EVALUATION OF SURGE ARRESTER REQUIREMENT FOR OVERHEAD TRASNMISSION LINE IN BACKFLASHOVER ANALYSIS.

Jeremy Ong Chun Chian

Bekp 2010

" I hereby declare that I have read through this report entitle "title of the project" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Industrial Power)"

	A I	
Signature	: (]]	

Supervisor's Name : Puan Junainah Bt Sardi

Date

: 10 May 2010

EVALUATION OF SURGE ARRESTER REQUIREMENT FOR OVERHEAD TRASNMISSION LINE IN BACKFLASHOVER ANALYSIS.

JEREMY ONG CHUN CHIAN

A report submitted in partial fulfillment of the requirements for the degree of Electrical Engineering (Industrial Power)

> Faculty of Electrical Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

> > 2009

I declare that this report entitle "Evaluation of Surge Arrester Requirement for Overhead Transmission Line in Backflashover Analysis" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is no concurrently submitted in candidature of any other degree.

Signature	····
Name	: Jeremy Ong Chun Chian
Date	:

To My Beloved Mother and Father

à 🖓

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to my project supervisor, Puan Junainah Bt Sardi, for giving me the opportunity to complete my thesis under her supervision. Her willingness to assist me through her guidance, advices, and continued support has been a great motivation for me to excel in my project.

I would also like to thank Encik Hanafe and Encik Mohd Afizan Bin Ismail for the assistance towards the successful completion of this project. I am also indebted to Tenaga National Berhad(TNB) for their assistance in supplying the relevant data and information.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Last but not least, I would like to say a word thanks to my family members for their constant support and encouragement throughout all these years.

ABSTRACT

Lightning strike is the major factor that leads to overvoltage and equipment failure in electrical power system. Thus, insulation coordination is an essential part of power system studies and was used to determine the performance of a transmission line or substation. This project generalizes the modelling of 132kV transmission line design for the purpose of backflashover simulation using the power system simulation tools that is Power System Computer Aided Design (PSCAD) software. Sample of transmission line data was taken from Tenaga National Berhad (TNB) for the purpose of simulation using PSCAD software .Crucial part of the studies include the model of transmission line components such as insulator coordination, tower model, tower footing model and surge arrester. This research will focus on the effect of different position of transmission line surge arrester placement at transmission line to the value of backflashover rate. A model of surge arrester is implemented in PSCAD simulation across the line insulation, to prevent flashover. The capabilities of arrester are investigated so that the proper arrester rating can be selected for any system requirement. In addition, extensive analysis on the placement of surge arrester at the substation and the prediction of probability of transformer damage are also presented. Results were analyzed and the influence of transmission line surge arrester placement to backflashover rate at transmission line and the probability of transformer damage at substation were discussed. The results will be discussed based on literature review and previous findings obtained by other researchers. Findings from this project can be a significant modelling guideline to the transmission line designers or other researchers to improve the performance of overhead transmission line in term of backflashover rate and probability of transformer damage at substation.

ABSTRAK

Kilat merupakan faktor utama yang menyebabkan voltan lampau dan kegagalan pada sistem kuasa elektrik. Oleh itu, koordinasi penebatan memainkan peranan yang penting dalam kajian sistem kuasa dan digunakan untuk menentukan pencapaian sistem rangkaian talian penghantaran atau pencawang. Projek ini mengetengahkan model talian penghantaran yang dibentuk menggunakan sejenis simulasi alat sistem kuasa simulasi iaitu perisian Power System Computer Aided Design (PSCAD) bertujuan untuk melaksanakan simulasi pemecikan api. Sampel maklumat sistem talian penghantaran diambil daripada Tenaga Nasional Berhad (TNB) dengan tujuan simulasi menggunakan perisian PSCAD. Bahagian terpencil dalam kajian ini adalah membentuk komponen talian penghantaran yang terdiri daripada koordinasi penebatan, model menara, rintangan tapak menara dan penangkap pusuan kilat. Penyelidikan ini fokus kepada kesan penyambungan penangkap pusuan kilat ditempatkan pada sistem talian penghantaran. Model penangkap pusuan ditempatkan dalam simulasi PSCAD dengan talian penebat, untuk mencegah pemercikan api. Pemilihan penangkap pusuan yang sesuai sepadan dengan kadar alatan sistem akan disiasat dalam projek ini. Kajian mengenai pengaruh penempatan penangkap pusuan dalam sistem talian penghantaran terhadap kadar pemercikan api dan kadar kerosakan alat pengubah-ubah di pencawang akan dibincangkan dalam projek ini. Hasil kajian dalam projek ini boleh diggunakan sebagai contoh model bagi para pereka sistem talian penghantaran bertujuan untuk meningkatkan keupayaan sistem talian penghantaran kuasa tinggi.

iv

TABLE OF CONTENTS

v

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	ii
	ABSTRACT	ш
	TABLE OF CONTENTS	v
	LIST OF TABLES	ix
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	xv
	LIST OF APPENDICES	xvi
1	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Project Statement	1
	1.3 Problem Objective	2
	1.4 Scope of Works	3
	1.5 Thesis Outlines	3
2	LITERATURE REVIEW	5
	2.1 Insulation Coordination	5
	2.1.1 Definitions of Insulation Coordination	5
	2.1.2 Basic Principles of Insulation Coordination	6
	2.1.3 System Overvoltage	6
	2.1.4 Insulation Withstand Characteristics	8
	2.1.5 Standard Basic Insulation Levels (BIL)	9
	2.1.6 Characteristic of Insulation Coordination	10

vi

2.2	Light	ning	11
	2.2.1	Lightning Strikes	12
	2.2.2	The Phenomenon of Lightning	13
	2.2.3	The Physical of Lightning	14
	2.2.4	Formation of Lightning Strike	15
	2.2.5	Lightning Incidence	16
	2.2.6	Problems caused by Lightning to	17
		Power Transmission	
		2.2.6.1 Shielding Failure	17
		2.2.6.2 Backflashover	19
	2.2.7	Backflashover Rate (BFR)	21
2.3	Trans	mission Line Modelling Guideline	22
	2.3.1	Lightning Strike	22
	2.3.2	Overhead Transmission Line	24
	2.3.3	Tower Footing Resistance	25
	2.3.4	Insulator Coordination Gap Flashover	26
	2.3.5	Surge Arrester	29
		2.3.5.1 Metal Oxide Surge Arrester	30
		2.3.5.2 Selection of Arrester Rating	32
	2.3.6	Improve Transmission Line Performance with	33
		Transmission Line Surge Arrester	

3

4

vii

ME	THOD	OLOGY	35
3.1	Introd	luction to PSCAD	35
3.2	Flow	of Works	35
3.3	Mode	lling for Backflashover Analysis	38
	3.3.1	Modelling of Lightning Stroke	37
	3.3.2	Modelling of Overhead Transmission Lines	40
	3.3.3	Modelling of Tower	41
	3.3.4	Modelling of Tower Footing Resistance	46
	3.3.5	Modelling of Insulator	46
	3.3.6	Modelling of Surge Arrester	47
	3.3.7	Data Recording	49
RES	ULTS		50
4.1	The D	eveloped Model of MPSS-MCCA	50
	132k	V Transmission Line	
4.2	Descr	iption of Case Study for Transmission Line	53
	Surge	Arrester (TLSA) Located at Transmission Line	
	4.2.1	Different Arrester Installation Configuration at Transmission Line	54
	4.2.2	Simulation Details	54
	4.2.3	Backflashover Analysis for Cases Study 1	55
		at Starting Tower (tower 1).	
	4.2.4	Result for Each Cases Study	57
		at Starting Tower (tower 1)	
	4.2.5	Result for Each Cases Study	59
		at Middle Tower (tower 4).	

4.2.6 Result for Each Cases Study 61 at Ending Tower (tower 7).

CHAPTER	TITLE	PAGE
	4.3 Description of Cases Study for Transmission Line	63
	Surge Arrester (TLSA) Located at Substation.	
	4.3.1 Different Arrester Installation Configuration at Substation	64
	4.3.2 Simulation Result for Each Cases Study at	65
	the Starting Substation MPSS-MCCA	
	4.3.3 Simulation Result for Each Cases Study at	69
	the Ending Substation MPSS-MCCA	
5	ANALYSIS AND DISCUSSION	73
	5.1 Application of Model for Backflashover Studies	73
	5.2 TLSA placement at Transmission line	74
	5.3 TLSA placement at Substation	78
6	CONCLUSION AND SUGGESTIONS	82
	6.1 Conclusion	82
	6.2 Suggestions	84
	REFERENCES	85
	APPENDICES	88

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	132kV MPSS-MCCA Transmission Line Data	89
В	Surge arrester data sheet	96

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Classes and types of overvoltage-Standard voltage shapes	8
	and Standard Withstand tests	10
2.2	Typical coordination of insulation system voltage	
2.3	Comparisons between the direct strikes and indirect strikes lightnin	
2.4	Electro-Geometric model representation conductors and ground wi	re. 18
2.5	Comparisons between the CIGRE and IEEE methods	21
2.6	Transmission line (distributed) model	24
2.7	Available models of insulator coordination	26
2.8	Parameter k and E_o for Different Configuration and Polarity	28
2.9	Fundamental requirements for transmission line surge arresters	29
2.10	The advantages and disadvantages of each type of surge arrester	30
2.11	Propose surge arrester model	31
2.12	V-I characteristics of A0 and A1	32
3.1	Parameter of Transmission Line used in the Project	40
3.2	Tower Data Obtained	41
3.3	Tower Surge impedance Formulated	42
3.4	Surge Arrester model Formulated	49
4.1	Line Surge Arrester configuration with different placements	54
	at transmission line	
4.2	Results for cases study 1 at starting tower (tower 1)	56
4.3	Results for each cases study at starting tower (tower1)	58
4.4	Backflashover rate for each cases study at starting tower (tower 1)	58
4.5	Results for each cases study at middle tower (tower 4)	60
4.6	Backflashover rate for each cases study at middle tower (tower 4)	60

TABLE	TITLE	PAGE
4.7	Results for each cases study at ending tower (tower 7)	62
4.8	Backflashover rate for each cases study at ending tower (tower 7)	62
4.9	Line Surge Arrester configuration with different placements at substation	64
4.10	Voltage output waveform at starting substation for all cases study	65
4.11	Maximum voltage at starting substation for each cases study	67
4.12	Percentage probability of transformer damage for each case study with TLSA located at starting substation.	68
4.13	Voltage output waveform at ending substation for all cases study	69
4.14	Maximum voltage at ending substation for each cases study	71
4.15	Percentage probability of transformer damage for each case study with TLSA located at ending substation	72
5.1	Result of flashover characteristic for TLSA placement at transmission line	74

C Universiti Teknikal Malaysia Melaka

x

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Damage to the transformer at TNB substation	2
2.1	Types of overvoltage	7
2.2	Standard wave shape of lightning and switching impulse waveshape	10
2.3	Annual frequencies of thunderstorm days	11
2.4	Electro-geometric model and Rusck model for determining	13
	direct strikes or induced voltage flash over	
2.5	Three type of lightning and the process of lightning occurs	14
2.6	Formation of a stepped leader that starts a lightning strike.	15
2.7	Return stroke initiation and propagation	16
2.8	Number of Flashes to Overhead Lines Incidence data from Erikson	16
2.9	Shielding predictions and experience Average shielding angle	19
	versus Average OHGW height	
2.10	Installing shield wires simulation using Flash software	19
2.11	The backflashover mechanism	20
2.12	Comparison of voltage across insulator in PSCAD/EMTP and TFlat	sh 21
2.13	Concave waveform	23
2.14	BFR for different tower footing resistance values and arrester locati	on 34
3.1	Flow of works	35
3.2	Modelling of transmission line	36
3.3	Modelling of lightning stroke in PSCAD	37
3.4	Double exponential waveform generated in PSCAD	37
3.5	Waveform of probability of exceeding crest current	38
3.6	Modelling of lightning stroke using sequence current in PSCAD	38
3.7	Waveform of lightning stroke current steepness	39
3.8	Modelling of Lightning stroke current steepness in PSCAD	39

FIGURE	TITLE	AGE
3.9	The structure of tower class 1, 2, and 3	42
3.10	Interface component in PSCAD	43
3.11	Connect to interface components	43
3.12	Directly connected	47
3.13	Transmission Line configuration and Frequency Dependent (Phase)	43
	Model option in PSCAD	
3.14	Ground component in PSCAD	44
3.15	Tower component in PSCAD	44
3.16	Tower data in PSCAD	45
3.17	Conductor data and ground wire data in PSCAD	45
3.18	Modelling of tower footing resistance using PSCAD-module	46
3.19	Modelling of tower footing resistance according to grounding	46
	approximation in PSCAD	
3.20	Modelling of insulator using PSCAD	47
3.21	Leader Progression Time Model using PSCAD	47
3.22	Surge arrester model in PSCAD	48
3.23	Multiple run component	49
4.1	A developed model of transmission line tower injected by a lightning	g
	current	51
4.2	Model of 132kV MPSS-MCCA transmission line for backflashover	52
	analysis	
4.3	Surge arrester placements at the insulator	53
4.4	Model of surge arrester	53
4.5	132kV MPSS-MCCA transmission line configuration	54
4.6	Voltage measure across the phase insulator V_{i1} , V_{i2} and V_{i3}	55
4.7	I-V curve cases study 1 for starting tower (tower1), middle tower	56
	(tower4) and ending tower (tower7)	
4.7	I-V curve backflashover analysis of 132kV MPSS-MCCA	56
	transmission line for case study starting tower near substation	
4.8	I-V curve for each cases study at starting tower (tower 1)	57
4.9	I-V curve for each cases study at middle tower (tower 4)	59
4.10	I-V curve for each cases study at ending tower (tower 7)	61

FIGURE	TITLE	PAGE
4.11	Transmission Line Surge Arrester locations at substation	64
4.12	Cases study Probability of transformer Damage with	68
	TLSA located at starting substation.	
4.13	Cases study Probability of transformer Damage with	72
	TLSA located at ending substation.	
5.1	BFR for each cases study	75
5.2	Percentage of probability transformer damage with	78
	each cases study at starting substation (MPSS)	
	and ending substation (MCCA)	

xiii

LIST OF ABBREVIATIONS

ac		Alternating Current
ACSR	-	Aluminum Conductor Steel Reinforced
SF	÷	Shielding Failure
BF	-	Backflashover
BFR	- 4	Backflashover Rate
BIL		Basic Lightning Insulation Level
СВ		Circuit Breaker
CFO	÷	Critical Flashover
LIPL	4	Lightning Impulse Protective level
SIPL	- 4	Switching Impulse Protective level
PSCAD	÷.	Power system computer Aided Design software
ATP	•	Alternative Transient Program
EMTP	÷	Electro Magnetic Transient Program
IEE	\sim	The Institution of Electrical Engineers
IEEE	÷.,	Institute of Electrical and Electronic Engineers
SA	÷.	Surge Arresters
MOSA		Metal Oxide Surge Arresters
SiC	÷	Silicon Carbide
S/S	- 50	Substation
TFR	-	Tower Footing Resistance
TLA		Transmission Line Arresters
TNB		Tenaga Nasional Berhad
ZnO		Zinc Oxide
HV	. 2.	High Voltage
EHV	-	High voltage transmission line
IVFO		Induced Voltage Flashover

xiv

LIST OF SYMBOLS

μF	-	micro-Farad
μH	~	micro-Hendry
μs	÷	nicro-second
Α	-	Ampere
С	4	Capacitive
Ng	÷	Ground Flash Density per Kilometer2 per year
kA		kilo-Ampere
kJ		kilo-Joule
kV	÷	kilo-Volt
L	÷.	Inductive
MV	27	Mega-Volt
R	-	Resistance
Uc	- 10 <u>5</u>	Maximum Continuous Operating Voltage
Ur	-	Rated Surge Arrester Voltage
Km	÷	kilometer
v	-	Volt
Z	-	Impedance
Zt	-	Surge Impedance

CHAPTER 1

INTRODUCTION

1.1 Project Background

In Malaysia, Tenaga National Berhad (TNB) transmission lines consists of more than 420 transmission network in Peninsular are linked together by approximately 11,000 km of transmission line operating at 132, 275, 500 kV [1]. This project is based on the 132kV MPSS-MCCA transmission line (Pahlawan Substation-Malacca substation).

Lightning is a natural phenomenon, where typically 90% of cloud-to-ground flashes transfer negative charge. Such a flash consists of a sequence of one or more high amplitude, short duration current impulses or strokes, the subsequent strokes are sometimes called re-strokes [2]. The phenomenon of backflashover occurs when lightning strikes at the top of the tower or shield wire and cause flashover from the tower to the phase conductor.

1.2 Problem Statements

There are several problem cause by lightning stroke to the overhead transmission line due to overvoltage. Lightning can cause permanent damage to electrical equipment include flashover of insulation inside motors or transformers, so that the equipment is no longer functional [3]. The different placement of transmission line surge arrester can effect the backflashover rate of the transmission line. For substation, lightning can cause backflashover and induced overvoltages generate surge voltage that can causes damage to the substation equipment as shown in Figure 1.1.

Figure 1.1 Damage to the transformer at TNB substation

Therefore, it is very important to study the application of surge arrester to improve the performance of overhead transmission line. The influences of different placement of transmission line surge arrester in transmission line are studies to reduce the BFR.

The purpose of this project is to optimize the performance of transmission line and substation using PSCAD simulation programs.

1.3 Project Objectives

Objectives of this project are:-

- (i) To develop the model of overhead transmission line using PSCAD.
- (ii) To develop transmission line surge arrester model using PSCAD.
- (iii) To investigate effect of different placement of TLSA at transmission line to the values of BFR.
- (iv) To estimate the probability of transformer damage with respect to different TLSA placement at substation.

2

This project only involved

- The modelling of 132kV MPSS-MCCA transmission line which includes modelling of overhead transmission tower, tower footing, insulator, first stroke lightning current and surge arrester model.
- To evaluate lightning performance of transmission line backflashover rate (BFR) and the shielding failure rate should be consider.
- This project only concern on bakflashover rate because direct strokes to the phase conductors due to shielding failures are relatively less likely to occur [4].
- The model of the transmission line is applied theoretically in term of method used in simulation tool such as PSCAD and MATLAB software.

1.5 Thesis Outlines

This research project is divided into six chapters. Generally, some basic principals, theories, equations, previous researches references, simulation result, comparison of result and discussion were included in these six chapters based on the contents requirements of each chapter.

Chapter 1 includes the project background, project objective, problem statement, scope of work and thesis outlines. Chapter 2 presents literature information of research project such as insulation coordination, lightning incidence to transmission line and overhead transmission line. This chapter briefly explains the characteristics of the insulation coordination as a protective device. Moreover, this chapter also explains the phenomenology of lightning incidence that terminate on transmission line and on substation. Modelling guidelines of overhead transmission line using leader progression model, tower footing model and surge arrester model use for backflashover analysis is discuss.

3

In chapter 3 presents the methodologies of constructing lightning stroke model, modeling of transmission line and surge arrester model using PSCAD software. The method will be presented in graphs and flow chart of the analyzed simulation result together with a brief explanation.

In chapter 4, simulation setup in response for transmission line surge arrester positioning in backflashover. Investigation the effect of backflashover and the influence of surge arrester presents in transmission line and substation. And the possibility of transformer damage due to lightning strike at the substation.

Chapter 5 will discussed the simulated results of backflashover analysis obtained from PSCAD software. The backflashover rate and probability of transformer damage is calculated and analyzed for each case presented.

Finally, Chapter 6 will conclude all the works and studies that had been presented in the pervious five chapters. Besides, some recommendations as well as the contributions to the project will be mentioned.