TEMPERATURE CONTROL SYSTEM USING ZIGBEE WIRELESS NETWORKING

NURHAMIZAH BINTI ABDUL MUSID

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2011

C Universiti Teknikal Malaysia Melaka

FAKULTI P	UNIVERSTI TEKNIKAL MALAYSIA MELAKA Kejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : TEMPER NETWO	ATURE CONTROL SYSTEM USING ZIGBEE WIRELESS RKING
Sesi Pengajian : 2010/201	1
Saya NURHAMIZAH BINTI mengaku membenarkan Lapora syarat kegunaan seperti berikut	n Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
1. Laporan adalah hakmilik U	Jniversiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan n	nembuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan m	nembuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	
4. Sila tandakan ($$):	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PE	NULIS) (COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: NO 110, JALAN SELASIH TAMAN SERI BAYU, 78000 ALOR GAJAH, MELAKA	
Tarikh:	Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the references"

Signature	:
Author	: Nurhamizah Binti Abdul Musid
Date	:

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours."

Signature	:
Supervisor"s Name	: Encik Fakrulradzi Bin Idris
Date	:

To my beloved family, for their genuine love, prayers and encouragement. To my supervisor and all lecturers who guide me, and to all my friends for your help and support.

ACKNOWLEDGEMENT

Praise to Allah, with His blessing I manage to complete this thesis successfully. Firstly, I would like to express my deep and sincere thanks to my family especially to my parents, without their support, I would not be able to finish this thesis. I also appreciate all advice and support from my supervisor Encik Fakrulradzi Bin Idris, those who are very patient in guiding in completing my project. Surely, this thesis cannot be completed within period without his support. Not forget, all lecturers from Universiti Teknikal Malaysia Melaka. Finally, I would like to gratitude to friends for help in completing my works and project as part of the Bachelor program in Universiti Teknikal Malaysia Melaka (UTeM).

ABSTRACT

Wireless technology has already become an important application which usually integrated to a wide range of device and other technologies. The enhancements provide by the wireless technology gives the ease of control to the users. Nowaday, almost all the electronic devices are equipped with wireless technology. This fact shows the necessity and benefits provide by this technology. This project is mainly concern about home power consumption observation system with wireless capabilities. It is use the Xbee as the wireless modules. This project uses two microcontrollers to handle the wireless communication protocol. The first microcontroller done the calculation needed and display it to the user with both hardware and software interface. The second microcontroller functions as the watch guard for the sensor circuit. The received data from sensor circuit is stored and send to the first microcontroller upon request. Moreover, the user interfaces gives ease of controls to the users. Furthermore, this system also has the interconnecting with Wireless Sensor Network (WSN) such as the IEEE802.15.4 Zigbee Protocol.

ABSTRAK

Teknologi wayarles telah menjadi aplikasi penting yang biasanya terintegrasi untuk peranti dan teknologi lain. Alat tambahan mempunyai teknologi wayarles memberikan kemudahan kawalan kepada pengguna. Kini, hampir semua peranti elektronik dilengkapi dengan teknologi wayarles. Fakta ini menunjukkan betapa pentingnya teknologi ini. Projek ini berkaitan sistem pengawasan, penggunaan kuasa dirumah dengan kemampuan wayarles. Sistem ini menggunakan Xbee sebagai modul wayarles. Projek ini menggunakan dua mikropengawal untuk menangani protokol komunikasi wayarles. Mikropengawal pertama melakukan pengiraan yang diperlukan dan mempamerkannya kepada pengguna dengan antara muka peranti keras dan perisian. Fungsi mikropengawal kedua sebagai mengawasi litar pengesan. Data yang diterima daripada litar pengesan tersebut disimpan dan dihantar ke mikropengawal pertama atas permintaan. Dengan kemudahan antara muka, sistem ini memberikan kemudahan bagi pengguna untuk berkomunikasi dengan sistem ini. Selanjutnya, sistem ini juga mempunyai interaksi dengan teknologi pengesan wayarles seperti IEEE802.15.4 Zigbee Protokol.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

TITLE	i
REPORT STATUS APPROVAL FORM	ii
DECLARATION	iii
SUPERVISOR APPROVAL	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDIXES	xviii

I INTRODUCTION

1.1	Overview	1
1.2	Project background	1
1.3	Overview of project	2
1.4	Problem statement	2
1.5	Objective of project	3
1.6	Scope of project	3
1.7	Thesis outline	4
1.8	Summary of work	5

II LITERATURE REVIEW

2.1	Overview	
2.2	Wireless sensor network	
2.3	Sensor node	7
2.4	Multi-hop communication technique	9
2.5	Zigbee protocol	10
	2.5.1 Technology overview	10
	2.5.2 IEEE802.15.4 standard	11
2.6	Xbee/Xbee-PRO OEM RF modules	12
	2.6.1 Advantages of Xbee	14
	2.6.2 The pin signal	14
	2.6.3 The electrical characteristic	16
2.7	Microcontroller	17
	2.7.1 Pins description	19
	2.7.2 PIC 16F877A block diagram	19
2.8	Zigbee versus Bluetooth	20
	2.8.1 About Zigbee standard	22

III METHODOLOGY

3.1	Overview		24
3.2	Projec	Project planning	
3.3	The o	verall structure of the project	25
3.4	Projec	et overview	27
3.5	Hardv	vare development	27
	3.5.1	Transmitter circuit	27
		3.5.1.1 Voltage regulator	28
		3.5.1.2 LM35DZ temperature sensor	29
		3.5.1.3 LCD module (16x2) character	30
		3.5.1.4 LCD connection	31
		3.5.1.5 LCD testing and design	32

	3.5.2	Receiver circuit	33
		3.5.2.1 PIC16F877A microcontroller	34
		3.5.2.2 Buzzer	35
3.6	USAF	RT Asynchronous Mode	35
3.7	Wirel	ess modules	36
	3.7.1	Serial communications	37
	3.7.2	UART data flow	37
	3.7.3	Transparent operation	38
	3.7.4	Flow control	39
3.8	SKXb	ee	40
3.9	Interfa	ace PIC16F877A with Xbee	42
3.10	Gener	al process in fabricating the	43
	hardw	vare development	
	3.10.1	Layout printing	44
	3.10.2	2 UV exposure	44
	3.10.3	Developing the image	45
	3.10.4	Spray washing	45
	3.10.5	5 Etching	46
	3.10.6	Resist stripping	46
	3.10.7	Scrub cleansing	46
	3.10.8	3 Cutting and drilling	47
	3.10.9	Soldering	47
3.11	Softw	are development	48
	3.11.1	Overview	48
		3.11.1.1 X-CTU software	49
		3.11.1.2 Proteus Professional 7.6	51
		3.11.1.3 PIC C Compiler	52

IV RESULT AND ANALYSIS

4.1	Overview	53
4.2	Circuit design	53

C Universiti Teknikal Malaysia Melaka

	4.2.1	Transmitter circuit	53
		4.2.1.1Design using Proteus Professional 7.6	54
		4.2.1.2 PCB layout	54
		4.2.1.3 Circuit for etching	55
	4.2.2	Receiver circuit	56
		4.2.2.1Design using Proteus Professional 7.6	56
		4.2.2.2 PCB layout	57
		4.2.2.3 Circuit for etching	57
4.3	Practic	cal prototype demonstration	58
4.4	Analys	sis of overall project	61

V DISCUSSION AND CONCLUSION

5.1	Discussion	62
5.2	Conclusion	63

REFERENCES	64

APPENDIX	A	6	6

APPENDIX B 67

APPENDIX C 68

LIST OF TABLES

NO	TITLE	PAGE
1.1	Project plan	5
2.1	Comparison between RF protocols	11
2.2	Xbee series 1 specification	13
2.3	Pin configuration Xbee	15
2.4	DC characterictics (VCC = $2.8-3.4$ VDC)	16
2.5	ADC characteristics (operating)	16
2.6	ADC timing/ performance characteristics	17
2.7	Comparative statement of different communication	21
	protocols	
2.8	Zigbee and Bluetooth specification comparison	23
3.1	Xbee features	36
3.2	Functional of the SKXbee	41

LIST OF FIGURES

NO	TITLE	PAGE
2.1	Wireless sensor network architecture	7
2.2	Sensor node architecture	8
2.3	The Multi-hop topology	9
2.4	Mesh networking	10
2.5	The Zigbee layered model	12
2.6	Xbee multipoint RF modules	13
2.7	Xbee RF module pin numbers	15
2.8	PIC 16F877A pins description	19
2.9	PIC 16F877A internal architecture	19
2.10	Among existing wireless technologies	21
2.11	Network layers that involved in the Zigbee module	23
3.1	Flowchart of Final Year Project	25
3.2	Basic block diagram	27
3.3	Transmitter block diagram	28
3.4	IC LM7805	28
3.5	Common regulator circuit	29
3.6	Schematic of LM35DZ	29
3.7	LM35DZ connection diagram	30
3.8	Liquid crystal display	31
3.9	LCD (16x2) character	31
3.10	4-bit LCD interface connection	32
3.11	LCD connection with PIC16F877A	33
3.12	Receiver block diagram	33
3.13	PIC16F877A microcontroller	35
3.14	Piezoelectric buzzer	35

3.15	NRZ data format	36
3.16	System data flow diagram in a UART-interfaced	37
	environment	
3.17	UART data packet 0x1F	38
3.18	Internal data flow diagram	39
3.19	SKXbee board layout	40
3.20	Example of connection PIC16F877A microcontroller	41
3.21	SKXbee specification	42
3.22	Connection between Xbee, PIC16F877A and LCD	43
3.23	Ultra-Violet Ray exposed	44
3.24	Developer	45
3.25	Etching equipment	46
3.26	Cutting the PCB board	47
3.27	Drilling process	47
3.28	Soldering process	48
3.29	X-CTU window	49
3.30	X-CTU software in windows environments	50
3.31	ISIS professional window	51
3.32	PIC C Compiler window	52
4.1	Schematic diagram for transmitter circuit	54
4.2	PCB layout design of transmitter circuit	55
4.3	Circuit design on transparency paper	55
4.4	Schematic diagram for receiver circuit	56
4.5	PCB layout design of receiver circuit	57
4.6	Circuit design on transparency paper	58
4.7	Practical prototype demonstration with hair dryer	58
4.8	Inside view of transmitter box prototype	59
4.9	Inside view of receiver box prototype	59
4.10	Complete set of the prototype	60
4.11	Unachieved temperature set point (Alarm OFF)	61
4.12	Achieved temperature set point (Alarm ON)	61

LIST OF ABBREVIATIONS

WSN	-	Wireless Sensor Network
IEEE	-	Institute for Electrical and Electronics Engineers
LR- WPAN	-	Low rate Wireless Personal Area Network
LCD	-	Liquid Crystal Display
RF	-	Radio Frequency
MAC	-	Media Access Control
РСВ	-	Printed Circuit Board
PIC	-	Programmable Integrated Circuit
DSP	-	Digital signal processors
LoWPANs	-	Low Power Wireless Personal Area Networks
FYP	-	Final year project
IC	-	Integrated Circuit
LED	-	Light Emitting Diode
РНҮ	-	Physical layer
ADC	-	Analog to digital converters
CPU	-	Central processing unit
CU	-	Control unit
DC	-	Direct current
RAM	-	Random access memory
ROM	-	Read only memory
EPROM	-	Erasable programmable read only memory
EEPROM	-	Electrically erasable programmable read only memory
ISM	-	Industrial, scientific and medical radio band
API	-	Application Programming Interface
APS &NWK	-	Application support and network layers
ARQ	-	Automatic request

FHSS	-	Frequency hoping spread spectrum
DSSS	-	Direct sequence spread spectrum
ISIS	-	ISIS schematic capture
VSM	-	Virtual system modeling
RSSI	-	Received signal strength indication
RISC	-	Reduces Instruction Set Computer
UART	-	Universal Asynchronous Receiver Transmitter
USART	-	Universal Synchronous Receiver Transmitter
CTS	-	Clear to send frame
RTS	-	Request to send frame
SPI	-	Serial Peripheral Interface
NRZ	-	Non return to zero
I/O	-	Input and output
R/W	-	Read and write
ICD	-	In circuit debugging function
PWM	-	Pulse width modulation

LIST OF APPENDIXES

NO	TITLE	PAGE
А	Specifications of Xbee	66
В	Gantt chart for final year project	67
С	Source code	68

C Universiti Teknikal Malaysia Melaka

CHAPTER I


INTRODUCTION

1.1 Overview

This chapter will cover the introduction of the project where it involve of the project background, overview of project, problem statement, objective of project, scope of project, thesis outline and summary of work.

1.2 Project background

Since a few years ago, wireless sensor network technology has been developed. Many research communities give their attention on developing wireless sensor network for many purposes. The introducing of the wireless sensor network has become a new paradigm in information-gathering method. This is because wireless sensor network consists of many self-organized sensing nodes that cooperate with each other to gather information. Each node is equipped with devices which are used to monitor and collect the data, process the collected data and then transmit the data to the adjacent nodes.

1.3 Overview of project

This project covers the implementation of temperature control wireless networking by using Zigbee. The IEEE802.15.4 Zigbee protocol is a wireless technology developed as an open global standard to address the unique needs of low cost, low power, wireless sensors network. Zigbee is generally used for home care, digital home control, industrial and security control. This project developed a suite of room care sensor network system by Zigbee''s characteristic which is embedded sensors that is temperature sensor. The sensed temperature is converted to the digital form by the means of analog to digital converter and transmitted through Zigbee module and displayed on a local LCD display. On receiving end temperature is received through another Zigbee module and each acquisition of temperature is compared with a user defined set point. If this value exceeds the set point a control signal goes to a final control element or a buzzer.

1.4 Problem statement

Temperature controllers are needed in any situation requiring a given temperature be kept stable. This can be in a situation where an object is required to be heated, cooled or both and to remain at the target temperature (set point), regardless of the changing environment around it. This project involved close loop control. A temperature controller is a device used to hold a desired temperature at a specified value. For this project, the temperature sensor was implementing by using Zigbee technology in transmitting and receiving data wirelessly. Indirectly, flexible implementation and monitoring of data acquisition can be implementing without wired connection that is more complex to be implement. Zigbee wireless protocol offers low complexity and it also offers three frequency bands of operation. Besides that, the distance between A Zigbee trans-receiver to another Zigbee trans-receiver located within a 10 m radius with minimum noise. It is not convenient for long distance transmission of signal.

1.5 **Objectives of project**

The aim of the project is to interface the smart wireless temperature data logger using IEEE802.15.4 Zigbee protocol. Hence, the sensed temperature can be measured throughout the LCD display. The temperature then compared with the set point. If it exceeds the set point, a control signal goes to a final control element or a buzzer. The specific objectives of these projects are:

- a) To design and construct the transmitter and receiver circuit that will implement with Zigbee module
- b) To interface the smart wireless temperature data logger using IEEE802.15.4 Zigbee protocol
- c) To measure the performance of the signal range

1.6 Scope of project

The scope of this project focused into two stages, which are hardware and software development. In this project, it involves two parts in order to accomplish one complete system in wireless networking. It has two boards collectively from a Zigbee network, one of which is transmitter and receiver circuit. This project uses the LM35DZ room temperature sensor to detect room temperature. These sensors can measure temperatures from 0°C to 100°C. The sensed temperature is converted to the digital form by the means of analog to digital converter and transmitted through Zigbee module. Next, the final module is the microcontroller at the receiving end interfaced with an LCD and a buzzer. Overall, the scope of this project include designing the whole system, build the hardware for the system, successfully establish a point-to-point connection between Zigbee modules, using proper software to program the microcontroller PIC 16F877A and LCD interfaces for user purposes.

1.7 Thesis outline

As a requirement in thesis format, it include by five chapters. In chapter I, it focuses on brief introduction of the project carried. The important things in this chapter are the problem statement, project objectives and project scopes are well emphasized in this part.

Chapter II normally is focused for literature review that covers related theory and previous works regarding this project are explained in this chapter. It discuss on the Wireless Sensor Network (WSN), Sensor node, Xbee/Xbee-PRO OEM RF modules, microcontroller and LM35DZ temperature sensor.

Chapter III consists of project methodology. It also includes information on research and experiment carried during the project development. It will explain on the concepts, theories and principles used in order to complete the project. In this chapter, the functional of each component which used has been explained clearly.

Chapter IV consists of result and analysis. It explains and focused for component description from the project. This chapter described the hardware and software system development.

Chapter V consists of discussion and conclusion for this project. It will explain for this chapter it includes the discussion, conclusion, the witness and also the further improvement that can be made in future.

1.8 Summary of work

Implementation and general works done are summarized in Table 1.1. It also includes the future works until this project is complete. The plan may change during the FYP 2 course.

Table	1.1:	Project	plan

Month	Expected achievements
August 2010	Initial research of the title, project proposal and module
	design
September 2010	Research on the components needed, pricing and purchasing
October 2010	Further research and design prototype of the circuit design
	and proposal presentation
November 2010	Establishing/Assembling the system circuitry
December 2010	Working on hardware circuitry, wireless system and
	programming
January 2011	Programming, troubleshooting and implementation the
	system.
February 2011	Completion of the hardware, testing and optimization
March 2011	Final adjustments for demonstration and presentation

CHAPTER II

LITERATURE REVIEW

2.1 Overview

This chapter will introduce the term of Wireless Sensor Network (WSN), Sensor node, Zigbee protocol, Xbee/Xbee-PRO OEM RF modules, microcontroller, and Zigbee versus Bluetooth. The main objective of this chapter is to describe in details the above term and the role its play in this project.

2.2 Wireless Sensor Network (WSN)

Wireless Sensor Network consists of large numbers of sensor nodes. The nodes are equipped with sensor devices that are used for a certain applications. For example, the sensor device is camera and it is used to retrieve the environment data visually, microphone is used to detect the sound, thermometer and thermocouple are used to detect the changes in temperature.

Every sensor nodes are also equipped with wireless module in order to communicate with each other. The communication between the nodes are performed by establishing the routing topology in the system before the data can be transmit from the certain sensor node to the collection point or host.[1]

