

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Automatic Bottle Labeling System

Thesis submitted in accordance with the partial requirements of the Universiti Teknikal Malaysia Melaka for the Bachelor of Manufacturing Engineering (Robotics and Automation)

By

Muhammad Naim Bin Haron

Faculty of Manufacturing Engineering May 2008

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL:

Automatic Bottle Labeling System

SESI PENGAJIAN: Semester 2 2007/2008

Saya MUHAMMAD NAIM BIN HARON

mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

TERHAD

(TANDATANGAN PENULIS) Alamat Tetap:

KAMPUNG AMAN, BATU 16, JALAN KAKI BUKIT, 02200, KAKI

BUKIT, PERLIS.

(TAMDATANGAN PENYELIA)

Cop Rasmi:

SHARIMAN BIN ABDULLAH Pensyarah Fakulti Kejunuteraan Pembuatan Universiti Teknikal Mataysia Melaka Karung Berkunci 1200, Ayer Neroh 75450 Melaka

Tarikh: 12 ME1 2008

Tarikh:

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka.

DECLARATION

I hereby, declared this thesis entitled "Automatic Bottle Labeling System" is the results of my own research except as cited in references.

Signature	:	Hr.
Author's Name	:	MUHAMMAD NAIM HARON
Date	:	12 MEI 2008

DECLARATION

I hereby, declared this thesis entitled "Automatic Bottle Labeling System" is the results of my own research except as cited in references.

Signature	:	Afr.
Author's Name	:	MUHAMMAD NAIM HARON
Date	:	12 MEI 2008

APPROVAL

This PSM submitted to the senate of UTeM and has been as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotics and Automation). The members of the supervisory committee are as follow:

(Main Supervisor) (Official Stamp & Date)

SHARIMAN BIN ABDULLAH Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Keroh 75450 Melaka

ABSTRACT

This thesis is about automatic bottle labeling system. The main focus of this thesis is to study the application of the bottle labeling system and to implement the improvement of the technique used in bottle labeling system. This thesis is also to optimize the labeling system by using good production and precision accuracy and at the same time analyze the advantages and disadvantages of using these processes. This experiment will be performed using manufacturing and fabrication processes. The model is known as wrap belt assembly and has adjustable clamp and transportation conveyor as the main functioning part. Then automatic bottle labeling process is performed using the result from the whole process of fabrication and build time. The manufacturing processes used in this experiment are cutting, bending, drilling, milling and threading.

ABSTRAK

Tesis ini adalah berkenaan sistem melabelkan botol secara automatik. Tumpuan utama tesis ini adalah untuk mengkaji aplikasi sistem melabelkan botol dan untuk melaksanakan pembaikan teknik-teknik yang digunakan dalam sistem melabelkan botol. Tesis ini juga adalah untuk mengoptimumkan sistem melabelkan botol dengan menghasilkan produktiviti dan ketepatan label yang baik dan pada masa yang sama menganalisis kelebihan dan kelemahan dalam menggunakan proses-proses ini. Eksperimen yang terlibat dalam proses ini ditunjukkan menggunakan proses-proses pembuatan dan fabrikasi. Bahagian fungsi utama di dalam sistem melabelkan botol ini adalah model yang dikenali sebagai alat pelabel botol dan mempunyai pengapit boleh laras serta alat pengangkutan yang membawa botol dari satu stesen ke stesen yang lain. Proses melabel botol secara automatik ini kemudiannya dipersembahkan menggunakan hasil daripada keseluruhan proses fabrikasi yang digunakan dalam eksperimen ini adalah memotong, membengkok, menggerudi dan memasang.

DEDICATION

For my beloved mother and father.

.

. . . .

v

ACKNOWLEDGEMENT

I would like to convey my appreciation and indebtedness to those who has been great surprised and helpful for the completion at the project to bring it to success in respect with favorable advice and feasible solution.

Thus, I feel comfortably to take this golden opportunity to express my millions of gratitude to my supervisor, Mr. Shariman Bin Abdullah because of his kindly advice and guidance during the project providing tremendous considerately and useful comments and materials to overcome each obstacle I had faced.

Last but not least I would like to thanks my mother and my father, who has been the loveliest advisor to give continually supports and inspiration throughout my campus life.

With this my sincere and genial thanks to everyone I have not mentioned above from bottom of my heart.

vi

TABLE OF CONTENTS

Declarationi
Approvalii
Abstractiii
Abstrakiv
Dedicationv
Acknowledgementvi
Table of Contentsvii
List of Figuresxi
List of Tablesxiii
1. INTRODUCTION
1.1 General Introduction1
1.2 Problem Statements
1.3 Objectives of Project2
1.4 Scope of Project
2. LITERATURES REVIEW
2.1 Introduction
2.2 Previous Case Study
2.2.1 Case Study A7
2.2.2 Case Study B
2.2.3 Case Study C
2.3 Motor Classifications
2.3.1 DC Motor
2.3.1.1 Brushed DC Motor
2.3.1.2 Brushless DC Motor12
2.3.1.3 Coreless DC Motor14
2.3.1.4 Speed and Load Characteristics

2.3.1	.5 Applied Voltage	16
2.3.1	.6 Characteristics and Performance	16
2.3.1	.7 Gear Box Construction and Features	18
2.3.2	Stepper Motor	20
2.3.2	2.1 AC Stepping Motor	20
2.3.2	2.2 DC Stepping Motor	20
2.3.3	Servo Motor	23
2.4 Set	nsor Classifications	26
2.4.1	Photoelectric Sensor	26
2.4.2	Diffused Beam Sensor	26
2.4.3	Retro-Reflective Sensor	27
2.4.4	Convergent Beam Sensor	27
2.4.5	Infrared Thru-Beam Product Detector	
2.4.6	Fiber Optic Sensor	
2.4.7	Mechanical Switch Interface	
2.5 Co	nveyor Classifications	29
2.5.1	Conveyor Belt Options	30
2.5.2	Conveyor Drive Options	31
2.5.3	Conveyor Mounting Options	32
2.5.4	Conveyor Guide Rail Options	
2.6 Mo	otor Selection	34
	ODOLOGY	
3.1 Intro	duction	35
3.2 Meth	nodology Flow	36
3.3 Cond	ceptual Design	37
3.4 Deve	elopment of Idea	
3.5 Feat	ures of Materials	
3.5.1	Wrap Belt Assembly	
	.1 Wrap Belt Assembly Specification	
3.5.1	.2 Wrap Belt Applications	40

.

3.5.2	Adjustable Clamp	41
3.5.3	Drive Controller	42
3.5.3	3.1 DC Motor	
3.5.3	3.2 Drive Roller	43
3.5.4	Conveyor Belt	43
3.5.5	Spacer Wheel	44
3.6 Tecl	nniques of Labeling	45
3.6.1	Heat Transfer Labeling	45
3.6.2	Thermiage	45
3.6.3	Dy-Na-Cal	45
3.6.4	Paper Labeling	46
3.6.5	Hot Die Stamping	
3.6.6	Sleeve Labeling	47
3.6.7	Heat Shrink Decorated	
3.6.8	Applied Ceramic Labeling (ACL)	
3.7 Mar	nufacturing Process	49
3.7.1	Process Flow Chart	49
3.7.2	Control Flow Chart	
3.7.3	Project Planning Flow Chart	51
3.8 Exp	erimental Methods	
4. RESUI	LTS	53
4.1 Intro	oduction	53
4.2 Ana	lysis on Labeling Time Required	53
4.3 Ana	lysis for Testing Process	57
	alts of the Actual Process	
4.4.1	Analyzing the Problems	58
4.4.2	Implement the Solutions	60
4.4.3	Get the Results	60

5. DISCU	SSIONS	61
5.1 Ider	ntifying the Results	61
5.1.1	Control Impact on Efficiency	61
5.1.2	Control Impact on Net Production	62
5.2 Imp	roving the Results	63
	Increase Speed	
5.2.2	Labeling Location	
5.2.3	Selecting New Material	65
5.2.4	Changing Process Conditions	66
6. CONC	LUSION	68
REFERE	NCES	69

APPENDICES

A	List	of	Material

- B List of Part Design
- C Total Cost of Project

LIST OF FIGURES

•		
2.1	Labeling head	6
2.2.1	Front back and semi automatic labeling system	7
2.2.2	Pressure sensitive labeler	8
2.2.3	Bottle labeling system	11
2.3.1.4	Speed, efficiency and current graph	15
2.3.1.5	Speed and torque of DC Motor	16
2.3.1.6	Characteristics of geared motor	17
2.3.1.7	Gear box construction and features	18
2.3.2.2a	DC Stepping Motor	20
2.3.2.2b	Rotor and stator	21
2.3.2.2c	5 phases and 2 phases DC motor	22
2.3.3	Brushed servo motor	25
2.5	Table top chain conveyor	29
3.2	Methodology flow	36
3.4	Compact a Wrap	38
3.5.1	Wrap belt assembly	39
3.5.2	Adjustable clamp	41
3.5.3.2	Drive roller	43
3.5.4	Conveyor belt	43
3.5.5	Spacer wheel	44
4.3	Location of labeling process	57
4.4.1a	Adjustable clamp and wrap belt assembly	59
4.4.1b	Automatic bottle labeling system	59
4.4.1c	Labeling process tested to a bottle	59

5.2.2	Selecting new labeling location	64	4
5.2.3	Bracket for support roller board	65	5
5.2.4a	DC motor speed controller	60	6
5.2.4b	12V changed to 6V power supply	67	7
5.2.4c	Use of gear mechanism	67	7

.

. . . .

LIST OF TABLES

2.5	Conveyor classifications	•	29
2.5.1	Conveyor belt options	Э.	30
2.5.2	Conveyor drive options		31
2.5.3	Conveyor mounting options		32
2.5.4	Conveyor guide rail options	e e e e e e e e e e e e e e e e e e e	33
2.6	Motor selection		34
3.5.1.1	Wrap belt assembly specification		39
3.5.3.1 ·	DC motor specification	a 12	42
3.5.5	Spacer wheel specification		 44

CHAPTER 1 INTRODUCTION

1.1 General Introduction

Automatic bottle labeling system is a new labeling technology system that consist three important components that are labeling applicator, fully integrated control system and conveyor. When all of these components are fully integrated, it means all work together without the need for human intervention, except for replenishing label stock, sticker bight setting and physical changeover to a different product. So, the system works through the entire speed range without need for readjustment of controls and this method will yield high production with high accuracy and precision.

Nowadays, there are too many techniques being used in whether automatic or semi automatic bottle labeling system and these conditions cause the variety of machines. Actually, an automatic labeling system consists of three key components: a labeling head (or label applicator), a conveyor (or other product transport device) and an integrated control system each of which, in turn, have their own sub-components. Optionally, other operations can be added to the system, such as Hot Stamp coders, bar code printers (print and apply), power unwinds (for extra large web capacity or feeding a barcode printer), verifiers (to make sure label is on and/or the code is readable) and etc.

When all of these components are fully integrated meaning they all work together without the need for human intervention, except for replenishing label stock, printer ribbons and physical changeover to a different product, and the system works through the entire speed range without need for readjustment of controls, it have an "automatic labeling system". It is not assumed that a labeling manufacturer who claims to have an "automatic labeling system" really have the whole system of automatic labeling. Some degree has the basic components, but many, if not most, are independent components that are not fully integrated.

1.2 Problem statements

The problem statements of the project are:

- a) To apply the techniques of automatic labeling system in industrial workplace where generate the easiest method to the human operator to control the current process in labeling system.
- b) To establish an optimum bottle labeling system that produce good productivity and high accuracy.
- c) To optimize the labeling systems that used nowadays where human operator being replaced by the machine to operate the process.

1.3 Objectives of Project

The objectives of the project are:

- a) To generate the bottle labeling system which is low cost maintenance but it can access high production rate and efficiency.
- b) To identify the supporting and locating methods of the material selection to manufacture the system with high performance.
- c) To implement the improvement to the performance of labeling systems that used in industrial nowadays.
- d) To analyze the suitable material selection in order for manufacturing assembly of the system that has the effectiveness with low cost maintenance.
- e) To determine the current labeling process and implement the improvement with consideration of efficiency, production time and maintenance cost for a bottle.

2

C) Universiti Teknikal Malaysia Melaka

1.4 Scope of Project

Even though every aspect is looked into, this project is developed with limitation and therefore stated below:

Object:

- Wrap belt assembly as known as roller board
- It made by roller covered by conveyor belt and droved by the DC motor
- Static and automatically moving
- Placed randomly within the adjustable clamp and transportation conveyor

Working space:

- Transportation conveyor
- 10 cm in diameter
- Transport the bottles from another workstation to another
- Only one line or path to transport the bottles
- The driven motor is using DC motor

Sticker bight and roller mechanism

- Sticker bight is connected to a roller by using timing belt
- When the sticker start moving to adhered to the bottle, the timing belt will pull the roller so the mechanism will continuously operated
- So, the mechanism is not using any motor to rotate the sticker bight to move the sticker forward to attach at the roller board or wrap belt assembly

3

Adjustable clamp

- It made by acrylic material
- Consists two square parts which are fabricated by milling, drilling, cutting and threading process
- Used to completing adhesion of the sticker by providing limitation space within the wrap belt assembly and bottles
- It has the adjustable screw which is using to adjust the width of transportation conveyor based on the diameter of the bottles

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

The labeling system is using three main parts that are labeling head, conveyor and integrated control system. The labeling head or also known as label applicator has five components that are web unwind reel, dancer arm, label sensor, peel plate and drive roller. Web unwind reel is used to rolls the labeling sticker to attach to the bottles while dancer arm is used to allows smooth label starts, keeps web tension and acts as a brake to stop the web unwind roll from overfeeding. Label sensor detects the gap between labels to alert the control system to initiate a label sequence. Peel plate separates the label from backing paper and drive roller works as workhouse which is pulling web backing, starting and stopping with each labeling sequence.

Conveyor in labeling system uses two types of gear motor that are AC and DC gear motors. AC gear motors are utilized on very few labeling machines and rugged which have a long life and are relatively inexpensive and plentiful. When used on labeling systems they are either of two variable speed types; vary-cone (belt drive via a mechanically adjust variable pitch pulley) or through a special control driver that changes speeds electrically. DC gear motors are by far the most commonly used conveyor drive by labeler manufacturers, including CVC. CVC uses only Bodine, the world leader for quality and durability in fractional horsepower DC motors.

The heart of a labeling machine is the integrated control system. CVC supplies the latest in digital controls with its exclusive "Self Set" system, which greatly simplifies initial setups automatically and allows storage of at least 50 setups into memory. "Multiple Event Processing" permits higher labeling speeds than competing brands in this price range. The exclusive "Self Set" feature automatically optimizes the controls bottle and label. Complete changeovers can be accomplished in less than 2 minutes without need for highly paid production line mechanics. All machine frame components are constructed of laser cut stainless steel and powder coated aluminum. The figure of the labeling system and its specifications are shown below:

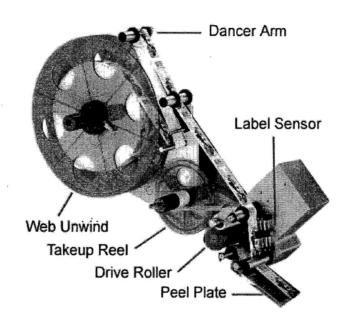


Figure 2.1 Labeling head

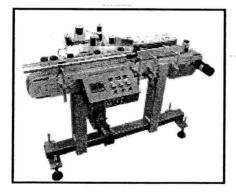
Dancer arm – allows smooth label starts, keeps web tension and acts as a brake to stop the web unwind roll from overfeeding

Label sensor – detects the gap between labels to alert the control system to initiate a label sequence

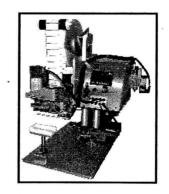
Web unwind - rolls the labeling sticker to attach to the bottles

Drive roller – works as workhouse which is pulling web backing, starting and stopping with each labeling sequence

Peel plate - separates the label from backing paper


2.2 Previous Case Study

2.2.1 Case Study A


The previous labeling system has 7 standard labeling heads, when integrated with vast assortment of applicators, product sensors, encoders, head mounting options, product handling equipment and additional accessories. Labeling head is divided to several parts that are side panel, front or back panel, wrap around, corner wrap, top panel, bottom and leading or trailing. This labeling system offers 27 different label application methods such a corner wrap, roll-on, blow-on, or air cylinder tamp.

Common methods in this labeling system for product sensing are diffuse beam sensor, retro-reflective sensor, convergent beam sensor, infrared thru beam sensor, fiber-optic, clear product sensors, and mechanical switch interface. Portable head mounts such as a T-Base stand is a standard option along with custom head mounts to match a good labeling process so it can hold the high productivity process.

All product handling in this systems feature heavy duty aluminum and painted steel frame to fully support the conveyor and mounting stations. Optional castors can be provided for enhanced portability. The modular design can incorporate a variety of infeed systems such as a Spacer Wheels, Dual Infeed Belt, or Infeed Screws. Product control systems such as a Top Hold Down, Chain Aligner or Dual Transport Belts also can be used to install as well.

Front back labeling system

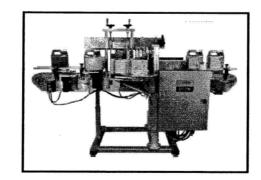

Semi automatic labeling system

Figure 2.2.1

2.2.2 Case Study B

There are too many types of automatic bottle labeler such as round bottle labeler, flat bottle labeler and glass bottle labeler. The Pressure Sensitive Labeler is an exciting new concept in the field of automatic labeling machines. It is a fully automatic, round bottle labeler but with simple features that make it truly user friendly. It has available options such as Hot Stamp or Ink Stamp application for labeling process, spacing wheel to stop the movement of bottles on conveyor, an extra tall labeling kit for adjustable labeling system. So, the height of the label can be adjustable from the base of the container. This process make this labeling system can be used for various products of bottles.

Running at speeds up to 60 containers per minute, it accepts random or continuous bottle feed. By adding a wrap station, this automatic labeler becomes an excellent round bottles labeler. It can precisely controls web feed and label placement through the use of a powerful PLC, quality photo eye and gap sensors, and a stepper motor and drive. It also has a touch screen interface that easily controls all machine functions. It has fixed labeling and conveyor speeds, a simplified web path, and a self-teaching label gap sensor. Normal set up and changeovers take less than ten minutes and require no tools. So it is said that this system is intelligent system for bottle labeling system.

Pressure Sensitive Labeler

Figure 2.2.2

(C) Universiti Teknikal Malaysia Melaka