DESIGN AND DEVELOPMENT OF LIGHTWEIGHT CHASSIS FOR UTeM FORMULA STYLE'S RACE CAR

MOHD SHAARANI BIN MOHD HASHIM

This report is presented in

Partial fulfillment of the requirements for the

Degree of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

APRIL 2010

C Universiti Teknikal Malaysia Melaka

'I/We* have read this thesis

and from my/our* opinion this thesis

is sufficient in aspects of scope and quality for awarding

Bachelor of Mechanical Engineering (Automotive)'

Signatures	:
Name of Supervisor I	: Muhd Ridzuan bin Mansor
Date	: 24 th May 2010

DESIGN AND DEVELOPMENT OF LIGHTWEIGHT CHASSIS FOR UTeM FORMULA STYLE RACE CAR

MOHD SHAARANI BIN MOHD HASHIM

This report is presented in

Partial fulfillment of the requirements for the

Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

OCTOBER 2009

"I declare this report is on my own work except for summary and quotes that I have mentioned its sources"

Signature	:
Name of Author	: Mohd Shaarani bin Mohd Hashim
Date	: 24 th May 2010

Dedicated to my beloved mom and dad

ACKNOWLEDGEMENTS

Thanks to Allah because of bless I am sincerely appreciative to my lecturer, Mr. Muhd Ridzuan bin Mansor for serving as my supervisor and for providing guidance while conducting the research and the writing of this Projek Sarjana Muda (PSM).

I thank the laboratory management especially the lab technicians for their cooperation and support. I also want to thank my father, Mr Hashim and my mother, Siti Alwiyah for their continued support and encouragement in everything I do. All these years of education have been made possible by their support and love.

Last but not least, I thank everyone who involved directly and indirectly in this project. The sacrifice and commitment given towards me earning my bachelor's degree are indescribable and without them, this PSM thesis would have been impossible. Lastly, hope that all that have been study and research in this thesis can be use as a references to the other student in the future.

Mohd Shaarani bin Mohd Hashim

UTeM

April 2010

ABSTRAK

Matlamat projek ini ialah untuk mereka bentuk dan membangunkan kerangka kereta Formula Student yang baru di mana kerangka yang akan di bangunkan mestilah mempunyai berat yang lebih ringan daripada kerangka yang sedia ada. Ini kerana, jisim adalah salah satu faktor utama yang akan memberi implikasi kepada kelajuan sesebuah kereta. Banyak kajian telah dilakukan semasa projek ini di jalankan untuk mencapai objektif utama projek ini. Kesimpulan yang telah di dapati daripada kajian telah mendapati cara untuk mengurangkan jisim kerangka ini adalah dengan cara mengubah rekabentuk kerangka yang sedia ada. Selain itu, pengurangan penggunaan besi yang berdiameter lebar juga telah dikurangkan. Namun, penggunaan jenis bahan masih di kekalkan seperti kerangka yang lepas. Walau bagaimanapun, setiap perubahan yang di buat mestilah selari dengan peraturan dan spesifikasi yang di keluarkan oleh pertandingan Formula Student. Kekuatan kerangka juga mestilah sama atau lebih kuat daripada kerangka yang sedia ada. Nilai simpulan torsi pula di kira untuk menentukan kadar kekuatan kerangka ini. Analisa regangan juga di lakukan untuk melihat kekukuhan kerangka ini. Kesimpulannya, banyak pengalaman dan pengetahuan yang baru dapt dipelajari hasil daripada kajian ini.

ABSTRACT

The goal of this project is to design and develop a new chassis which are lightweight than the previous of Formula Student UTeM chassis. This is because weight is the main point that affected the performance of a car. Therefore, a lot of research has been done in order to achieve the main objective of this project. From the research, this can be conclude that the method to reduce weight is by changes the geometry of chassis design and reduce the hollow tubes dimension while the material that are used still same as the previous chassis. However, changes must complying the rules and regulation of competition. The strength also must be equal or greater than the previous. The torsional stiffness value is determined in order to know the stiffness of this chassis. The chassis was later analyses for its structural performance using finite element analysis method to know the critical path and the parts that will give any possible failure effect. As a conclusion, a lot of new experience and knowledge have gather during the period of this project.

TABLE OF CONTENT

CHAPTER	TITLE	E		PAGE
	PREFA	ACE		Ii
	DEDIC	CATION		Iv
	ACKN	OWLEE	OGEMENT	V
	ABSTI	RAK		Vi
	ABSTI	RACT		vii
	TABL	E OF CC	DNTENT	viii
	LIST (OF TABI	LE	X
	LIST (OF FIGU	RE	Xi
	NOME	ENCLAT	URE	xiv
CHAPTER I	INTRO	ODUCTI	ON	1
	1.10	Objec	tive	1
	1.20	Proble	em statement	2
	1.30	Scope		2
CHAPTER II	LITER	RATURE	REVIEW	4
	2.10	Comp	etition	
		2.1.0	Competition rules	4
		2.1.1	Competition	6

		2.1.2	Car	6
	2.20	Types	of Chassis Design	7
		2.2.1	Ladder frame	7
		2.2.2	Space frame	8
		2.2.3	Backbone Chassis	8
		2.2.4	Monocorque	9
		2.2.5	Carbon Fiber Monocoque	9
	2.30	Types	of chassis used in Formula	10
		SAE		
		2.3.1	Tubular Steel Space Frame	11
		2.3.2	Metal Monocoque	11
		2.3.3	Composite Semi-Monocoques	12
	2.40	Types	of material possibly use	12
		2.4.1	Steel	13
		2.4.2	Plain Carbon Steel	13
		2.4.3	Mild steel	14
		2.4.4	Medium carbon steel	14
		2.4.5	High carbon steel	15
		2.4.6	Alloy Steels	15
		2.4.7	Stainless Steel	15
		2.4.8	Aluminum	16
	2.50	Torsic	onal Stiffness	16
	2.60	Metal	inert gas (MIG) welding	18
		2.6.1	Welding technique	19
CHAPTER III	METHO	DOLO	DGY	20
	3.10	Flow	chart	20
		3.1.0	Flow chart of PSM I	21
		3.1.1	Flow chart of PSM II	22
	3.20	Analy	sis of last year's chassis	23
	3.30	Const	lltation	23
		3.3.1	Last Year Team Members	23
		3.3.2	Supervisor	24

		3.3.3	Workshop Staff	24
	3.40	Proce	SS	24
	3.50	Desig	n study and process	27
		3.5.1	Aims	27
		3.5.2	Size	28
		3.5.3	Strength	28
		3.5.4	Weight	28
		3.5.5	Miscellaneous	29
		3.5.6	Requirements	29
	3.60	Form	ula SAE Study and Research	30
	3.70	Mode	ling	30
	3.80	Select	ion of materials	31
		3.8.1	Comparisons	31
		3.8.2	Conclusion in choosing the	33
		materi	al	
	3.90	Finite	element analysis	33
CHAPTER IV	DESIGN ANALYSIS AND PROCESS			
	4.10	Flow	chart of the design process	37
				20
	4.20	Desig	n planning	38
	4.20 4.30	Desig 3D M	n planning odel of previous chassis	38 39
	4.20 4.30 4.40	Desig 3D M Conce	n planning odel of previous chassis ept generation	38 39 40
	4.20 4.30 4.40	Desig 3D M Conce 4.4.1	n planning odel of previous chassis ept generation First concept	38 39 40 41
	4.20 4.30 4.40	Desig 3D M Conce 4.4.1 4.4.2	n planning odel of previous chassis ept generation First concept Second concept generation	38 39 40 41 41
	4.20 4.30 4.40	Desig 3D M Conce 4.4.1 4.4.2 4.4.3	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation	38 39 40 41 41 41
	4.204.304.404.50	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation anation of evaluation concept	38 39 40 41 41 42 43
	4.204.304.404.50	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla 4.5.1	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation mation of evaluation concept Characteristics	38 39 40 41 41 42 43 41
	4.204.304.404.50	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla 4.5.1 4.5.2	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation mation of evaluation concept Characteristics Concept selection	38 39 40 41 41 42 43 41 44
	4.204.304.404.50	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla 4.5.1 4.5.2 4.5.3	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation mation of evaluation concept Characteristics Concept selection Weighted Rating Method	38 39 40 41 41 42 43 41 44 45
	4.204.304.404.50	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla 4.5.1 4.5.2 4.5.3 4.5.4	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation mation of evaluation concept Characteristics Concept selection Weighted Rating Method Final concept selection	38 39 40 41 41 42 43 41 44 45 45
	4.204.304.404.50	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation mation of evaluation concept Characteristics Concept selection Weighted Rating Method Final concept selection 3D model of new design	38 39 40 41 41 42 43 41 44 45 45 45
	 4.20 4.30 4.40 	Desig 3D M Conce 4.4.1 4.4.2 4.4.3 Expla 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 Desig	n planning odel of previous chassis ept generation First concept Second concept generation Third concept generation mation of evaluation concept Characteristics Concept selection Weighted Rating Method Final concept selection 3D model of new design n dimension and specification	38 39 40 41 41 42 43 41 44 45 45 45 45 45

		4.6.1	Main roll hoop	53
		4.6.2	Front hoop	54
		4.6.3	Bulkhead	56
		4.6.4	Rear box	57
		4.6.5	Side impact member	57
		4.5.6	Engine bay	58
CHAPTER V	FINITE	ELEN	IENT ANALYSIS	60
	5.10	Defin	e load	61
	5.20	Torsi	on Displacement Analysis	63
		5.2.1	Stress analysis on the overall	64
			chassis	
		5.2.2	Stress analysis on the front	65
			knee box of chassis	
		5.2.3	Stress analysis on the rear box	66
			of chassis	
	5.30	Analy	sis results	66
		5.3.1	Torsional displacement of the	67
			previous chassis design	
		5.3.2	Torsional displacement of the	67
			new chassis design	
		5.3.3	Stress analysis on overall	68
			chassis	
		5.3.4	Stress analysis on the rear box	69
			(differential box)	
		5.3.5	Stress analysis on the front	70
			knee box	

CHAPTER VI FABRICATION

6.10The flowchart of fabrication736.20Project planning74

72

	6.30	Construction	75
	6.40	Finishing	83
	DIGG		
CHAPTER	DISCU	JSSION	85
VII			
	7.10	Discussion on torsional stiffness	85
		value	
		7.1.0 Calculation	85
		7.1.1 Comparison result with other researchers	87
		7.1.2 Discussion on stress analysis result	91
		7.1.3 Discussion on the design and fabrication	91
		7.1.4 Percentage of weight reduction	93
		7.1.5 Manufacturing costing	93
CHAPTER	CONC	CLUSION AND	96
VIII	RECO	OMMENDATION	
	8.10	Conclusion	96
	8.20	Recommendation	90
	Refere	ences	99
	Biblio	graphy	101
	Appen	dix A UTeM Formula Varsity	102
	regula	tion	
	Appen	dix B design dimension of previous	120
	design		
	Appen	dix C Design dimension of new design	124

LIST OF TABLE

TABLE

TITLE

PAGE

2.1	Comparison among the chassis	10
3.1	Comparison among the material	32
4.1	Weighted rating method	45
4.2	Rating value	46
5.1	material properties of low carbon steel	61
7.1	torsional analysis results for new and previous chassis	86
7.2	Comparison the torsional stiffness value with some of Formula SAE's team	88
	(Source: Alexander M Soo. (2008), William B. Riley and	
	Albert R. George(2002))	
7.3	Structural analysis result	91
7.4	table of manufacturing costing and material quantity used	94

LIST OF FIGURE

FIGURE TITLE PAGE 2.1 Illustration of the side impact member's location 5 (Sources: Formula SAE Rules (2009)) 2.2 5 Illustration of the clearance required above the drivers head. (Sources: Formula SAE Rules (2009)) 2.3 95th percentile male dimensions as depicted in the 2006 rules 6 (Sources: Formula SAE Rules (2009)) 2.4 Last year car on track 7 2.5 The 2003 University of Queensland FSAE Chassis 11 (Source : Blessing.J.P (2004)). 2.6 University of Western Washington's Composite Tub Chassis 12 (Source : Blessing.J.P (2004)). 2.7 Tensile Strength and Hardness of Plain Carbon Steels 14 (Source : Baker.C.S, (2004)). 2.8 Example of frame chassis in torsion 17 2.9 Free body diagram that look from front suspension bay 18 (Source : Riley.W.B and George.A.R. 2002) 3.1 Flow chart of PSM I 21 3.2 Flow chart of PSM II 22 3.3 34 Properties of material is define 4.1 Flow chart of design process 37 4.2 Breakdown structure of chassis 39

4.3	3D model of previous chassis	40
4.4	First concept generation	41
4.5	Second concept generation	42
4.6	Third concept generation	42
4.7	Model of main hoop and front hoop	48
4.8	3D Model of new design rear angle view	48
4.9	3D Model of new design front angle view	48
4.10	Top View the new chassis design	50
4.11	Top view of previous chassis design	50
4.12	Side view of new chassis design	51
4.13	Side view of previous chassis design	51
4.14	Front view of new chassis design	52
4.15	Front view of previous chassis design	52
4.16	Final design for the main role hoop	53
4.17	The most complex component the front hoops final design.	55
4.18	The front view of bulkhead	56
4.19	The dimensions of the rear box component of the final design.	57
4.20	Side impact member dimension	58
4.21	Engine bay design dimension	59
5.1	Free body diagram look from side view	61
5.2	Location of applied load and constraint for torsion	64
	displacement analysis	
5.3	Location of applied load and constraint for stress analysis on	64
	the overall chassis	
5.4	Location of applied load and constraint for stress analysis on	65
	the front knee box	
5.5	Location of applied load and constraint for stress analysis on	66
	the rear box	
5.6	Torsional displacement of the previous chassis design	67
5.7	Torsional displacement of the new chassis design	68
5.8	Stress analysis on overall chassis	69
5.9	Stress analysis on the rear box (differential box)	70
5.10	Stress analysis on the front knee box	70

6.1	Flow chart of fabrication process	
6.2	The breakdown structure of chassis	74
6.3	The full scale of design is template on trace paper.	75
6.4	The pipes is cut by the disc cutter	76
6.5	Bundle of cutting pipes	76
6.6	The frame is jig by nails and tape with template on the full	77
	scale dimension of trace paper	
6.7	The welding procedure	78
6.8	Grinding procedure to remove surplus of welding	78
6.9	Frame is position in the straight line	79
6.10	Front box is fully constructed	80
6.11	Passenger cell construction	80
6.12	Engine bay construction which using a template and nails in	81
	order to hold the pipes	
6.13	The final design fully constructed	81
6.14	Chassis is check for the sufficient in all areas of the	82
	dimensions and construction.	
6.15	Chassis is check for the sufficient in all areas of the	82
	dimensions and construction.	
6.16	Grinding to remove acces metal of welding	83
6.17	Painting the final product	83
6.18	Weighing the final product	84
7.1	Comparison the ratio of torsional stiffness per weight value	89
	with some of Formula SAE's team	
7.2	Comparison the torsional stiffness value with some of Formula	89
	SAE's team	
7.3	The driver and seat positioned in appropriately.	92
8.1	The construction which easily jig the main frame of chassis	98

LIST OF NOMENCLATURE

$\sigma_{\text{von misses}}$	=	Von misses stress
Sut	=	Ultimate tensile strenght
Fz	=	Reaction force
cg	=	Centre of gravity
L	=	Length
m	=	Mass
M_{driver}	=	Mass of driver
M_{wheel}	=	Mass of wheel
$M_{chassis}$	=	Mass of chassis
Δy	=	Displacement at the location of applied load
θ	=	Angle of twist

LIST OF APPENDIX

NOTITLEPAGEARegulation of UTeM' Formula Varsity102BDesign dimension of previous UTeM Formula Varsity chassis120CDesign dimension of new design UTeM Formula Varsity124chassischassis124

CHAPTER I

INTRODUCTION

Formula Varsity race car is a competition that is organized by Universiti Teknikal Malaysia Melaka in the quite few years. The competition challenges students to design, analyze, build and race the working model of a racing car in real track condition. The design guidelines were based on the specifications ruled by Formula Varsity 2008 event.

This report deals with the design of the chassis including the method that has been applied in development a formula style race car chassis.

1.10 Objective

The main objective of this project are to design and development of the Formula Style Race Car which is lightweight than a previous car's chassis. New chassis must be lighter than previous but maintain strength.

1.20 Problem Statement

The design of a chassis for a formula style race car contains all the necessary components to support the car and the driver. It must comply with the Formula Varsity rules and regulation. In order to produce a competitive vehicle with optimum chassis performance, many areas need to be studied and tested.

Weight is the main point that affected the performance of the car. Therefore, the main purpose of this project is to design and develop a lightweight chassis. The new chassis is must be lighter than the past year chassis but must maintain the strength of the chassis when load is applied on it.

Some factors that can affect the weight of a vehicle are the types of material used, the diameter or dimension of tubes use to built space frame chassis, and the design geometry of chassis.

This project was started by performing background research required to sustain an accurate database of design criteria. Design criteria is allowed the design process and methodology to be derived as well as and to allow for smooth construction of an efficient and effective space frame chassis. Once construction of the chassis was completed, analyses were conducted to investigate the effects of working loads on the chassis. Finite element analysis was used to simulate the conditions of various load combinations.

1.30 Scope

 Produce the detail design of a new chassis using 3D CAD software based on UTeM Formula style competition and regulation

- ii. Select suitable material for the chassis through material selection analysis.
- iii. Evaluate the torsional stiffness for the chassis based on the load analysis.
- iv. Perform Finite Element Analysis on chassis.
- v. Fabricate the new design of Formula Style Race Car chassis.
- vi. Make a comparison about the torsional stiffness value and weight reduction of the new design chassis with the previous car's chassis.

CHAPTER II

LITERATURE REVIEW

2.10 Competition

2.1.0 Competition rules

Adhering to the rules that govern the chassis for the competition is a pivotal part of the research. If one small sub-section rule is not followed, the chassis will disqualified the whole car from the competition.

Within the competition rules that are solely for the chassis when attempting to insure all the rules are met, it is easy to miss small details when the rules are set out in this form. Therefore, to simplify this process a summary of the rules was created and broken down into all individual areas of the chassis layout. These areas were, Main Hoop, Front Hoop, Bulkhead, Main Hoop Bracing, Front Hoop Bracing, Bulkhead Support, Other Bracing and Side Impact Members.

The summarized version of the rules can be found in Appendix A. Along with this summary of the rules come some diagrams that relate to the safety aspect of the car as shown in following figure.

Figure 2.1: Illustration of the side impact member's location. (Sources: Formula SAE Rules (2009))

Figure 2.2: Illustration of the clearance required above the drivers head. (Sources: Formula SAE Rules (2009))