DEVELOPMENT OF FRUIT MATURITY TESTING SYSTEM USING RF PROPERTIES

NOOR AZHAR BIN TAHIR

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronics Engineering (Telecommunication Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2010

C Universiti Teknikal Malaysia Melaka

AT AT A CALL OF	UNI FAKULTI KEJURI	VERSTI TEKNIKAL MALAYSIA MELAKA uteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II		
Tajuk Projek	: DEVELOP SYSTEM U	MENT OF FRUIT MATURITY TESTING JSING RF PROPERTIES		
Sesi Pengajian	: 0 9	/ 1 0		
Saya NOOR AZH	Saya NOOR AZHAR BIN TAHIR,			
mengaku membenar syarat kegunaan sep	rkan Laporan Proje perti berikut:	ek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-		
 Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (√): 				
SULIT**(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)				
TE	TERHAD ** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
тп	DAK TERHAD			
		Disahkan oleh:		
(TAND/	ATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)		
Tarikh: 30	APRIL 2010	Tarikh: 30 APRIL 2010		

"I hereby declare that this report is result of my own effort except for works that have been cited clearly in the references"

Signature	:
Author	: NOOR AZHAR BIN TAHIR
Date	: 30 APRIL 2010

"I hereby declare that I have read this report and in my opinion this report is sufficient in term of the scope and quality for the purpose of award of Bachelor of Electronics Engineering (Telecommunication Electronics) With Honours"

Signature	:
Supervisor's Name	: TAN KIM SEE
Date	: 30 APRIL 2010

iv

To my lovely mother and father, my love and my family

ACKNOWLEDGEMENT

First and foremost, praise to ALLAH SWT for giving me strength and health in finishing the thesis from start to the end.

I wish to express my sincere appreciation to my supervisor, Assoc. Professor Tan Kim See for his support, guidance, and critics during the course of studies. He guided me to find the solution for the problem rather than focus on the problem itself.

A special thank to Mr Mohamad Zoinol Abidin Bin Abd. Aziz, Lecturer of Faculty of Electronic and Computer Engineering for his kindness, guidance, knowledge, encourage and support. His insight and personal commitment opened up a wide range of possibilities and exciting new path for me to explore.

I would like to thank to my beloved parents; Tahir Bin Haji Hassan and Rohayah Binti Bachik and my siblings for the inspiration in completing the thesis. Not forgetting all my friends in BENT and faculty that help me a lot during the PSM session.

Last but not least, my gratitude to all that involves in this project directly or indirectly. All I can say is thank you, and may ALLAH bless them.

DEVELOPMENT OF FRUIT MATURITY TESTING SYSTEM USING RF PROPERTIES

ABSTRACT

Microwaves are electromagnetic waves with wavelengths shorter than one meter and longer than one millimeter, or frequencies between 300 megahertz and 300 gigahertz. Microwave usually associated with Radio Frequency. Microwave measurements and the dielectric properties of materials are finding increasing application, as new electro technology is adapted for use in agriculture and food processing industries. In the agricultural industries, determine the maturity of fruit will be taken much more time. This project is about microwave free-space measurement by using 2 waveguide antennas (Horn Antenna) as transmitter and receiver operating in frequency range of 2.1 - 3.0 GHz to determine the insertion loss (S21) after passing through banana which can be calculated in term of Complex Permittivity. The results from the observation show that this technique can determine fruit maturity base on the dielectric changing in the fruit sample.

PEMBANGUNAN SISTEM PENGENALPASTIAN TAHAP KEMATANGAN BUAH DENGAN MENGGUNAKAN KAEDAH RADIO FREKUENSI

ABSTRAK

Gelombang mikro adalah gelombang elektromagnetik dengan panjang gelombang lebih pendek daripada satu meter dan lebih panjang daripada satu millimeter, atau frekuensi diantara 300 Megahertz hingga 300 Gigahertz. Gelombang mikro ini sering dikaitkan dengan Radio Frekuensi. Sukatan gelombang mikro dan dwi elektrik sesuatu bahan dilihat akan bertambah aplikasinya sebagai satu teknologi elektro baru yang boleh disesuaikan untuk kegunaan industri memproses makanan dan pertanian. Di dalam industri pertanian, penentuan kadar kematangan buah memerlukan masa yang lebih lama. Kertas kerja ini menghuraikan tentang teknik pengiraan gelombang mikro dalam ruang udara bebas dengan menggunakan 2 gelombang terarah antenna (Antena Horn) sebagai pemancar dan penerima frekuensi yang jaraknya diantara 2.1 - 3.0 Gigahertz untuk menentukan kehilangan penyusupan (S21) setelah melepasi sampel buah yang mana boleh dikira secara Kebolehtelusan Kompleks. Hasil daripada pemerhatian menunjukkan teknik ini boleh menentukan kematangan buah berdasarkan perubahan dielektrik di dalam sampel buah tersebut.

LIST OF CONTENT

|--|

I

PROJECT TITLE	i
THESIS' STATUS DECLARATION FORM	ii
DECLARATION	iii
SUPERVISOR'S APPROVAL	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
LIST OF CONTENT	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOL AND ABBREVIATION	xiv
LIST OF APPENDICES	XV

INTRODUCTION	
1.1: Background History	1
1.2: Objective	2
1.3: Scope of Study	2
1.4: Problem Statement	3

C Universiti Teknikal Malaysia Melaka

PAGE

II LITERATURE REVIEW

2.1: Dielectric Properties Measurement in Agriculture	4
2.2: Measurement Technique in Radio Frequency	7
2.3: Fruit Maturity Level	11
2.4: Radio Frequency	12
2.5: Microwave	13
2.6: Basic Microwave Material Interaction	13
2.7: Dielectric Measurement	14
2.7.1: Free Space Method	14
2.7.2: Conversion Techniques	17
2.7.3: Nicolson-Ross-Weir (NRW) Method	17

III PROJECT METHODOLOGY

3.1: Project Flowchart	20
3.2: Introduction	21
3.3: Equipment and Hardware Configuration	21
3.3.1: Antennas	21
3.3.2: Coaxial Cable	22
3.3.3: Performance Network Analyzer (PNA)	22
3.3.4: Material Under Test	23
3.4: Equipment Setup	23
3.5: Dielectric Calculation	24
3.6: NRW Calculation	25
3.7: Software Development	26

х

RESULTS AND DISCUSSIONS

4.1: Introduc	tion	27
4.2: Single E	Banana Testing	27
4.2.1	Single Immature Banana	28
4.2.2	Single Half Mature Banana	33
4.2.3	Single Mature Banana	38
4.3: Software Development		44

V CONCLUSION

IV

46

5.1: Summary	46
5.2: Future Work Recommendation	46
5.3: Product Market and Commercialization	47

REFERENCES 48

APPENDIX I	50
APPENDIX II	58
APPENDIX III	59

27

LIST OF TABLES

NO.	TITLE	PAGE
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
2.1	Summary of the previous research on dielectric properties	6
2.2	Comparison between the measurement techniques	9

LIST OF FIGURES

NO. TITLE

Schematic of a transmission line – waveguide method	10
Schematic of a open-ended coaxial transmission method	10
Schematic of a free-space transmission technique	10
Schematic of a resonant cavity method	11
Stage of Fruit Development	12
Electromagnetic Spectrum	13
Transmission, reflection, scattering and absorption	14
Material sample in free space	16
Project Flowchart	20
Horn Antennas	21
Coaxial Cable	22
Performance Network Analyzer (PNA)	22
Bananas	23
Equipment Setup	23
The NRW method flow chart	24
Result for single immature banana testing	28-32
Result for single half mature banana testing	33-37
Result for single mature banana testing	48-42
Agilent VEE Software	44-45
	Schematic of a transmission line – waveguide method Schematic of a open-ended coaxial transmission method Schematic of a free-space transmission technique Schematic of a resonant cavity method Stage of Fruit Development Electromagnetic Spectrum Transmission, reflection, scattering and absorption Material sample in free space Project Flowchart Horn Antennas Coaxial Cable Performance Network Analyzer (PNA) Bananas Equipment Setup The NRW method flow chart Result for single immature banana testing Result for single half mature banana testing Result for single mature banana testing

PAGE

LIST OF SYMBOL AND ABBREVIATION

\mathcal{E}_r	Complex relative permittivity
μ_r	Complex relative permeability
tanδ	Tangent loss
f	Frequency
С	Speed of light
λ	Wavelength
λ_g	Guided wavelength
λ_o	Free-space wavelength
λ_c	Cutoff wavelength
ε'	Dielectric constant
$\varepsilon^{\prime\prime}$	Dielectric loss factor
S ₁₁	Transmission power
S ₂₁	Reflection power
Х	X parameter
Γ	Reflection coefficient
Т	Transmission coefficient
L	Length of material

LIST OF APPENDICES

NO.	TITLE	PAGE
Appendix I	Nicholson-Ross-Weir Derivation	50
Appendix II	Dielectric Properties of Selected Fruits	58
Appendix III	Measurement for Single Banana Testing	59

CHAPTER 1

INTRODUCTION

1.1 Background History

Dielectric constant is the electrical properties of fundamental importance in microwave processing of foods and fruits. It determines how materials interact with electric fields such as those of high-frequency and microwave electromagnetic energy. As a new electro-technology is adapted due to increasing of microwave and dielectric properties in agriculture, it has been associated with the design of electrical equipment. Various dielectrics used for insulating conductors and other components in electrical equipment.

Dielectric properties have been applied in many sectors including agriculture. These have included the sensing of moisture in grain and seed [1], non-chemical postharvest insect control in fruits [2] and seed and soil treatment [3].

The concept of permittivity measurements was based on dc electrical resistance to determine grain moisture content. From the study on polar dielectrics, a non-linear increase in resistance of the grain as temperature decreased gave useful observations but there is no quantitative data was found. Later, ac measurements commonly employed to measure the change in capacitance and suitable sample holding capacitors were developed. Grain moisture measurement based on dielectric properties data became the most prominent agricultural application. The development of this encourage to a new technique which contributed to several applications of radio frequency dielectric heating. For the last 15 years, the concept of permittivity measurement has been extended and applied to various cultural and food. The main purpose of this project is to study Radio Frequency method of dielectric properties measurement between frequency range of 2.1GHz to 3.0GHz and the procedure to get the value of dielectric by using the microwave reflection and transmission theory.

1.2 Objective

Objectives of this development of a non-destructive fruit maturity testing system utilizing radio frequency properties are:

- i. To determine the dielectric of fruit using radio frequency.
- ii. To develop Graphic User Interface (GUI) using VEE software that will automatically calculated the dielectric of fruit and shows the level of fruit maturity.
- iii. To observe the relation between dielectric with the level of fruit maturity.

1.3 Scope of Study

Scope of this study is to determine the level of fruit maturity by using Radio Frequency. In this project, microwave is used as the Radio Frequency method. The antenna will transmit microwave through the fruit and receive back the microwave to the other antenna as a receiver. As Horn Antenna has the transmitting and receiving properties, so it is suitable to use it for this project. This antenna will transmit microwave through the fruit and receive back the microwave to the other antenna as a receiver. The collecting data which is S11 (reflection) and S21 (transmission) will be calculated and dielectric of fruits will be determine. Scope of study is also limit to

determine the easier procedure to get the dielectric of fruit. The determination of dielectric is by using the free space method and Nicolson-Ross-Weir (NRW) procedure.

1.4 Problem Statement

In industries of fruits, human energy used to distribute the fruits following level of maturity. This will cause the inconsistent result during detach process. The difficulty to know the level of fruit maturity may result in the fruit being harvested too early before maturity or over maturity, resulting in the fruit not ripening or ripening too early when delivered to the distributor. A technique to determine the maturity of the fruit will overcome the said problem.

CHAPTER 2

LITERATURE REVIEW

2.1 Dielectric Properties Measurement in Agriculture

Dielectric properties of materials are electrical properties that determine how materials interact with electric fields such as those of high-frequency and microwave electromagnetic energy. Therefore, the dielectric properties of materials determine how rapidly they will heat in microwave ovens and lower radio-frequency dielectric heating equipment. Dielectric properties are also important in low power applications, such as their use in the rapid measurement of moisture content in grain and other commodities. Electronic moisture meters use radio-frequency electric fields to sense moisture content in products such as grain, because the dielectric properties are highly correlated with the moisture content of the grain.

The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits and vegetables, and poultry products, are presented graphically to show the dependence of these properties on frequency, moisture content, and temperature. The potential for using the dielectric properties to sense quality factors other than moisture content is also considered [5].

The dielectric properties of 15 vegetables and fruits were measured at 2450MHz from 5 to 130 °C. Equations were developed as a function of temperature, ash, and either moisture content or water activity, and compared to literature equations. Dielectric constant of vegetables and fruits decreased with temperature and ash content. However, ash was not a factor in the equations produced separately for fruits. Dielectric loss factor changed quadrically with increasing temperature: first decreasing and then increasing. This transition temperature decreased with ash content. Ash increased the dielectric loss factor. Garlic and potato gave unusual results, which could be explained by the behavior of solutions of inulin and potato starch, respectively [6].

Dielectric properties of tomato slices are highly useful for predicting the heating rates and behavior of the materials when subjected to high frequency electromagnetic waves. Dielectric properties of tomato slice (6 mm) at different moisture contents such 10, 30, 50 and 70% (water based) were determined by using microwave spectroscopy. The corresponding dielectric properties like dielectric constant (e') and dielectric loss (e.) were observed. The result showed that both dielectric constant (77 to 7.2) and dielectric loss (48 to 3.4) decreased with increase in frequency from 200 MHz to 200 GHz. Drying of tomato slices were carried out at 50, 60, 70oC by using two methods namely microwave assisted vacuum dryer and microwave assisted hot air dryer at the selected temperatures. From the study, it was found that the time taken for drying of tomato slice in microwave assisted vacuum was lower (150, 100 and 70 min) when compared to microwave assisted hot air drying at 50, 60 and 70oC, respectively [7].

New nondestructive techniques for sensing quality measurement of many fruits and vegetables, such as apples, peaches, pears, melons and potatoes that has been stored before consumption would be helpful to producers, handlers and consumers. Subjective quality standards for many products tend to be highly arbitrary, different for individual consumers and for sellers and buyers, and often subject to supply and demand [8]. Sensors for microwave (MW) technology show the advantage of being non-destructive and low-cost. The measurements are based on the interaction of an electromagnetic wave at a known frequency such as radio frequency (RF) and MW range, from 10– 20MHz to 20GHz with a sample, where the reflection and the phase shift, and therefore the corresponding dielectric properties, can be determined. Permeability and permittivity are two important properties of material that determine its electromagnetic characteristics.

Research By	About	Frequency	Result
		Used	
Dunlap and	Dielectric properties	18 kHz to 5	Higher frequencies
Makower (1945)	for carrots	MHz	were most suitable
			for moisture
			determinations in
			food products
Shaw and Galvin	Dielectric properties	1 to 40 MHz	Useful data on the
(1949)	of		temperature
	potato, carrot, apple,		dependence in fruits
	and peach tissue		and vegetables
			between 100kHz -
			20MHz
Pace, Westphal	Dielectric properties	300 to 3000	Dielectric properties
and S.A.	of	MHz	dropped appreciably
Goldblith.	raw potato		with increasing
(1968)			frequency
Thompson, D.R.	Dielectric properties	300 to 900 MHz	Dielectric properties
and G.L.	of		vary with maturity,
Zachariah.(1971)	apples		dropping appreciably
			in the process of
			aging
Stuchly, M.A.	Effect of moisture	9.4 GHz	Temperature
and S.S. Stuchly.	content on the		dependence was not
(1980)	dielectric properties of		seen for dried solids
	granular solids		but increased
			dramatically at

			higher moisture
			contents
Pace et al.	Potential for	1.0 to 3.0 GHz	Energy absorption
(1968)	microwave finish		increased at higher
	drying of potato chips		moisture contents
Bengtsson and	Dielectric properties	2.8 GHz	Wide variation in
Risman (1971)	for foods at 2.8 GHz		dielectric behavior
	and temperatures from		due to differences in
	-20 to 60°C		chemical
			composition,
			physical state, and
			temperature

Table 2.1: Summary of the previous research on dielectric properties

In quality determination of fruit, Ketsa and Dangkanit presented the relation between the maturity and chemical compound of fruit which is a destructive technique [12]. A nondestructive ultrasonic measurement system was developed for the assessment of some transmission parameters which might have quantitative relations with the maturity, firmness and other quality-related properties of fruits [9]. A system using impulse impedance technique was developed to nondestructively determine fruits maturity [10]. Slaughter used near infrared to determine chemical structure inside tomato and peach [11].

2.2 Measurement Technique in Radio Frequency

Measurement of dielectric properties involves measurements of the complex relative permittivity (ε_r) and complex relative permeability (μ_r) of the materials. A complex dielectric permittivity consists of a real part and an imaginary part. The real part of the complex permittivity, also known as dielectric constant is a measure of the

amount of energy from an external electrical field stored in the material. The imaginary part is zero for lossless materials and is also known as loss factor. It is a measure of the amount of energy loss from the material due to an external electric field. The term $tan\delta$ is called loss tangent and it represents the ratio of the imaginary part to the real part of the complex permittivity. The loss tangent is also called by terms such as tangent loss, dissipation factor or loss factor.

The complex permeability also consists of a real part which represents the amount energy from an external magnetic field stored in the material whereas the imaginary part represents the amount of energy dissipated due to the magnetic field. Measurement on the complex permeability is only applicable to magnetic materials. Most materials are nonmagnetic and thus, the permeability is very near to the permeability of free space. There are many techniques developed for measuring the complex permittivity and permeability and each technique is limited to specific frequencies, materials, applications etc. by its own constraint. There are four techniques which are:

i) Transmission/reflection line technique.

- Transmission/Reflection line technique is a popular broadband measurement technique. In the technique, only the fundamental waveguide mode (Transverse Electromagnetic (TEM) mode in coaxial line and Transverse Electric (TE) mode in waveguides) is assumed to propagate.

ii) Open ended coaxial probe technique.

- The Open-ended co-axial probe technique is a non-destructive technique and the technique assumes only the TEM or TE mode is propagating.

iii) Free space technique.

- The free space technique is for broadband applications and assumed only the TEM propagation mode.

iv) Resonant technique.

- The resonant technique provides high accuracies and assumes the TE or Transverse Magnetic(TM) propagation mode.

8

Measurement	Materials	S-Parameters	Dielectric
Techniques			properties
Transmission/Reflection	Coaxial line,	S_{11}, S_{21}	ε_r, μ_r
Line	waveguides		
Open-ended coaxial	Liquids, biological	S ₁₁	E _r
probe	specimen, semi-		
	solids		
Free space	High temperature,	S ₁₁ ,S ₂₁	ε_r, μ_r
	material, large flat		
	solid, gas, hot liquids		
Resonant Technique	Rod shaped solid	Frequencies,	ε_r, μ_r
(Cavity)	materials,	Q-factors	
	waveguides, liquids		

Table 2.2: Comparison between the measurement techniques

By using transmission line, coaxial line and waveguides are commonly used to measure samples with medium loss to high loss. It also can be used to determine both permittivity and permeability of the material under test. However, this transmission line measurement is not so accurate since it is limited by the air gap effects. Open-ended coaxial probe does not need machining of sample, so it easy for sample preparation. The dielectric properties of large number of samples can be measured in short time after the calibration process. Same as using transmission line, it will get affected by air gap for measurement on specimen. For high frequency measurement, free space method is the best way to measure the dielectric of materials. This free space method is kind of non destructive method. The disadvantages of free space method need large area for material under test and will get multiple reflections between antenna ad samples.