I confess that have been read this outstanding piece of works and at my this piece of work is acceptable from the scope and the quality for the awarded Bachelor of Mechanical Engineering ( Design and Innovation )

> Signature Supervisor Date

. . . . . . . . . . . . : Mr. Hambali B. Boejang 16/6 68 .....

# DESIGN AND FABRICATION OF STREET LIGHT USING MODERN PRODUCT DEVELOPMENT APPROACH

FIRDAUS BINTI FADZILAH HUSANI

# THIS REPORT IS PRESENTED AS COMPULSORY REQUIREMENT IN OBTAINING BACHELOR DEGREE OF MECHANICAL ENGINEERING (DESIGN & INNOVATION)

# FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2008

"I confess this report is my effort on written except for summarization and quotation which explained in the resources"

| Signature | :OM                             |
|-----------|---------------------------------|
| Author    | : Firdaus Binti Fadzilah Husani |
| Date      | : 13 <sup>th</sup> MAY 2008     |

To my dearest parents, sister and brother

ii

# ACKNOWLEDGEMENT

Thank to Allah's love which had showed on me in giving good health, allowing me to generate creative idea to finish this PSM report.

Thank you to Mr. Hambali Boejang as my supervisor who always gives support and guides me along my effort to complete this PSM report.

Co-operation from all my friend that always give their hand in searching information, and encourage me to finish this PSM on the right time, I really appreciate.

Big appreciation to involved firms, Majlis Bandaraya Melaka Bersejarah (MBMB) and Muarlite Sdn. Bhd. helping me in my research to find the information about street light and its properties. Thank you so much.

Not forgotten to all who has directly involved or indirectly in give co-operation to these project big thanks from me. Thank you.

Hope that this project can be useful knowledge or reference sources for other students.

Thank you so much.

# ABSTRAK

Projek Sarjana Muda (PSM) merupakan kajian projek untuk semua pelajar tahun akhir Universiti Teknikal Malaysia Melaka (UTeM). Kod subjek ialah BMCU 4973 adalah matapelajaran wajib untuk mendapatkan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Rekabentuk dan Inovasi). Tajuk projek ialah "Merekabentuk dan Menghasilkan Lampu Jalan Menggunakan Pendekatan Kemajuan Teknologi yang Terkini" Projek ini bermula dengan pencarian maklumat bekenaan dengan pengguna untuk mencapai kehendak mereka dan berakhir sehingga prototaip lampu jalan dapat dihasilkan, di mana mengaplikasikan fasa rekabentuk dan pembangunan product dalam konsep kerja secara serentak dalam kejuruteraan (Concurrent Engineering). Pelbagai program komputer di gunakan semasa menjalankan projek di antaranya ialah Solid Works, Insight dan Magic dan mesin penghasilan prototaip, Fused Deposition Modeling (FDM). Analisis adalah penting dalam untuk menganalisa setiap lukisan dan rekabentuk supaya dapat menghasilkan prototaip yang bagus dan stabil. Program komputer daripada COSMOSWork di gunakan. Nilai –nilai penguji untuk menguji ketahanan lukisan dan rekabentuk di perlukan agar keputusan analisa adalah tepat. Walaubagaimanapun canggih sesuatu teknologi, ia tidak terlepas dari kekurangan di mana permukaan prototaip berlaku kecacatan kecil dalam penghasilannya. Namun semuanya telah dapat di atasi dan dapat di hasilkan dengan masa yang singkat. Tujuan projek ini adalah untuk membuktikan masa sesuatu produk untuk di pasarkan lebih singkat menggunakan pendekatan kemajuan teknologi yang terkini selain menghasilkan produk yang bermutu tinggi.

### ABSTRACT

Projek Sarjana Muda (PSM) is a research project for all final year students in UTeM. This subject code is BMCU 4973 and it is a compulsory requirements in obtaining the Bachelor of Science in Mechanical (Design and Innovation). The title of the project is "Design and Fabrication of STREET LIGHT Using Modern Product Development Approach". In this project it covers Product design and Development phase starting with identifying customer's needs until developing prototype based on Concurrent Engineering process. This report represent the methodology on design an fabricate street light using CAD software of Solid Works, Magic and Insight software, Fused Deposition Modeling (FDM) machine which are among the modern product development. Analysis process is important in making sure that each design is stable. COSMOSWork software is used to analyze the design. Some constraint needs to be considered during analysis to give the right and appropriate result. Although, high technology also can cause some defect which occurred during prototyping process on its surface and the problems have been solved. However it can be done in short period of time. Therefore, using modern product development approach can reduce time to market beside serve for high quality product.

# **TABLE OF CONTENT**

| CHAPTER   | TOPICS                                  | PAGES |
|-----------|-----------------------------------------|-------|
|           | CONFESSION                              |       |
|           | DEDICATION                              | ii    |
|           | ACKNOWLEDGEMENT                         | iii   |
|           | ABSTRAK                                 | iv    |
|           | ABSTRACT                                | V     |
|           | TABLE OF CONTENT                        | vi    |
|           | LIST OF TABLE                           | Х     |
|           | LIST OF FIGURE                          | xii   |
|           | ABBREVIATION                            | XV    |
|           | LIST OF APPENDIX                        | xvi   |
| CHAPTER 1 | I INTRODUCTION                          |       |
|           | 1.1 Project's Background                | 1     |
|           | 1.2 Aim                                 | 2     |
|           | 1.3 Scope                               | 2     |
|           | 1.4 Problem Statement                   | 2     |
|           | 1.5 Report Outline                      | 3     |
| CHAPTER 2 | 2 LITERATURE REVIEW                     |       |
|           | 2.1 Street Light                        | 5     |
|           | 2.2 Generic Product Development Process | 6     |
|           | 2.2.1 Customer Needs                    | 6     |
|           | 2.2.1.1 Benefits of Customer            | 8     |
|           |                                         |       |

vi

| Needs Identification.                             |    |
|---------------------------------------------------|----|
| 2.2.2 Product Specification                       | 8  |
| 2.2.2.1 Establish Target Specification            | 9  |
| 2.2.3 Final Specification                         | 9  |
| 2.2.4 Concept Generation                          | 9  |
| 2.2.5 Select Product Concept                      | 10 |
| 2.2.5.1 Method for Choosing a Concept             | 11 |
| 2.2.5.2 Structured Methods Offer                  | 12 |
| Several Benefits                                  | 12 |
| 2.2.5.3 Overview of Methodology                   | 12 |
| 2.3 Concurrent Engineering                        | 12 |
| 2.3.1 Overview of CE Methodology                  | 13 |
| 2.3.1.1 Teams                                     | 13 |
| 2.3.2 Technologies in Concurrent Engineering (CE) | 14 |
| 2.3.3 Sequential Process                          | 15 |
| 2.3.4 Benefits on Implementation CE               | 16 |
| 2.4 Rapid Prototyping                             | 16 |
| 2.4.1 Computer Aided Design (CAD)                 | 16 |
| 2.4.1.1 Solid Works                               | 17 |
| 2.4.1.2 COSMOSWork                                | 18 |
| 2.4.2 Rapid Prototyping Technologies              | 19 |
| 2.4.2.1 Fused Deposition Modeling (FDM)           | 20 |
| 2.4.2.2 Benefits of RP                            | 21 |
| 2.4.2.3 Prodigy Plus                              | 21 |
|                                                   |    |

# **CHAPTER 3 METHODOLOGY**

| 3.1 Customer Needs      | 24 |
|-------------------------|----|
| 3.2 Conceptual Design   | 25 |
| 3.2.1 Survey and Matrix | 26 |

|              | 3.3 Sketches                | 27 |
|--------------|-----------------------------|----|
|              | 3.4 Drawing CAD data        | 28 |
|              | 3.4.1 Steps and Procedure   | 29 |
|              | 3.4.1.1 Assembly Part       | 32 |
| 3.           | 5 CAE analysis              | 33 |
|              | 3.5.1 Constraint            | 33 |
|              | 3.5.2 Steps and Procedure   | 34 |
| 3.           | 6 Fabrication               | 39 |
|              | 3.6.1 Arrangement           | 40 |
|              | 3.6.2 First Alignment       | 40 |
|              | 3.6.3 Insight Processing    | 42 |
|              | 3.6.4 Estimate time         | 45 |
|              | 3.6.5 Prodigy Plus          | 47 |
|              | 3.6.6 Water Based Solution  | 49 |
|              | 3.7 Finishing               | 50 |
| CHAPTER 4 R  | ESULT                       |    |
| 4.           | 1 CAD drawing data          | 52 |
| 4.           | 2 CAE Analysis Result       | 53 |
| 4.           | 3 Fabrication and Finishing | 59 |
| CHAPTER 5 DI | ISCUSSION                   |    |
| 5.           | 1 Design scope              | 61 |
|              |                             |    |

| 5.1.1 Project's Scope Area               | 62 |
|------------------------------------------|----|
| 5.2 Force                                | 62 |
| 5.3 Pressure                             | 62 |
| 5.4 Material                             | 63 |
| 5.4.1 Mechanical and physical properties | 64 |
| 5.4.2 Electrical properties              | 65 |
| 5.4.2.1 Photocell                        | 66 |
| 5.5 Joint                                | 67 |

| 5.6 Costing                             | 68    |
|-----------------------------------------|-------|
| 5.6.1 Estimation cost                   | 69    |
| 5.7 Lead Time                           | 70    |
| 5.7.1 Comparison                        | 71    |
| CHAPTER 6 CONCLUSION AND RECOMMENDATION | 72    |
| REFERENCES                              |       |
| APPENDIX                                | 1 - 6 |

# LIST OF TABLE

| No.       | Title                                           | Pages |
|-----------|-------------------------------------------------|-------|
| Table 2.1 | Comparison between SE and CE                    | 15    |
| Table 2.2 | RP technology                                   | 19    |
| Table 3.1 | Morphology chart; screening concept             | 26    |
| Table 3.2 | Part drawing and the steps                      | 30    |
| Table 3.3 | Part drawing and the steps                      | 31    |
| Table 3.4 | Constraint applied on part                      | 33    |
| Table 3.5 | Part and the mesh value                         | 38    |
| Table 3.6 | Comparison between two different alignments     | 45    |
| Table 4.1 | Meshing part                                    | 53    |
| Table 4.2 | Meshing part                                    | 54    |
| Table 4.3 | Comparison Result Analysis Rod between          | 55    |
|           | 2 (two) Materials                               |       |
| Table 4.4 | Comparison Result Analysis Wing between         | 56    |
|           | 2 (two) Materials                               |       |
| Table 4.5 | Comparison Result Analysis Light Wing between   | 57    |
|           | 2 (two) Materials                               |       |
| Table 4.6 | Comparison Result Analysis Top                  | 58    |
| Table 5.1 | Percentage element typical chemistryin alloying | 61    |
| Table 5.2 | Mechanical Properties of 6063                   | 61    |
| Table 5.3 | Percentage element                              | 65    |
| Table 5.4 | Market survey of Lamp                           | 65    |
| Table 5.5 | ABS price range in Asia                         | 68    |
| Table 5.6 | Estimate cost; all parts                        | 69    |
| Table 5.7 | Comparison between Muarlite Sdn. Bhd. and       | 71    |
|           | Project CE process                              |       |

# LIST OF FIGURE

| No.         | Title                                        | Pages |
|-------------|----------------------------------------------|-------|
|             |                                              |       |
| Figure 2.1  | Concept development phase                    | 6     |
| Figure 2.2  | Five steps concept generation method         | 10    |
| Figure 2.3  | Illustrates the successive narrowing and     | 11    |
|             | temporary widening of the set of options     |       |
|             | under consideration during the concept       |       |
|             | selection activity                           |       |
| Figure 2.4  | An overview of CE methodology                | 13    |
| Figure 2.5  | The redundancies of the phase in the process | 15    |
|             | contribute to reducing time in process of    |       |
|             | production using CE principles               |       |
| Figure 2.6  | Flow diagram of a Sequential process         | 15    |
| Figure 2.7  | SLA machine                                  | 19    |
| Figure 2.8  | SLS machine, Sinterstaion 2500+              | 19    |
| Figure 2.9  | FDM MAXUM                                    | 19    |
| Figure 2.10 | Inject nozzles in FDM machine                | 20    |
| Figure 3.1  | Flow process of methodology                  | 22    |
| Figure 3.2  | Methodology project based on CE concept      | 24    |
| Figure 3.3  | Concept Design for Decorative Light          | 25    |
| Figure 3.4  | Pie chart; survey lamp                       | 26    |
| Figure 3.5  | Final concept                                | 27    |
| Figure 3.6  | Sketches                                     | 27    |
| Figure 3.7  | Assembly drawing of decorative light         | 28    |
| Figure 3.8  | Tool box Sketches                            | 29    |

| Figure 3.8.1 | Tool box Features                                | 29 |
|--------------|--------------------------------------------------|----|
| Figure 3.9   | Part after assembly                              | 32 |
| Figure 3.10  | Windows apply material Galvanized steel for the  | 34 |
|              | solid part rod light wing and wing               |    |
| Figure 3.11  | Windows apply material 6063 T6 for the solid     | 35 |
|              | part rod light wing and wing                     |    |
| Figure 3.12  | Force applied, purple arrows on top of part and  | 35 |
|              | restraint is green arrows.                       |    |
| Figure 3.13  | Pressure faced around rod shown by red arrows    | 36 |
| Figure 3.14  | Force apply at the top base of top part          | 36 |
| Figure 3.15  | Pressure faced apply at the top base of top part | 37 |
|              | and fixed restraint at the bottom shown by green |    |
|              | arrows                                           |    |
| Figure 3.16  | Force apply that shown in green area with purple | 37 |
|              | arrows and fixed restraint at the end of wing    |    |
| Figure 3.17  | FDM machine used in this project                 | 39 |
| Figure 3.18  | Load distance value                              | 40 |
| Figure 3.19  | First alignment                                  | 41 |
| Figure 3.20  | Second alignment                                 | 41 |
| Figure 3.21  | Start to process first alignment                 | 42 |
| Figure 3.22  | Start to process second alignment                | 43 |
| Figure 3.23  | Modeler setup first alignments                   | 44 |
| Figure 3.24  | Modeler setup second alignments                  | 44 |
| Figure 3.25  | Estimate time first alignments                   | 46 |
| Figure 3.26  | Estimate time second alignments                  | 46 |
| Figure 3.27  | Prodigy Plus                                     | 47 |
| Figure 3.28  | Prodigy Information                              | 47 |
| Figure 3.29  | Display the detail                               | 48 |
| Figure 3.30  | Show platform areas                              | 48 |
| Figure 3.31  | Container water based solution                   | 49 |
| Figure 3.32  | Decorative Light Prototype by part               | 49 |

| Figure 3.33 | Polish Rod with sand paper                       | 50 |
|-------------|--------------------------------------------------|----|
| Figure 3.34 | White paint is apply to coat part as base        | 50 |
| Figure 3.35 | Heater for part dry faster                       | 51 |
| Figure 3.36 | Part after painting                              | 51 |
| Figure 4.1  | Тор                                              | 52 |
| Figure 4.2  | Wing                                             | 52 |
| Figure 4.3  | Light wing                                       | 52 |
| Figure 4.4  | Rod                                              | 52 |
| Figure 4.5  | Defect on Top part                               | 60 |
| Figure 4.6  | After gluing and painting                        | 60 |
| Figure 5.1  | Part area to be design                           | 61 |
| Figure 5.2  | Recommended lamp                                 | 66 |
| Figure 5.3  | Example of Photocell; Dusk to Dawn Light Control | 67 |
| Figure 5.4  | Joint                                            | 67 |
| Figure 5.4  | Time taken for every stage                       | 70 |

# ABBREVIATION

| 3D    | Three-dimension                                |
|-------|------------------------------------------------|
| CAD   | Computer Aid Design                            |
| RP    | Rapid prototyping                              |
| FDM   | Fused Deposition Machine                       |
| MBMB  | Majlis Bandaraya Melaka Bersejarah             |
| UTeM  | Universiti Teknikal Malaysia Melaka            |
| SLA   | Stereolithography                              |
| SLS   | Selective Laser Sintering                      |
| TNB   | Tenaga Nasional Berhad                         |
| JKR   | Jabatan Kerja Raya                             |
| STL   | Standard Triangular Language                   |
| ABS   | Acrylonitrile butadiene styrene                |
| CE    | Concurrent engineering                         |
| R & D | Research and Development                       |
| NEMA  | National Electrical Manufacturer's Association |
| DOF   | Degree of Freedom                              |

# LIST OF APPENDIX

| No. | Title                                             |
|-----|---------------------------------------------------|
| 1   | RP Technology                                     |
| 2   | APPROVED STREET LIGHTING FURNITURE<br>– UG SUPPLY |
| 3   | 8 steps MBMB used for building up street light.   |
| 4   | 5 concept generation                              |
| 5   | Survey Result                                     |
| 6   | Drawing                                           |

# **CHAPTER 1**

### INTRODUCTION

#### **1.1 Project's Background**

This is a project of an enhancement of street light using the modern product development approach through Concurrent Engineering process regarding to Product Design and Development concept.

"Concurrent Engineering is a systematic approach to the integrated, concurrent designs of products and their related processes, including manufacture and support, .....consider all elements of the product lifecycle from conception through disposal. Including quality, cost, schedule, and user requirement", Department of Defense Institute of Defense Analysis (DoD/IDA), IDA report R-338 [1].

Technology approach that has been implemented during performs the design and fabrication of decorative light in this project is Fused Deposition Modeling (FDM) machine of Rapid Prototyping (RP) technology. Solid Works CAD data and Magic software also a bunch of RP technology content.

Street light is the lighting sources for user along roadway, park, city, and highway and so on. Moreover, street light is important equipment which can help us safety and for better journey and also show the development of each city with attractive design according to the viability of each area. The research scope area is Malacca and gathered information about product design and development from MBMB and Muarlite Sdn. Bhd. which is one of supplier company that manufacture street light.

### 1.2 Aim

This project's aim is to develop product enhancement of street light using technology approach consist of Solid Work, CAE analysis and develop prototype using Fused Deposition Modeling (FDM) machine of rapid prototyping technologies and Concurrent Engineering Process.

## 1.3 Scope

This project covers on development and design of decorative light which is focusing on enhancement from the existing street light regarding to product design and development concept. Starts from identifying customer needs until develop prototype.

#### **1.4 Problem Statement**

Street light is the important necessary for consumer on road, highway, and residential area especially at night, dark day, dawn, rainy day. Beside that, street light can have innovation on its design which is not function as lighting source but can beauty the area called as decorative light. Using technology approach of RP, RT and concurrent engineering in performing product design and development concept, decorative light can reduce produce time and cost. It will help to decrease time product to market. Therefore, this project will prove that using technology approach to develop decorative light is reduce time and cost compare to conventional method approach that most company street light implement such as Muarlite Sdn. Bhd.

### **1.5 Report Outline**

This project is consisting of 6 (six) chapters. Chapter (1) is the introduction of the project which contains the aim, objective, scope, problem's statement to make an enhancement on the design of existing street light using technology approach.

Chapter (2) is about literature review which reveal about street light and its component, Generic Product Development Process as design flow for street light development. Concurrent engineering process, rapid prototyping of FDM and rapid tooling of Vacuum Casting technologies are the technology approach that lies on this project which bring much advantages compare to the conventional approach.

Chapter (3) is explanation about methodology of experimental work process that been implement during project based on product design development concept. Starting from gather information, continue with determining conceptual design, sketches, CAD drawing using Solid Works, running COSMOSWork static analysis, and finally build prototype using FDM machine and finishing by polishing, painting and others.

Chapter (4) is the result that reflects on each methodology process in Chapter(3). There was more about the CAD data drawing, result of static analysis and prototyping process and problem occur during performing the methodology.

Chapter (5) is discussion on the finding. There were discussed about the source, purpose of force and pressure applied during analysis. Aluminum alloy 6063-T6 and ABS is selected material for decorative light after analysis is discussed on its mechanical properties. Joining process is determined in this chapter to joint and assemble each part. Cost estimation is done to complete design process. Finally, chapter (6) is the conclusion that concludes overall content of project report.

# **CHAPTER 2**

## LITERATURE REVIEW

In Chapter 2 (two) covers literature reviews which is an introducing about Products Design and Development Process and Concurrent Engineering process, Rapid prototyping and Rapid tooling technologies.

### 2.1 Street Light

Street light is a lighting source device that develops along road, highway, and residential area and etc. There was an important for consumer's safety especially at night or dawn. Streets light are consisting of concrete, pole, cable, luminaries, duct, conduit, junction boxes and controller. Luminaries are an important and many components for street light based on standard of Lighting Specifications and the National Electric Code [2] such as;

- Aluminum housing
- Protective case with a glass or plastic lens.
- Pressed glass refractor
- Aluminum removable hood-reflector assembly
- Lamp of high pressure sodium material
- Photocell as electrical component

#### **2.2 Generic Product Development Process**

"Product Development is the set of activities beginning with the perception of the market opportunity and ending in the product sales, and delivery of a product." [3]. However, achieving successful in product development need high disciplinary on performing 5 (five) product development effort on determining product quality, product cost, development time, development cost and development capability in concept development phase as in Figure 2.1.



**Figure 2.1** Concept development phases (Source; Ulrich K.T and Eppinger S.D,2003)

#### 2.2.1 Customer Needs

From figure 2.1, identifying customer needs is the philosophy behind the method is to create a high-quality information channel that runs directly between customers in the target market and the developers of the product [1]. There are five (5) steps method to identify customer needs;

Gather Raw Data from Customer

- Interviews
- Focus group
- Observing the product in use

Illustrate the Raw Data in Terms of Customer Needs

• Customer needs is illustrate into written statement based on raw data gathered.

Organize the Needs into the Hierarchy of Primary, Secondary, and Tertiary Needs.

- After gathered and illustrate the information, the result of both steps should be listed about fifty (50) until three hundred (300) need statement [4]. The producer for organizing the needs into the hierarchical is shown;
  - 1- Print or write each need statement on a separate card or self-stick note.
  - 2- Eliminate redundant statement
  - 3- Group the cards according to the similarity of the needs they express
  - 4- For each group, choose the label
  - 5- Consider creating super groups consisting of two to five group
  - 6- Review and edit the organized needs statements.

Establish the Relative Importance of the Needs

- A sense of the relative importance of the various needs is essential to making trades-offs correctly [5] and allocates resources in designing the product.
- Two basic approach to the task [5];
  - 1- Relying on the consensus of the team members based on their experience with customers
  - 2- Basing the important assessment on further customer surveys Based on these relative importance approaches, the team can make an educated assessment of the need in one meeting while customer survey takes less than two weeks.

Reflect on the Result on and the Process.

The team must challenge its result to verify that consistent with the knowledge and intuition the team has developed through many hours of interaction with customers [9].

# 2.2.1.1 Benefits of Customer Needs Identification.

Key benefits of identify customer needs are; [9]

- Product is focusing on customer needs
- Develop clear understanding among members of the development team of the needs of the customer in the target market.
- Developing a fact base to be used in generating concepts, selecting a product concept, establishing product specifications
- Creating an archival record of the needs phase of the development process

### 2.2.2 Product Specification

Specification is a step of the narrow scope to invent things or improve existing things based on customers need. Product specification to mean the precise description of what the product has to do [8]. There was not the innovation on address to customer needs but represent an unambiguous agreement on attempt to achieve in order to satisfy the customer needs [9].

#### 2.2.2.1 Establish Target Specification

Target specification is established after the customer needs have been identified and established the specification. The target specifications must be refined after a product concept has been selected and before product concept has been generated. Four (4) process of establishing the target specifications; [10]

- 1- Prepare the list of Metric
- 2- Collect competitive benchmarking information
- 3- Set ideal and marginally acceptable target values
- 4- Reflect on the result and the process.