EVALUATION OF A PERODUA KANCIL ENGINE MOUNTING SYSTEM

MOHD IZARIN BIN ISHAK

This report is represented in partial fulfillment of the requirement for the Degree of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2011

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for award of degree of Bachelor of Mechanical Engineering (Automotive)."

Signature:	
Supervisor I:	Mr. Mohd Hanif Bin Harun
Date:	23 May 2011
Signature:	
Supervisor II:	Mr. Wan Mohd Zailimi bin Wan Abdullah @ Zakaria
Date:	23 May 2011

"I hereby declare that the work in this report is my own work except for summaries and quotations that I have mentioned its sources."

Signature:

Mohd Izarin Bin Ishak

Date: 23 May 2011

Author:

To my beloved parents,

Mr. Ishak Bin Mohd and Mrs. Maison Binti Mohd Rafie

My siblings

And also

To all my trusted friends

ACKNOWLEDGEMENTS

Alhamdullillah...

Grateful to Almighty for with His divine grace, I have successfully completed this Projek Sarjana Muda 1 with great success. By the end of my project, I have produced a report which is compulsory for all students.

I would like to thank my supervisors Mr. Mohd Hanif Harun for his input and support over the duration of this project. Thank you so much for your cooperation in each meeting we make, really appreciate your effort.

I would like to take this opportunity to thank my parents, for their comfort and support through all my hard work, and the values they have taught me. Thanks also to my brother for providing happiness and inspiration to my life.

This project would not have been possible without the encouragement of friends. To Faizul, Anuar Omar and Kong Learn Fei, I am very fortunate to have you as friends. Also to my housemate, Hazwan Jamal, Saiful Haffizi, Sufian, Farhan and Zulkarham, you kept life interesting during this work, thanks.

ABSTRACT

This project presents an Evaluation of Perodua Kancil Engine Mounting System. The engine vibration may occur due to road irregularities, at low frequency, and also reciprocating mechanism of the piston in the engine, at high frequency. Mathematical model of an engine mounting for passive and active engine mounting (AEM) system are developed and simulated in MATLAB Simulink based on force analyses of system parts. The developments of the equation of motion have been made for 3 degree of freedom (DOF). However, a single DOF must be done first in order to understand the 3 DOF for engine mounting system. A number of controllers in AEM system have been proposed. In this project, active engine mounting are equipped with proportional integral derivative controller (PID). The comparison simulation result between passive, active and skyhook engine mounting have been made. The result indicated that the active engine mount can achieve better vibration isolation performance than passive and skyhook engine mount.

ABSTRAK

Projek ini mengenai penilaian Sistem Pemegang Enjin Perodua Kancil. Getaran enjin boleh berlaku kerana permukaan jalan yang tidak rata, pada frekuensi rendah, dan juga mekanisme piston pada enjin, pada frekuensi tinggi. Model Matematik untuk sistem pemegang enjin pasif dan sistem pemegang enjin aktif diterbitkan dan disimulasikan dalam MATLAB Simulink berdasarkan analisis pada daya yang bertindak dalam sistem pemegang enjin. Persamaan pergerakan sistem pemegang enjin berdasarkan 3 darjah kebebasan. Namun, satu darjah kebebasan harus dilakukan terlebih dahulu untuk memahami 3 darjah kebebasan dalam sistem pemegang enjin. Kawalan dalam sistem pemegang enjin mempunyai banyak pilihan. Dalam projek ini, pemegang enjin aktif dilengkapi dengan 'proportional integral derivative' (PID). Perbandingan keputusan simulasi antara pemegang enjin pasif, pemegang enjin 'skyhook' dan pemegang enjin aktif telah dibuat. Keputusan kajian menunjukkan bahawa pemegang enjin aktif dapat mencapai prestasi penyerap getaran yang lebih baik dari pemegang enjin pasif dan pemegang enjin 'skyhook'.

CONTENTS

CHAPTER

TITLE

	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	V
	ABS	ГКАСТ	vi
	ABST	TRAK	vii
	CON	TENTS	viii
	LIST	OF FIGURES	xi
	LIST	OF TABLE	xiii
	LIST	OF SYMBOL	xiv
	LIST	OF ABBREVIATION	xviii
	LIST	OF APPENDICES	xix
CHAPTER I	INTF	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objective	2

C Universiti Teknikal Malaysia Melaka

PAGE

	1.4	Project Scope	3
	1.5	Gantt Chart	4
	1.6	Project Outline	6
	1.7	Project flow chart	7
CHAPTER II	LITE	ERATURE REVIEW	8
	2.1	Engine Mounting System	8
	2.2	Type of Engine Mounts	9
		2.2.1 Passive Engine Mounts	9
		2.2.2 Semi-active Engine Mount	10
		2.2.3 Active Engine Mount	11
	2.3	Previous study on Active Engine Mounting	14
		System	
	2.4	PID Controller	15

CHAPTER III METHODOLOGY 18

3.1	Flow o	Flow chart for PSM 1 and PSM 2 19		
3.2	Equati	Equation of motion 20		
	3.2.1	Passive Engine Mounting (Single DOF)	20	
	3.2.2	Passive Engine Mounting (3 DOF)	23	
	3.2.3	Active Engine Mounting (Single DOF)	28	
	3.2.4	Active Engine Mounting (3 DOF)	29	
	3.2.5	Skyhook Engine Mounting	31	
3.3	Overa	ll Block Diagram of Engine Mounting	32	
	System	n		

CHAPTER IV RESULT AND ANALYSIS

- 4.1Simulation Result334.1.1Parameter34
 - 4.1.2 Vertical Motion 34
 - 4.1.3
 Pitch Motion
 37

 4.1.4
 Roll Motion
 38
 - 4.1.5 Transmitted Force 39
- 4.2 Simulation Analysis
 4.3 Simulation Validation
 4.3.1 Parameter
 41
 - 4.3.2Vertical Motion42
 - 4.3.3 Angular Motion 43

CHAPTER V	DISC	USSION	44
	5.1	Modeling Assumption	44
	5.2	Simulation Result	45
		5.2.1 Vertical Motion	45
		5.2.2 Pitch Motion	46
		5.2.3 Roll Motion	47
		5.2.4 Transmitted Forc	e 47

CHAPTER VI	CON	NCLUSION AND RECOMMENDATION	48
	6.1	Conclusion	48
	6.2	Recommendation	49
	REF	ERENCES	50

APPENDICES 54

C Universiti Teknikal Malaysia Melaka

33

LIST OF FIGURES

NO.	TITLE	PAGE
Figure 2.1	Cross section of typical hydraulic engine mount	10
Figure 2.2	Schematic diagram of a hydraulic mount with variable	11
	inertia track (semi-active mounts)	
Figure 2.3	Active engine mounting system free body diagram	12
Figure 2.4	Vertical force free body diagram of active EMS	13
Figure 2.5	Conventional feedback control system	16
Figure 3.1	Flow chart for PSM 1 and PSM 2	19
Figure 3.2	Free body diagram of hydro mount system	20
Figure 3.3	Vertical force free body diagram	21
Figure 3.4	Passive engine mounting system free body diagram	23
Figure 3.5	Free body diagram of acting force on engine mounting	24
Figure 3.6	Passive Engine Mounting block diagram	27
Figure 3.7	Free body diagram of active engine mounting system	28
Figure 3.8	Vertical force free body diagram	28
Figure 3.9	Active Engine Mounting block diagram	30
Figure 3.10	Active EMS control structure	30

Figure 3.11	Skyhook Engine Mounting block diagram	31
Figure 3.11	Overall Engine Mounting System block diagram	32
Figure 4.1	Graph of Excitation Force versus Time	34
Figure 4.2	Graph of Vertical Acceleration versus Time	34
Figure 4.3	Graph of Vertical Displacement versus Time	35
Figure 4.4	Graph of Zef Displacement versus Time	35
Figure 4.5	Graph of Zerr Displacement versus Time	36
Figure 4.6	Graph of Zel Displacement versus Time	36
Figure 4.7	Graph of Zer Displacement versus Time	37
Figure 4.8	Graph of Pitch Acceleration versus Time	37
Figure 4.9	Graph of Pitch Angle versus Time	38
Figure 4.10	Graph of Roll Acceleration versus Time	38
Figure 4.11	Graph of Transmitted Force versus Time	39
Figure 4.12	Excitation force from this project	41
Figure 4.13	Excitation force from T. Q. Tanh (2006)	41
Figure 4.14	Vertical acceleration from this project	42
Figure 4.15	Vertical acceleration from Tanh T. Q. (2006)	42
Figure 4.16	Vertical Acceleration from Ye L. T. (2009)	42
Figure 4.17	Pitch Angle from this project	43
Figure 4.18	Pitch Angle from Andika A. W. (2009)	43
Figure A	Discrete PID Controller parameter	54
Figure B	Discrete PID Controller result after tuning	55
Figure C	Sine Wave function value	56

LIST OF TABLES

NO.	TITLE	PAGE
Table 2.1	Effects of independent P, I and D tuning	17
Table 3.1	Parameters for simulation	21
Table 3.2	PID Controller Parameters	29
Table 4.1	Comparison between passive, active and skyhook EMS	40

LIST OF SYMBOLS

P(t)	=	Excitation force
M_{e}	=	Engine mass
M_{u}	=	Unbalance mass
r	=	Radius of the rotation
ω	=	Speed of rotation
$\mathbf{F}_{\mathbf{s}}$	=	Spring force
F _d	=	Damper force
k _s	=	Spring constant
Cs	=	Damping constant
Z_s	=	Engine unit displacement
Z_u	=	Chassis unit displacement
\dot{Z}_{s}	=	Engine unit velocity
\dot{Z}_u	=	Chassis unit velocity
\ddot{Z}_s	=	Engine unit acceleration
$F_{\rm v}$	=	Vertical force

$F_{sf} \\$	=	Front spring force
$\mathbf{F}_{\mathrm{srr}}$	=	Rear spring force
F_{sr}	=	Right spring force
F _{sl}	=	Left spring force
F _{df}	=	Front damper force
F _{drr}	=	Rear damper force
F _{dr}	=	Right damper force
F _{dl}	=	Left damper force
F _{cf}	=	Front skyhook force
F _{crr}	=	Rear skyhook force
F _{cr}	=	Right skyhook force
F _{cl}	=	Left skyhook force
Р	=	Track width
L	=	Wheelbase length
\mathbf{k}_{sf}	=	Front spring constant
k _{srr}	=	Rear spring constant
k _{sr}	=	Right spring constant
\mathbf{k}_{sl}	=	Left spring constant
$C_{\rm sf}$	=	Front damping constant
C_{srr}	=	Rear damping constant
C_{sr}	=	Right damping constant
C_{sl}	=	Left damping constant
Z_{sf}	=	Front engine unit displacement

C Universiti Teknikal Malaysia Melaka

Z_{srr}	=	Rear engine unit displacement
Z_{sr}	=	Right engine unit displacement
Z_{sl}	=	Left engine unit displacement
Z_{uf}	=	Front chassis unit displacement
Z _{urr}	=	Rear chassis unit displacement
Zur	=	Right chassis unit displacement
Z_{ul}	=	Left chassis unit displacement
\dot{Z}_{sf}	=	Front engine unit velocity
\dot{Z}_{srr}	=	Rear engine unit velocity
\dot{Z}_{sr}	=	Right engine unit velocity
\dot{Z}_{sl}	=	Left engine unit velocity
\dot{Z}_{uf}	=	Front chassis unit velocity
\dot{Z}_{urr}	=	Rear chassis unit velocity
\dot{Z}_{ur}	=	Right chassis unit velocity
\dot{Z}_{ul}	=	Left chassis unit velocity
M _p	=	Pitching moment
M _r	=	Rolling moment
I _p	=	Inertia in pitching
Ir	=	Inertia in rolling
θ	=	Pitching angle
$\ddot{\theta}$	=	Pitch acceleration

α =	Roll angle
-----	------------

- $\dot{\alpha}$ = Roll rate
- $\ddot{\alpha}$ = Roll acceleration
- $F_a = Actuator force$

LIST OF ABBREVIATION

- AEM = Active Engine Mounting
- ACV = Active Vibration Control
- DOF = Degree of freedom
- EMS = Engine Mounting System
- FF = Feedforward
- PID = Proportional Integral Derivative

LIST OF APPENDICES

NO.	TITLE	PAGE
APPENDIX A	Discrete PID Controller for Vertical Motion	54
APPENDIX B	Discrete PID Controller after tuning	55
APPENDIX C	Excitation force as sine wave function	56

CHAPTER I

INTRODUCTION

This chapter will provide information about the background, problem statement, objective, project scope, project Gantt chart, project outline and project flow chart of this project.

1.1 Background

Mounting are very important in a vehicle as an attachment point for a part or system to the chassis. It also acts as an isolator which keeping noise or vibration so they will not be felt by the driver and passenger. One of the mount systems in a vehicle was engine mount. An engine mount attached the engine to the chassis. The mounts are designed to allow a certain amount of rotation as well as absorbing much of the engine vibration. Each vehicle has different type and location of engine mounting. For Perodua Kancil 850 EZ engine, it has four mounts which located at the front, right, left and rear. Generally conventional vehicle like Perodua Kancil use Passive Engine Mounting System (EMS).

1.2 Problem Statement

Worn engine mounts will bring much effect. The increasing of noise and vibration was the symptoms as well as increased pedal pressure or slower respons to driver input. It was because some linkage happens in controller linkage such as at throttle and transmission. In some cases, the throttle linkage can be jammed, resulting in unintended acceleration. A broken engine mounts inside a car with belt-driven, water pump mounted fan, may cause the engine to rotate forward and hit the radiator with the fan blades. Besides, problem with the engine mounts can lead to a chain reaction down the driveline. Broken engine mounts also will lead to misalignment of the driveshaft.

1.3 Objective

The main objectives of this project are to evaluate the performance of the active engine mounting system with the passive engine mounting system and skyhook engine mounting system and to develop a mathematical model for passive, active and skyhook engine mounting system.

1.4 Project Scope

MATLAB Simulink will be chosen as a simulating tool. Active engine mounting will use PID control as a controller unit. All dimensions for engine were taken from Perodua Kancil 850 EZ engine. The engine vibration will be assumed as sinusoidal disturbance.

1.5 Gantt Chart

Project Gantt chart PSM 1

No.	No. Task		Week													
			1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Choosing title															
2	1st meeting with Supervisor															
3	Gantt Chart															
4	Prepare Technical Background															
	Report for	Problem														
	Chapter 1 :	Statement														
	Introduction	Objective														
		Projest Scope														
5	Study the Matlab Simulink software															
6	Review study of an engine mounting															
	system															
7	1st PSM presentation															
8	Prepare Technical Theory															
	Report for	Mathematical														
	Chapter 2 :	model														
	Literature Review	Engine mounting														
	system															
9	Develop mathematical equation															
10	Prepare Technical Report for Chapter 3															
	and Chapter 4 (Methodology and															
	Conclusion)															
11	2nd PSM presentation	on														
12	12 Submission of technical report															

Project Gantt chart PSM 2

No.	Task	Week															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1.	Repair previous PSM1 report																
2.	Perform mathematical equation in MATLAB Simulink																
3.	Gathering data for model																
4.	Create simulation																
5.	Predict the performance of engine mounting system																
6.	Prepare Technical Report																