DESIGN AND FABRICATION OF SPACE FRAME CHASSIS FOR UTeM FORMULA STYLE RACE CAR

MUHAMAD HAFIZULLAH ASHARI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

'I have read this thesis and from my opinion this thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Automotive)'

Signatures	:
Name of Supervisor I	: En. Muhd Ridzuan Mansor
Date	:

DESIGN AND FABRICATION OF SPACE FRAME CHASSIS FOR UTEM FORMULA STYLE RACE CAR

MUHAMAD HAFIZULLAH BIN ASHARI

This report is presented in partial fulfillment of the requirements for the honor of Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2011

"I declare this report is on my own work except for summary and quotes that I have mentioned its sources"

Signature	:
Name of Author	: Muhamad Hafizullah Ashari
Date	: 16 th May 2011

For my beloved mum, Mrs. Mariam bt Ismail and my caring dad, Mr. Ashari bin Burok

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this project. I want to thank to Allah S.W.T for giving me good health to do the necessary research work. I have furthermore to thank my fellow friends who encouraged me to go ahead with my project.

I am deeply indebted to my supervisor, Mr. Muhd Ridzuan bin Mansor from the Faculty of Mechanical Engineering Department whose help, stimulating suggestions and encouragement helped me in all the time of research and writing of this Projek Sarjana Muda (PSM).

I thank the laboratory management especially the lab technicians for their cooperation and support and also not leas thank my friend Mohd Zaini, Mohd Sabirin, Mohd Faliq, Amar Ridzwan, Kamal Khalid and Ammar Alfaiz for all thier assistance on generating the use of Catia programming and fabrication chassis. My housemates, who were great, help in difficult times.

Lastly, I would like to give my special thanks to my parents whose patient love enabled me to complete this work, sacrifice their money for hoping me that I can finish my project on time. I hope that all that have been study and research in this thesis can be use as references to the other student in the future

> Muhamad Hafizullah Ashari UTeM May 2011

ABSTRACT

This thesis presents the design and analysis of a student competition based formula style racing car named as Formula Varsity. The goal and target of this project are to design, analyze and fabricate a new space frame chassis which are based on rule and regulation of Formula Varsity 2010. This event organized by Universiti Teknikal Malaysia Melaka. The race car chassis design was developed using CATIA V5R16 CAD software and commercial grade A36 low carbon steel was chosen as the material for the chassis construction. The chassis was later analysed for its structural performance using similar software. Results show that the new chassis design has higher maximum torsional stiffness of 4874.50 Nm/deg compared to the previous UTeM 2010 race car chassis with maximum torsional stiffness of 4415.189 Nm/deg. The new chassis design was also 39.5% lighter than its predecessor. The findings reveals that the new chassis design can provide higher power to weight ratio compared to the previous UTeM race car while in the same time gives better structural strength, thus giving the needed advantage in winning the event.

ABSTRAK

Kajian ini menunjukkan rekabentuk dan analisa mahasiswa untuk pertandingan perlumbaan jentera berasaskan Formula satu disebut sebagai Formula Varsiti. Tujuan dan sasarannya adalah rekabentuk, menganalisa dan membina sebuah casis kerangka yang baru berdasarkan kepada ketentuan dan peraturan Formula Varsiti 2010. Acara ini diadakan oleh Universiti Teknikal Malaysia Melaka. Rekabentuk casis jentera dihasilkan menggunakan perisian CAD CATIA V5R16 dan bagi menbina casis bahan yang digunakan adalah besi berkarbon rendah A36. Casis jentera kemudiannya dianalisa untuk memastikan struktur benar-benar kuat dengan menggunakan perisian yang sama. Keputusan kajian menunjukkan bahawa simpulan daya kilas rekabentuk casis baru sebanyak 4874.50 Nm/deg lebih baik berbanding casis lama sebanyak 4415.189 Nm/deg. Rekabentuk casis baru juga menunjukkan pengurangan berat sebanyak 39.5% daripada casis lama. Kajian menunjukkan bahawa rekabentuk casis baru dapat memberikan kuasa yang lebih tinggi disebabkan nisbah berat berbanding rekabentuk casis jentera UTeM sebelumnya dalam masa yang sama memberikan kekuatan struktur yang lebih baik, sehingga memberikan peluang untuk memenangi acara tersebut.

TABLE OF CONTENT

CHAPTER		r	FITLE	PAGE
	DECI	LARATION		ii
	DEDI	CATION		iii
	ACK	NOWLEDGEME	NT	iv
	ABST	TRACT		V
	ABST	RAK		vi
	TABI	LE OF CONTENT		vii
	LIST	OF TABLES		xii
	LIST	OF FIGURES		xiii
	LIST	OF APPENDICE	S	xvi
Ι	INTR	ODUCTION		1
	1.1	Project Introducti	on	1
	1.2	Objective		2
	1.2	Problem Statemer	nt	2
	1.3	Scope		3

LIT	LITERATURE REVIEW	
2.1	Introduction	7
2.2	Competition Rule	8
2.3	Spaceframe History	10
	2.3.1 Current Frame	10
2.4	Types of Chassis Design	11
	2.4.1 Ladder Frame	11
	2.4.2 Space Frame	11
	2.4.3 Backbone Chassis	11
	2.4.4 Monocoque	12
2.5	Material for Chassis Construction	14
	2.5.1 Steel	14
	2.5.1.1 Plain Carbon Steel	14
	2.5.1.2 Mild steel	15
	2.5.1.3 Medium Carbon Steel	16
	2.5.1.4 High Carbon Steel	16
	2.5.1.5 Alloy Steel	16
	2.5.1.6 Stainless Steel	16
	2.5.2 Aluminium	17
2.6	Torsional Stiffness	18
2.7	Fabrication Techniques	20

II

3.2	Analy	sis of Current Chassis	21
3.3	Mode	ling of Spaceframe Chassis	22
	3.3.1	Process	22
	3.3.2	Literature Review and Finding	25
		Information	
	3.3.3	Selection Material	25
	3.3.4	Selection of Design	26
	3.3.5	CATIA V5 Software Modeling	27
	3.3.6	Finite Element Analysis	27
3.4	Fabric	cation Process	29
	3.4.1	Gas Metal Arc (MIG)	29

IV	DES	IGN AND MATERIAL SELECTION	31
	4.1	Design	
		4.1.1 Introduction	31
		4.1.2 Total Design Method	31
		4.1.3 Market Investigation	32
		4.1.4 Product Design Specification	34
		4.1.5 Conceptual Design	35
		4.1.6 Solution Generation	36
		4.1.7 Evaluation and Selection of Concept	40
		4.1.8 Evaluation Process of the Concepts	44
		4.1.9 Compliance to Rules	46
		4.1.10 Final Concept Selection	48

4.2	Material Selection	49
	4.2.1 Introduction	49
	4.2.2 Comparisons	49
	4.2.3 Conclusion	51

V DESIGN ANALYSIS

5.1	Introduction	53
5.2	Define Load	54
5.3	Torsion Displacement Analysis	55
5.4	Bending Stress Analysis	57
5.5	Analysis Results	58
	5.5.1 Torsional Displacement Front Side	58
	5.5.2 Torsional Displacement Rear Side	59
	5.5.3 Bending Stress	60
5.6	Result of Chassis Structural Analysis	60

VI FABRICATION 62 6.1 Introduction 62 6.2 Project Planning 64 Material Purchasing 6.3 64 6.4 CAD Drawing and Dimensions 65 6.5 **Chassis Construction** 66 Finishing 72 6.6

53

VII	RES	ULT AND DISCUSSION	74
	7.0	Introduction	74
	7.1	Weight Reduction	74
	7.2	Stress Analysis Result	76
	7.3	Comparison of Structural Analysis Result with Other Researchers	78
	7.4	Design and Fabrication	81
	7.5	Manufacturing Costing	82
VIII	CON	CLUSION AND RECOMMENDATION	83
VIII	CON 8.1	CLUSION AND RECOMMENDATION Conclusion	83 83
VIII	CON 8.1 8.2	CLUSION AND RECOMMENDATION Conclusion Recommendation	83 83 84
VIII	CON 8.1 8.2	CLUSION AND RECOMMENDATION Conclusion Recommendation	83 83 84
VIII	CON 8.1 8.2 Refer	CLUSION AND RECOMMENDATION Conclusion Recommendation	83838485
VIII	CON 8.1 8.2 Refer	CLUSION AND RECOMMENDATION Conclusion Recommendation rences endix A UTeM Formula Varsity 2010	 83 83 84 85 90
VIII	CON 8.1 8.2 Refer	CLUSION AND RECOMMENDATION Conclusion Recommendation rences endix A UTeM Formula Varsity 2010 Regulation	 83 83 84 85 90
VIII	CON 8.1 8.2 Refer Appe	ACLUSION AND RECOMMENDATION Conclusion Recommendation rences endix A UTeM Formula Varsity 2010 Regulation endix B Material Properties	83 83 84 85 90 94

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Gantt Chart PSM 1	4
1.2	Gantt Chart PSM 2	5
2.1	Comparison of Each Type of Chassis Design	13
4.1	Product Design Specification of Formula Varsity 2010 SpaceFrame Chassis	34
4.2	Application of Digital Logic Method to Criteria of SpaceFrame Chassis	41
4.3	Weighting Factor for Criteria of SpaceFrame Chassis	42
4.4	Rating Value	44
4.5	Evaluation Process of the Design Developed	45
4.6	Comparison Among the Material Applicable for Chassis Construction	50
4.7	Material Properties of Low Carbon Steel	51
5.1	Structural Analysis Result of the New Chassis	64
7.1	Compare Weight Previous Design and New Design	75
7.2	Torsion and Bending Analysis Result	76
7.3	Comparison the Analysis Result with Other Researcher	78
7.4	List of Manufacturing Costing and Material Quantity Used	82

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Basic Formula Student Race Car	2
1.2	Overall Flow Process Chart	6
2.1	Illustration of the Side Impact Members Location	8
2.2	Illustration of the Clearance Required Above the Drivers Head	9
2.3	95 th % Percentile Male Dimensions as Depicted in the 2010 Rules	9
2.4	Steel	14
2.5	Tensile Strength and Hardness of Plain Carbon Steels	15
2.6	Stainless Steel.	17
2.7	Aluminum	17
2.8	Example of Frame Chassis in Torsion	18
2.9	Free Body Diagram Viewed from Front Suspension Bay	19
2.10	Section Joining	20
3.1	Current SpaceFrame Chassis	22
3.2	Overall Flow Process	24
3.3	Block Diagram of Design Process	26
3.4	Properties of Material is Define	28
3.5	Process Schematic of MIG	30
4.1	Total Design Method	32

4.2	Current SpaceFrame Chassis	36
4.3	First SpaceFrame Chassis Design	37
4.4	Second SpaceFrame Chassis Design	38
4.5	Third SpaceFrame Chassis Design	39
4.6	Weighting Factor of Criteria	43
4.7	The Test Dummy Modeled to Test for Clearance from Role Hoops	46
4.8	Chassis Design that have 95 th Percentile Manikin	47
4.9	Final Chassis Design	48
4.10	Selected Material Applied on Chassis	52
5.1	Free Body Diagram Load Distribution	54
5.2	Location of Applied Load and Constraint for Torsion	56
	Displacement Analysis at Front Side.	
5.3	Location of Applied Load and Constraint for Torsion	56
	Displacement Analysis at Rear Side	
5.4	Location of Applied Load and Constraint for Bending Stress	57
	Analysis on the Overall Chassis	
5.5	Torsional Displacement for Front Side	58
5.6	Torsional Displacement for Rear Side	59
5.7	Bending Stress on Overall Chassis	60
6.1	Fabrication Flow Chart	63
6.2	The Breakdown Structure of Chassis	64
6.3	Detail Drawing and Dimension	65
6.4	The Full Scale of Design is Template on Trace Paper	66
6.5	The Pipe is Cut by the Disc Cutter	66
6.6	Bundle of Cutting Pipe	67

6.7	Frame is Jig by Nails with Template on Full Scale Dimension	68
6.8	The Welding Process	68
6.9	Grinding Procedure	69
6.10	Frame is Positioning in Straight Line	69
6.11	Engine Bay is Fully Construction	70
6.12	Finish All Welding Work	70
6.13	Final Design is Fully Constructed	71
6.14	Chassis is Check for the Sufficient in all Areas of the Dimensions and Construction	71
6.15	Grinding to Remove Surplus of Welding	72
6.16	Painting the Final Product	72
6.17	Weighting Scale Calibration with Constant Mass 5kg	73
6.18	Weighting the Final Product	73
7.1	Comparison Analysis Results for Ratio of Torsional Stiffness per Weight with Other Researchers	79
7.2	Comparison Analysis Results for Torsional Stiffness with Other Researchers	79
7.3	The Driver and Seat Positioned in Appropriately	81

LIST OF APPENDICES

NO	TITLE	PAGE				
А	UTeM Formula Varsity 2010 Regulation	90				
В	Material Properties	94				
С	Design Dimension of New Chissis	97				

xvi

CHAPTER I

INTRODUCTION

1.1 Project Introduction

Spaceframe chassis have been in use since the start of the motor sport scene. A spaceframe consists of steel or aluminum tubular pipes placed in a triangulated format to support the loads from the vehicle caused by; suspension, engine, driver and aerodynamics.

There are two main types of chassis used in race cars, steel spaceframes and composite monocoque. Although spaceframes are the traditional style they are still very popular today in amateur motorsport. Their popularity maintains because of their simplicity, the only tools required to construct a spaceframe is a saw, measuring device and welder.

The spaceframe still has advantages over a monocoque as it can easily be repaired and inspected for damage after a collision. The chassis has to contain the various components required for the race car as well as being based around a driver's cockpit. The safety of the chassis is a major aspect in the design, and should be considered through all stages. The design also has to meet strict requirements and regulations set by the UTeM Formula Varsity organizers. Due to limited budgets and time constraints the design of the chassis will need to be geared towards simplicity and strength.

Figure 1.1: Basic Formula Student Race Car (Baker, 2004)

1.2 Objective

The main objective of this project is to design, analyze and fabricate a new spaceframe chassis for UTeM formula style race car. New chassis must comply with the rule and regulation stated in the Formula Varsity 2010 competition.

1.3 Problem Statement

The design of a chassis for a 2010 UTeM Formula Varsity Race Car must contain all necessary components to support the car and the driver. It must also comply with the Formula Varsity 2010 rules. In order to produce a competitive vehicle with optimum chassis performance, many areas need to be studied and tested.

As we know, weight is the main point that affected the performance of the car. So, the main purpose of this project is to design and develop a lightweight and strength chassis. The new chassis is must be light and maintain the strength of the chassis when load is applied on it.

There was some factor that can effected weight of a vehicle which is the types of material used, the diameter or dimension of tubes use to built space frame chassis, and also the design geometry of chassis.

This project carried out all of the necessary background research required to sustain an accurate database of design criteria. Design criteria then allowed the design process and methodology to be derived and to allow for smooth construction of an efficient and effective space frame chassis. Once construction of the chassis was completed, analyses were conducted to investigate the effects of working loads on the chassis. Finite element analysis was used to simulate the conditions of various load combinations.

1.4 Scope

- To produce detail and 3D design of the chassis using CATIA based on 2010 UTeM Formula Varsity specification and regulation.
- ii. To select suitable material for the chassis through material selection analysis.
- iii. To calculate the load acting on chassis during operation.
- iv. To perform the static Finite Element Analysis to the chassis.
- v. To evaluate the torsional stiffness foe the chassis based on the load analysis using CATIA
- vi. To fabricate the chassis using suitable manufacturing process

GANTT CHART PSM 1

		Week of Progress													
No	Activities	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Select Of PSM Topic														
2	Confirmation of PSM topic														
3	Literature Review														
4	Material Selection														
5	Design of Space frame FV 2010														
6	Analyze the Design of Space frame FV 2010														
7	Report Writing 7.1 Chapter 1 : Introduction 7.2 Chapter 2 : Literature Review 7.3 Chapter 3 : Methodology 7.4 Chapter 4: Design and Material Selection 7.5 Chapter 5: Result, Analysis and Discussion 7.6 Chapter 6 : Conclusion														
8	Presentation														
9	Report Submission														

Table 1.1: Gantt Chart PSM 1

GANTT CHART PSM 2

		Week of Progress													
No	Activities	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Literature Review														
2	Fabricate the Space frame FV 2010														
3	Balancing and Testing														
4	Measure and Decision														
5	Report Writing 5.3 Chapter 7: Fabrication 5.4 Chapter 8: Conclusion and Recommendation														
7	Presentation														
8	Report Submission														

Table 1.2: Gantt Chart PSM 2

Figure 1.2: Overall Flow Process Chart