of fiberglass and also about the latest development in fiberglass. The third chapter is methodology which explains about the steps that is needed in order to achieve the project objective. The steps are finding information, design, testing and fabrication. Fourth chapter is result which explains all the result related to project includes flexural testing result and fabrication result. The fifth chapter is discussion where stated the reason for the outcome result and also all the problem arise during project. The last chapter is conclusion which will conclude all of the project activities that has already been done and also recommendation that can be done in further study.

CHAPTER II

LITERATURE REVIEW

2.1 COMPOSITE MATERIAL

Smith and Hashemi [2] defined the definition of composite as below:

"A composite material is a material system composed of a suitably arranged mixture or combination of two or more micro- or macro constituent with an interface separating them that differ in form and chemical composition and are essentially insoluble in each other".

Today, the most common man-made composites can be divided into three main groups which are Polymer Matrix Composites (PMC's), Metal Matrix Composites (MMC's) and Ceramic Matrix Composites (CMC's).

2.2 FIBER REINFORCED COMPOSITE

Fiber-reinforced composite is one of the Polymer Matrix Composite materials. It consists of high strength fibers and modulus bonded to a matrix with boundaries between