PRELIMINARY STUDY ON POWER TRAIN SYSTEM FOR ELECTRIC VEHICLE

MOHD ASHRAFF BIN CHE HASHIM

April 2009

'I/We hereby declared that I/We have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Mechanical Engineering (Design and Innovation)'

Signature	:
Supervisor's name	:
Date	:

Signature	:		•	•	•	 •	•	 •	 •		•	•	•	 •	
2 nd Supervisor's name	:			•	•	 •	•		 •				•	 •	 •••
Date	:			•	-		•	 •	 •		•	•		 •	

C Universiti Teknikal Malaysia Melaka

PRELIMINARY STUDY ON POWER TRAIN SYSTEM FOR ELECTRIC VEHICLE

MOHD ASHRAFF BIN CHE HASHIM

This report is submitted in partial fulfilment of requirement for the Degree of Bachelor in Mechanical Engineering (Design and Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

C Universiti Teknikal Malaysia Melaka

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references"

Signature	:
Name	: MOHD ASHRAFF BIN CHE HASHIM
Date	: APRIL 2009

For my beloved mother, Hajah Wan Ruhani Binti Wan Ismail, my late father, Haji Che Hashim Bin Abdullah, and my wonderful siblings.

ACKNOWLEDGEMENT

This individual would like to deliver its praise to the Almighty for giving him the strength and blessing to conclude this report. This individual also would like to express his gratitude to the Almighty for giving him salvation and safety throughout his journey in completing this report.

Sincere thanks for Mr. Wan Mohd Zailimi Bin Wan Abdullah who with his guidance and support throughout this journey, make this happen. This individual would also like to express his appreciation to all UTeM staffs that was involved in this project either directly or indirectly.

To all his friends, for all the time spent together during his duration in UTeM, all the memory will never be forgotten.

ABSTRACT

Electric vehicle presents the answer to present problem of internal combustion engine vehicles such as spiking oil price and high emission of polluted contents. Although still not practical for commercial use, studies and researches is intensively been made all around the world to overcome the challenges and problems of present electric vehicle. Relative to that, power and torque output of an electrical powertrain system is one of the concerns regarding electric vehicle performance. By generating and selecting conceptual design of an electric vehicle powertrain system using systematic approach, this study attempts to determine the power and torque output of the selected powertrain system.

ABSTRAK

Kenderaan elektrik menyediakan jawapan kepada beberapa masalah kenderaan enjin pembakaran dalam masakini seperti harga minyak yang melambung tinggi dan kadar pelepasan asap yang mengandungi bahan yang mencemarkan. Walaupun ianya masih belum boleh dianggap praktikal untuk kegunaan komersial, banyak kajian dan penyelidikan yang sedang dijalankan di seluruh dunia untuk mengatasi rintangan dan cabaran kenderaan elektrik masakini. Seiringan dengan itu, kuasa dan tork yang terjana adalah antara beberapa isu berkaitan dengan prestasi kenderaan elektrik. Dengan menggunakan beberapa kaedah sistematik untuk menjana dan memilih konsep rantaian kuasa bagi kenderaan elektrik, kajian ini berusaha untuk mengira kuasa dan tork yang terjana oleh rekaan konsep yang telah dipilih.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF SYMBOLS	xvii
	LIST OF APPENDICES	xix
Ι	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Problem Statement	2
	1.3 Objective	2
	1.4 Scope	3
	1.5 Report Outline	3

Π

III

LITE	ERATUR	E REVIEW	5
2.1	Introd	luction	5
2.2	A Brie	ef History of Electric Vehicle	5
2.3	Vehic	le Requirement and Limitation	8
	2.3.1.	Target Vehicle Performance	8
	2.3.2.	Electric Powertrain Platform Vehicle	9
2.4	Electr	ic Vehicle Powertrain Components	10
	2.4.1.	Types of Motor	10
	2.4.2.	Regenerative Braking	18
	2.4.3.	Energy Source Component	18
	2.4.4.	Electronic Control Module	21
	2.4.5.	Gearing System	21
2.5	Electr	ic Propulsion Configuration	22
	2.5.1.	First Configuration	22
	2.5.2.	Second Configuration	23
	2.5.3.	Third Configuration	23
	2.5.4.	Fourth Configuration	24
	2.5.5.	Fifth Configuration	25
2.6	Energ	y Source Configuration	25
	2.6.1.	First Configuration	26
	2.6.2.	Second Configuration	26
			• 0
	THODOL		28
3.1.	Summ	•	28
3.2.		odology Flow Chart	29
3.3.	Projec	ct's Title Proposal	31
3.4.		em Review	31
3.5.		ture Review	31
3.6.	Deter	mining Methodology	32
3.7.	Data A	Analysis	32

3.7.1. Motor 33

PAGE

IV

	3.7.2 Battery	33
3.8.	Configuration	35
	3.8.1. Electric Propulsion Configuration	35
	3.8.2. Energy Source Configuration	36
3.9.	Conceptual Design Selection	36
	3.9.1. Motor Selection Criteria	37
	3.9.2. Battery Selection Criteria	37
	3.9.3. Other Components Selection	39
3.10.	Conceptual Design Analysis	39
3.11.	Results and Discussion	39
RESU	LTS AND DISCUSSIONS	41
4.1	Vehicle Requirement and Limitation	41
	4.1.1 Assumption in the analysis	41
4.2	Component Selection	42
	4.2.1 Motor	42
	4.2.2 Battery	44
4.3	Powertrain Analysis	45
	4.3.1 Anticipated Driving Resistance	46
	4.3.2 F _{z,B} While Moving On Horizontal	46
	Tarmac at 72.4 km/h	
	4.3.3 Motor Torque Output	47
	4.3.4 Tire Friction	47
	4.3.5 Gear Ratio	48
	4.3.6 Power Output at Front Tire	48
4.4	Vehicle Performance	49
	4.4.1 Acceleration	49
	4.4.2 Top Speed	51
	4.4.3 Hill Ascending Capability	51

ix

CHAPTER CONTENT

V	CONCLUSION AND RECOMMENDATION	53
	5.1 Conclusion and Recommendation	53
	REFERENCES	54
	BIBLIOGRAPHY	56
	APPENDICES	57

PAGE

х

LIST OF TABLES

NO.	TITLE	PAGE
	Comparison between Electric Vehicle, ICE Vehicle and	
1	Steam-powered Vehicle	6
	(Source : Ashraff, 2008)	
2	Applications of EV motors	11
	(Source: K.T Chau and Z. Weng)	
	Comparison and Weight Between Characteristic of	
3	Current EV battery technology	33
	(Source: C.C. Chan and K.T. Chau)	
4	Comparison of current EV battery technology	34
·	(Source: L. C. Rosario)	
5	Electric propulsion configuration table	35
5		55
6	Energy source configuration table	36
7	Motor Selection Criteria	37
0		20
8	Battery Selection Criteria	38
9	Target performance	41
10	Motor Selection Criteria Weight	42

11	Motor Type Selection Matrix	43
12	Technical Specification for EDU 90	44
13	Battery Selection Criteria Weight	44
14	Battery Type Selection Matrix	45
15	Anticipated driving resistance factors	46
16	Anticipated driving resistance factors for 72.4km/h	46
17	Anticipated driving resistance factors for acceleration	50
18	Anticipated driving resistance factors for gradient climb	52

LIST OF FIGURES

NO.	TITLE	PAGE
1	The first electric vehicle by Robert Anderson (Source : http://inventors.about.com/library/weekly/aacarselectrica.htm)	5
2	See through view of the A-class EV (Source: Daimler Benz)	9
3	Classification of EV motors. (Source : K.T Chau and Z. Weng)	10
4	DC Motor essential (Source: World Wide Web)	11
5	Induction Motor Cut-through (Source: World Wide Web)	12
6	PM Synchronous Motor (Source: World Wide Web)	13
7	PM Brushless DC Motors (Source: World Wide Web)	14

8	SR Motor (Source: World Wide Web)	15
9	PM Hybrid Motors (Source: World Wide Web)	16
10	First type of electric vehicle propulsion configuration (Source: Chan and Chau, 2001)	22
11	Second type of electric vehicle propulsion configuration (Source: Chan and Chau, 2001)	23
12	Third type of electric vehicle propulsion configuration (Source: Chan and Chau, 2001)	23
13	Fourth type of electric vehicle propulsion configuration (Source: Chan and Chau, 2001)	24
14	Fifth type of electric vehicle propulsion configuration (Source: Chan and Chau, 2001)	25
15	First type of electric vehicle's energy source configuration (Source: Chan and Chau, 2001)	26
16	Second type of electric vehicle's energy source configuration (Source: Chan and Chau, 2001)	26
17	Methodology Flow Chart (Source: Ashraff, 2008)	29

18	EDU 90	43
	(Source: www.enovasystems.com)	43
19	Vehicle Longitudinal forces representation	51
	(Source: L. C. Rosario)	51

LIST OF SYMBOL

F_r	=	Wheel Resistance	Ν
<i>f</i> _r	=	Rolling Resistance Coefficient	
m_f	=	Vehicle Mass	kg
g	=	Gravitational Acceleration	ms ⁻²
α_{st}	=	Angle of Inclination	0
F_l	=	Aerodynamic Resistance	Ν
$ ho_l$	=	Density of air	kg m ⁻³
C _w	=	Drag Coefficient	
А	=	Maximum vehicle cross section	m^2
v	=	Velocity	ms ⁻¹
F _{st}	=	Gradient Resistance	Ν
F _a	=	Acceleration Resistance	Ν
γ	=	Rotational inertia coefficient	

а	=	Acceleration	ms ⁻²
$F_{Z,b}$	=	Anticipated Driving Resistance	Ν
μ	=	Coefficient of friction	
F _n	=	Normal force	Ν
Т	=	Torque	Nm
Ν	=	Rotaional speed	rpm

LIST OF APPENDICES

BIL TITLE

- A Gant Chart PSM 2
- B Urban Electric Vehicle Technical Specification
- C 1999 Ford TH!NK City Urban Electric Vehicle
- D The 21st Century Electric Car
- E Power and energy management of multiple energy storage systems in electric vehicle
- F Overview of power electronic drives for electric vehicles.

CHAPTER I

INTRODUCTION

1.1 Project Background

Electric vehicle has become more and more in demand due to several factors. Spiking oil price and public awareness of the environmental pollution are amongst the factors that urge many parties to escalade their effort in making electric vehicle practical for public use. Unlike its counterpart, the internal combustion engine vehicle, electric vehicle has not enjoyed popularity amongst public consumer as there are several challenges and difficulties that have to be overcome before electric vehicle can become comparable with its biggest rival.

Intensive study and research may help in making the electric vehicle a feasible alternative to the ICE vehicle. Emergence of a lot study and research may also help improve the public awareness and public perception of electric vehicle.

One of the concerns regarding electric vehicle is its power and torque output. When compared with internal combustion engine, electric vehicle has yet to prove its performance.

This study will attempt to do a theoretical estimation of the power and torque output of an electric vehicle powertrain system. In doing so, hopefully this report will become the base or reference for future development and research on electric vehicle powertrain system.

1.2 Problem Statement

Electric powertrain system has been sidelined since the emergence of the ICE car back in the early 20th century. Recent oil crisis has sparked a lot of positive attention to the electric vehicle. Many organization and party has begun active in the scene of electric vehicle such as the various drag and racing electric vehicle competition to further enhance the public awareness of the forgotten technology.

This study is done in hopes of helping the electric vehicle get some attention to all responsible party in UTeM and hopefully in Melaka by analysing the torque and power output of a conceptual electric vehicle powertrain.

A lack of research done by the UTeM students on this matter makes this study worthwhile. An analysis on the performance of electric vehicle powertrain especially the torque and power output on the drive wheel are the main focus of this study.

In order to accomplish that feat, several target performance characteristic were set beforehand so that the conceptual electric powertrain will have a benchmark whereupon it will be compared. The performance targets were taken from the Advanced Vehicle Testing Activity that was conducted jointly by the Idaho National Laboratory and National Renewable Energy Laboratory that specialised on alternative energy vehicle testing.

1.3 Objective

The objective of this study is to analyze the power and torque output of a conceptual electric powertrain system.

1.4 Scope

The scope of this study is important as it serves as guidelines for the study direction. The scope of this project is divided into several parts:

- a) Literature study on electric vehicle
 - Research on electric vehicle powertrain component such as electric motor, energy source, electronic control module, gearing system and anything related to electric vehicle powertrain component.
 - Research on electric vehicle powertrain configuration such as electric propulsion configuration, energy source configuration and anything related to electric vehicle configuration.
- b) Analysis of the power and torque output of electric vehicle powertrain system
- c) Determining the design requirements of the electric vehicle powertrain system.
- d) Identifying the best component for the electric vehicle powertrain (conceptual design)

1.5 Report Outline

This report is intended for 'Projek Sarjana Muda II'. In this report, there are four chapters that made this report whole.

The first chapter is introduction chapter. This chapter will explain the project's direction and motive. A brief background of the project will be explained at the start of the chapter. Problem statement will explain the requirements of this project and the importance of this project. After the statement of objective and scope, a brief summary of the report ensues.

The second chapter of this report is literature review on electric vehicle. To better organise the report, this chapter is divided into several subtopic. The first subtopic is introduction of the chapter. Then, definition of electric vehicle and powertrain is stated. After that findings related to electric vehicle powertrain is stated.

Methodology of the project is explained in chapter three. In this chapter, detailed explanation on how the project will proceed is explained. It described all the processes involve in obtaining the project's objective.

Chapter four will state all the results and findings of this study in detail. Further analysis of the result will follow that were also stated in detail.

The final chapter of this report contains the conclusion and recommendation for future project.

C Universiti Teknikal Malaysia Melaka