MEREKABENTUK DAN MEMBANGUNKAN SISTEM KAWALAN KELAJUAN BAGI MOTOR ARUS TERUS BERMAGNET KEKAL

ZULKIFLI BIN MUSA

MAY 2008

C Universiti Teknikal Malaysia Melaka

" Saya akui bahawa saya telah membaca laporan ini. Pada pandangan saya laporan ini memadai dari skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Elektronik Kuasa dan Pemacu)"

Tandatangan Nama Penyelia Tarikh

: Jang

C Universiti Teknikal Malaysia Melaka

MEREKA BENTUK DAN MEMBANGUNKAN SISTEM KAWALAN KELAJUAN BAGI MOTOR ARUS TERUS BERMAGNET KEKAL

i

ZULKIFLI BIN MUSA

Laporan Ini Dikemukakan Sebagai Memenuhi Sebahagian Daripada Syarat Penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Elektronik Kuasa dan Pemacu)

> Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

> > MAY 2008

C Universiti Teknikal Malaysia Melaka

" Saya akui laporan ini merupakan hasil kerja saya, kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya."

Tandatangan Nama Pelajar Tarikh

	ΛA
:	/ Jule-

ii

Kepada

Ummi, abah, dan adik-adik,

Doa kalian memberi smangat untuk along terus maju ke hadapan. Guru-guru dan pensyarah, Memenuhi dada kami dengan ilmu-ilmu yang berguna, Sahabat seperjuangan, Menjadikan impian menjadi kenyataan, Muslimin dan muslimat, Semoga Allah S.W.T merahmati dan memberkati kita selamanya.

-Al-fatihah-

PENGHARGAAN

Dengan nama Allah yang MAHA pemurah lagi MAHA pengasihani, segala pujian hanyalah untukMU YA ALLAH tuhan pencipta alam semesta. Dengan hidayatMU jua YA ALLAH hambaMU yang lemah ini mendapat ilham dan berkesempatan untuk menyiapkan laporan ini dengan jayanya.

Pertama sekali, saya ingin mengucapkan jutaan kesyukuran kehadrat ilahi kerana telah mengurniakan seorang ibu dan seorang bapa yang penyanyang, sentiasa memberi dorongan, nasihat, dan petunjuk jalan dalam kegelapan. Dengan berkat doa dan kasih sayang ibu dan ayah, saya telah dapat menyiapkan laporan akhir bagi pengajian saya.

Seterusnya, saya ingin mengucapakan jutaan terima kasih kepada penyelia saya, En. Md. Hairul Nizam Bin Talib yang telah banyak memberi dorongan dan tunjuk ajar dalam menangani setiap masalah yang dihadapi. Sifat keterbukaan yang telah Encik berikan, membuatkan proses kajian dan selidikan ini menjadi lebih selesa dan berkesan.

Akhir sekali, tidak lupa juga kepada pensyarah En. Aziddin dan kawan-kawan: Saiful, Imran, Syahrani, Syarin, Musa, dan Nazrul yang telah banyak memberi pertolongan dalam menjayakan projek ini.

Wassalam

iv

ABSTRACT

This project is focused on developing the control speed and direction of permanent magnet (PM) DC motor system. The system is able to give a feedback signal on the actual speed at the output and have a capability to adjust the signal for achieving the speed demand. The system consists of AC/DC power supply, under and over voltage protection, speed control and direction control for PM DC motor, load, feedback voltage, voltage comparator, switching system, and feedback system; where DC source is supplied to motor speed controller (used for produce PWM signal to control driver circuit). By using the switching concept, driver circuit will determine the speed and direction of the motor. Speed detector will send the signal from output motor to comparator circuit through feedback circuit. As an error channel, comparator will adjust the actual speed to achieve the desire speed by injects the current until error is zero. Mechanical load is used to produce some practical losses.

ABSTRAK

Projek ini bertujuan membina sistem kawalan kelajuan serta arah putaran bagi motor arus terus bermagnet kekal (permanent magnet dc motor), PM DC motor. Sistem ini mempunyai kebolehan membetulkan kejatuhan kelajuan melalui litar suap balik dengan membaiki kelajuan sebenar pada bahagian keluaran sehingga mencapai kelajuan yang diingini. Sub-sistem yang terdapat dalam sistem ini adalah seperti, bekalan kuasa arus ulang alik dan arus terus; pelindung voltan tinggi dan rendah,; pengawal kelajuan dan arah putaran motor; beban; voltan suap balik; pembanding voltan; pengesan arah putaran motor; dan sistem suap balik. Secara ringkasnya, keseluruhan operasi sistem ini bermula dengan bekalan voltan dibekalkan pada sistem kawalan bagi menghasilkan isyarat denyut, (PWM) yang akan mengawal litar pacuan. Dengan menggunakan konsep pensuisan litar pacuan akan menentukan kelajuan dan arah putaran motor. Pengesan kelajuan yang terdapat dalam sistem suap balik. Perbezaan antara isyarat suap balik dan isyarat rujukan (yang dikehendaki) dikenali sebagai ralat. Litar pembanding akan

vi

ISI KANDUNGAN

BAB. PERKARA

HALAMAN

PENGESAHAN PENYELIA	
HALAMAN TAJUK	i
PENGAKUAN	ii
DEDIKASI	iii
PENGHARGAAN	iv
ABSTRACT	\mathbf{v}
ABSTRAK	vi
ISI KANDUNGAN	vii
SENARAI JADUAL	xii
SENARAI RAJAH	xiii

PENGENALAN

I.

П.

1.1	Pengenalan Projek	1
1.2	Penyata Masalah	2
1.3	Objektif Projek	3
1.4	Skop Projek	4
1.5	Jangkaan Hasil Akhir	5

KAJIAN LITERATUR

2.1	Kawala	an Arah Putaran Motor Secara Manual	8
	2.1.1	Penggunaan SPST Suis Dan DPDT Suis	8
	2.1.2	Penggunaan SPST Suis Dan SPDT Suis	9
	2.1.3	Penggunaan Sepasang SPDT Suis	10
	2.1.4	Penggunaan Sepasang SPST Suis	11
	2.1.5	Penggunaan Empat SPST Suis	12

vii

2.2	Kawalan	Motor Dengan Menggunakan Suis Electronik	13
	2.2.1	Penggunaan Relay	13
	2.2.2	Penggunaan Transistor	14
2.3	Litar Pac	zuan Asas.	16
	2.3.1	Litar Pacuan Satu Arah	16
	2.3.2	Litar Pacuan Half-Bridge	18
	2.3.3	Litar Pacuan Mondotronics H-bridge	19
	2.3.4	Litar Pacuan Bidirection H-bridge	20

TEO	TEORI DAN ASAS		
3.1	Permenent Magnet Dc (PMDC) Motor.	21	
3.2	Litar Pacuan	28	

IV METODOLOGI PROJEK

III.

4.0	Pengena	lan Perjal	anan Fasa	30
4.1	Fasa Pro	ojek		30
4.2	Fasa Per	tama (Me	engumpul Maklumat)	33
4.3	Fasa Ke	dua (PM I	DC Motor)	33
4.4	Fasa Ketiga (Bekalan Kuasa)			36
4.5	Fasa Ke	empat (Pe	elindung Voltan)	37
4.6	Fasa Ke	lima (Pen	gawal Kelajuan Motor)	38
	4.6.1	Litar Pao	cuan	38
		4.6.1.1	Kawalan Putaran Motor Kedepan	40
		4.6.1.2	Kawalan Putaran motor Mengundur	41

C Universiti Teknikal Malaysia Melaka

viii

		4.6.1.3	Kawalan Kelajuan Motor	42
	4.6.2	Litar Ka	walan	43
		4.6.2.1	Voltan Kawalan	45
		4.6.2.2	Voltan Ikutan	45
		4.6.2.3	Penjana Gelombang Segitiga	46
		4.6.2.4	Pembanding Voltan	47
4.7	Fasa K	eenam (Vo	oltan Suap Balik)	48
4.8	Fasa K	etujuh (Be	ban Mekanikal)	49
4.9	Fasa K	elapan (Li	tar Convensional)	49

v.

KEPUTUSAN SIMULASI

51 5.1 Gambarajah Blok Bekalan Kuasa Arus Ulang-alik (240Vac, 50Hz) 52 5.2 Bekalan Kuasa Arus Terus (Vdc) 54 5.3 54 5.3.1 Bekalan Kuasa 1 (V1) 55 Bekalan Kuasa 2 (V2) 5.3.2 57 Bekalan Kuasa 3 (V3) 5.3.3 Pelindung Voltan Tinggi Dan Rendah 58 5.4 Sistem Dalam Keadaan Selamat 59 5.4.1 Sistem Mengalami Voltan Rendah 60 5.4.2 Sistem Mengalami Voltan Tinggi 61 6.4.3 63 Kawal Kelajuan Motor (Kaedah PWM) 5.5 5.5.1 Pengawal Kelajuan Dan Voltan Ikutan 64 Voltan Ikutan Dan Pengayun Voltan 64 5.5.2 65 5.5.3 Pengayun Voltan 67 5.5.4 Pembanding Voltan

	5.5.5	Pemacu Motor	73
		5.5.5.1 Pengaruh Voltan Rendah	74
		5.5.5.2 Pengaruh Voltan Tinggi	75
		5.5.5.3 Pengaruh Voltan Sederhana	76
5.6	Voltan S	Suap Balik	79
6.7	Pemban	ding Voltan	80
6.8	Sistem S	Suap Balik	82
6.9	Pengesa	n Arah Putaran Motor.	84

VI. KEPUTUSAN AKHIR

6.1	Kawalan Voltan	85
6.2	Voltan Ikutan	86
6.3	Penjana Gelombang Segitiga	88
6.4	Voltan Bandingan	90
6.5	Perkakasan	96

VII. PERBINCANGAN

7.1	Perbinc	cangan	100
	7.1.1	Perbincangan Voltan Kawalan.	100
	7.1.2	Perbincangan Voltan Ikutan.`	102
	7.1.3	Perbincangan Gelombang Penjana Segitiga	103
	7.1.4	Perbincangan Voltan Bandingan .	104
	7.1.5	Perbincangan Operasi Litar Pacuan.	105
7.2	Pengawal voltan Motor A.T		106
	7.2.1	Voltan Pada Armature	108
	7.2.2	Arus Pada armature	109
	7.2.3	Daya Tolakan Pada Motor	110
7.3	Kesimj	pulan.	111
7.3	Cadang	gaan	112

C Universiti Teknikal Malaysia Melaka

RUJUKAN	11	3
LAMPIRAN A	11	5

C Universiti Teknikal Malaysia Melaka

xi

SENARAI JADUAL

NO.	TAJUK
NO.	IAJUI

HALAMAN

2.1.	Operaci liter concerns SPDT suis	10
2.1:	Operasi mar sepasang SFDT suis.	10
2.2:	Operasi litar sepasang SPST suis.	11
2.3:	Operasi litar empat SPST suis	12
2.4:	Senarai komponen pensuisan	15
2.5:	Operasi litar pacuan Half-bridge	18
2.6:	Operasi litar pacuan Mondotronics H-bridge	19
2.7:	Operasi litar pacuan Bidirection H-bridge	20
4.1:	Senarai komponen yang diperlukan dalam litar	
	Bekalan kuasa.	36
4.2:	Senarai komponen yang diperlukan dalam litar	
	Pelindung voltan.	37
4.3:	Senarai komponen yang diperlukan dalam litar pacuan	39
4.4:	Senarai komponen yang diperlukan dalam litar kawalan	44
4.5:	Senarai komponenyang diperlukan dalam litar voltan	
	suap balik	48
6.1:	Voltan keluaran pada kawalan voltan	86
6.2:	Voltan keluaran voltan ikutan	87
6.3:	Aplikasi litar kawalan menggunakan lampu	91

SENARAI RAJAH

NO.

TAJUK

1.1:	Gambarajah blok keseluruhan projek	2
1.2:	Pelaras kelajuan motor	5
1.3:	Graf jangkaan hasil kelajuan dikawal pelaras kelajuan.	6
1.4:	Graf jangkaan hasil arah dan kelajuan putaran bergantung kepada	
	voltan masukan	7
2.1:	Litar kawalan motor menggunakan SPST suis dan DPDT suis [6]	9
2.2:	kawalan motor menggunakan SPST Suis Dan SPDT Suis [6].	9
2.3:	Litar kawalan motor menggunakan sepasang SPDT suis [6].	10
2.4:	Litar kawalan motor menggunakan sepasang SPST suis[6].	11
2.5:	Litar kawalan motor menggunakan empat SPST suis [6].	12
2.6:	Relay DPDT.	13
2.7:	Aplikasi penggunaan Relay DPDT [6].	14
2.8:	Penggunaan transistor sebagai suis.	15
2.9:	Beban motor pada bahagian tinggi (high side)	17
2.10:	Litar pacuan kawalan kelajuan motor (low side)	17
2.11:	Litar pacuan Half –bridge [6].	18
2.12:	Litar pacuan Mondotronics H-bridge [6].	19
2.13:	Litar pacuan bidirection H-bridge [7].	20
3.1:	Struktur dalaman bagi motor A.T	22
3.2:	Binaan Motor arus terus bermagnet kekal [5].	23
3.3:	Arah arus dan medan yang menentukan arah daya	23
3.4:	Persamaan litar Pm Dc motor	24
3.5:	Graf operasi bagi motor A.T	25
3.6:	Ia berkadar terus dengan Va	27
3.7:	Kelajuan motor bergantung kepada Va	27

HALAMAN

3.8:	Litar pacuan motor	28
3.9:	Isyarat denyut	29
4.0	Gambarajah blok keseluruhan projek	30
4.1:	Carta alir pembinaan projek	32
4.2:	Bekalan kuasa A.T	36
4.3:	Pelindung Voltan	37
4.4:	Litar pacuan	38
4.5:	Putaran motor kedepan	40
4.6:	Putaran motor mengundur	41
4.7:	Graf pengoperasian motor dikawal isyarat masukan	42
4.8:	Litar kawalan	43
4.9:	Bahagian voltan kawalan	45
4.10:	Bahagian voltan ikutan	45
4.11:	Bahagian penjana gelombang segitiga	46
4.12:	Pembanding voltan	47
4.13:	Voltan bandingan dan isyarat keluaran	47
4.14:	Voltan suap balik	48
4.15:	Litar kuasa bagi kawalan motor secara convesional	49
4.16:	Litar kawalan bagi kawalan motor secara convesional	50
5.1:	Gambarajah blok keseluruhan projek.	51
5.2:	Litar Bekalan Kuasa Arus Ulang Alik	52
5.3:	Operasi Litar Dalam Keadaan Biasa	53
5.4:	Operasi Litar Dalan Keadaan Kegagaaln Berlaku	53
5.5:	Bekalan Voltan V1	54
5.6:	Graf keluaran V1	55
5.7:	Bekalan Voltan V2	56
5.8:	Graf keluaran V2	56
5.9:	Bekalan voltan V3	57
5.10:	Graf keluaran V3	57
5.11:	Sistem perlindungan voltan tinggi dan rendah	58
5.12:	Sistem perlindungan dalam keadaan biasa.	59

xiv

5 13.	Berlaku voltan rendah pada system perlindungan.	60
5.14.	Graf simulasi kegagalan voltan rendah	61
5.15.	Borloku voltan tinggi pada system perlindungan	62
5.15:	Cref simulasi bagi kagagalan yoltan tinggi	62
5.10:	Graf simulasi bagi kegagalari vonan tinggi	63
5.17:	Litar kawalan P wivi	64
5.18:	Isyarat Pin I dan Pin 3	64
5.19:	Isyarat Pin I dan Pin 5 (VIOW)	65
5.20:	Pin I dan Pin 5 (Vhigh)	05
5.21:	Pin 5 dan Pin 6 (Vlow)	66
5.22:	Pin 5 dan Pin 6(Vhigh)	66
5.23:	Pin 6 dan Pin 7 (V low)	66
5.24:	Pin 6 dan Pin 7 (V high)	67
5.25:	Pembanding voltan	68
5.26:	Voltan tinggi pada pin 14 (Vout A)	68
5.27:	Perbandingan Vref 1 (pin 12) dan V carrier (pin 13)	69
5.28:	Isyarat denyut pada pin 8 (Vout B)	69
5.29:	Perbandingan Vref 2 (pin 9) dan V carrier (pin 10)	70
5.30:	Voltan tinggi pada pin 14 (Vout A) dan pin 8 (Vout B)	70
5.31:	V carrier (pin 10 dan 13) diantara Vref 1 (pin 12) dan Vref 2	(pin 9)71
5.32:	Isyarat denyut pada pin 14	71
5.33:	Perbandingan Vref 1 (pin 12) dan V carrier (pin 13)	72
5.34:	Voltan tinggi pada pin 8 (Vout B)	72
5.35:	Perbandingan Vref 2 (pin 9) dan V carrier (pin 10)	72
5.36:	Litar pemacu PM DC motor	73
5.37:	Isyarat keluaran semasa voltan rendah	74
5.38:	Isyarat keluaran semasa voltan tinggi	75
5.39:	Voltan keluaran pada A (tinggi) dan B (isyarat dsenyut)	76
5.40:	Voltan keluaran pada B (tinggi) dan A (isyarat denyut).	77
5.41:	Arus masukan pada motor.	77
5.42:	Voltan masukan pada motor.	78
5.43:	Voltan suap balik	79

xvi

5.44:	Graf keluaran voltan suap balik.	79
5.45:	Litar pembanding voltan rujukan dan voltan suap balik	80
5.46:	Berlaku geseran ketika	81
5.47:	Sistem suap balik	82
5.48:	Berlakunya ralat semasa putaran kedepan	83
5.49:	Berlakunya ralat semasa putaran kebelakang	83
5.50:	Litar pengesan arah putaran motor.	84
6.1:	Litar kawalan voltan	85
6.2:	Litar voltan ikutan	87
6.3:	Litar lengkap penjana gelombang segitiga	88
6.4:	Gambarajah perubahan gelombang segitiga	89
6.5:	Pengoperasian voltan bandingan	90
6.6:	Isyarat denyut	91
6.7:	Litar pacuan yang dikawal oleh isyarat litar kawalan	93
6.8:	Isyarat bandingan dan keluara U1:D	94
6.9:	Isyarat bandingan dan keluara U1:C	95
6.10	Perkakasan diakhir projek	96
6.11:	PWM bagi pengayun semasa putaran kehadapan	97
6.12:	PWM bagi pengayun semasa putaran kebelakang	97
6.13:	Voltan pacuan semasa putaran kehadapan	98
6.14	Voltan pacuan semasa putaran kebelakang	98
6.15	Voltan pacuan semasa motor berhenti	99
7.1:	Litar voltan kawalan	101
7.2:	Sambungan ¼ LM324 membentuk litar ikutan	102
7.3:	Sambungan ¼ LM324 membentuk litar pengayun gelombang	103
7.4:	Isyarat keluaran yang terdapt pada pengayun gelombang	103
7.5:	Voltan bandingan menggunakan ¼ LM324	104
7.6:	Operasi litar pacuan	105
7.7:	Operasi litar pacuan	106

BAB I

PENGENALAN

1.1 Pengenalan Projek

Kajian serta binaan projek ini secara umumnya berkaitan dengan pembangunan litar kawalan kelajuan bagi motor arus terus bermagnet kekal (PM DC motor). Pembangunan ini dilaksanakan bertujuan memperkembangkan penggunaan motor arus terus (motor AT) agar setanding dengan penggunaan motor arus ulang alik. Kajian yang dijalankan ini lebih ditumpukan kepada penggunaan komponen elektronik dimana bekalan kuasa rendah digunakan bagi mengawal setiap operasi dalam sistem ini. Selain mampu meningkatkan keupayaan menganalisa kelajuan melalui perbandingan voltan operasi dan voltan kawalan, litar ini juga mampu mengawal operasi dengan lebih sempurna dan tepat berbanding kaedah konvasional.

Litar kawalan kelajuan bagi motor AT ini diklasifikasikan kepada dua bahagian. Bahagian pertama ialah bahagian litar gelung terbuka, yang mengandungi komponen seperti bekalan kuasa arus ulang alik 240Vau 50Hz, dan 3 set bekalan kuasa AT, 9V 500mA; 12V 3A; dan 12V 0.25mA. Selain itu terdapat sistem pelindung voltan tinggi dan rendah; pengawal kelajuan dan arah putaran motor; dan beban mekanikal. Bahagian kedua pula ialah bahagian litar gelung tertutup, yang mengandungi komponen seperti takometer; voltan suap balik; pengesan arah putaran motor; dan sistem suap balik. Pengoperasian dan hubungkait antara kedua litar ialah; litar kawalan gelung terbuka akan memacu motor agar bergerak pada kedua arah disamping kebolehan mengawal kelajuan. Keluaran yang terhasil pada motor akan berkurangan dengan adanya beban mekanikal seperti geseran. Oleh itu litar kawalan gelung tertutup akan bertindak sebagai pembetul kepada kelajuan motor sehingga kelajuan motor mencapai kelajuan yang dikehandaki.

Rajah 1.1: Gambarajah blok keseluruhan projek.

1.2 Penyata Masalah

Pada masa kini penggunaan motor arus ulang alik (motor AU) mendapat sambutan yang meluas daripada pengguna motor AT di setiap peringkat, terutamanya di sektor perkilangan. Daripada kajian dan pemerhatian yang dijalankan, litar kawalan bagi motor AU ini mudah diperolehi daripada pembekal serta mempunyai banyak kelebihan disamping mempunyai konsep mesra pengguna. Antara kelebihan litar kawalan ini ialah, ia mampu dibina sendiri oleh jurutera mahupun juruteknik mengikut operasi yang dikehendaki. Antara jenis litar kawalan yang biasa digunakan ialah litar kawalan motor satu fasa (240Vac dan 100Vac dengan 50KHz) dan tiga fasa (415Vac dengan 50KHz). Kaedah terbaru yang meluas digunakan ialah dengan menggunakan sistem PLC (Program Logic Control). Dengan menggunakan program ini, litar kawalan boleh dibina dengan menggunakan komputer peribadi yang akan memaparkan bentuk pendawaian dan juga mampu memaparkan lokasi kegagalan yang berlaku serta mudah diubahsuai pengoperasiannya.

Oleh yang demikian, penggunaan motor AT semakin diabaikan. Kelemahannya adalah sukar untuk memperolehi litar kawalan, apatah lagi untuk membina sendiri litar berkenaan. Pembinaan litar ini perlu menggunakan komponen elektronik yang mempunyai kesensitifan yang tinggi disamping memerlukan kepakaran yang tinggi dalam litar elektronik. Selain itu, pembinaan litar ini juga perlu mempertimbangkan semua kuantiti dan unit yang terdapat dalam litar elektronik seperti voltan, arus, frekuensi, isyarat denyut, duty cycle, malah suhu juga perlu dipertimbangkan. Pada setiap cabang litar, kuantiti arus elekterik yang mengalir perlu dikawal agar tidak melebihi had bekalan arus dan keupayaan litar berkenan.

1.3 Objektif Projek

Antara objektif utama pembangunan projek ini dilaksanakan adalah untuk:

- Menyediakan tiga sistem bekalan kuasa arus AT dengan nilai voltan dan arus yang berlainan disamping sistem perlindungan voltan tinggi dan voltan rendah bertujuan mempermudahkan proses pembangunan litar dijalankan.
- Membina sistem kawalan PWM bagi mengawal kelajuan dan arah putaran motor AT dengan menggunakan konsep analog dan pensuisan.
- Membina sistem suap balik melalui takometer yang mengawal sistem suntikan voltan tambahan bagi meningkatkan voltan operasi serta kelajuan motor.

(C) Universiti Teknikal Malaysia Melaka

 Menganalisis kesan beban mekanikal seperti geseran kepada kelajuan motor, dan keberkesanan litar suap balik bagi membetulkan kelajuan motor agar mencapai kelajuan yang dikehendaki.

1.4 Skop Projek

Skop projek merupakan penekanan yang diambil dalam proses menjalankan kajian ini. Antaranya adalah, kajian ini meliputi:

- Menggunakan konsep analog dan pensuisan dimana penggunaan komponen elektronik seperti; perintang; pemuat; pengawal; pengaruh; pembanding; diode; transistor; dan lain-lain.
- Menggunakan komponen seperti diode, pemuat, pengawal, dan diode zener bagi membina sistem bekalan kuasa AT.
- Membina sistem kawalan dengan menggabungkan penggunaan komponen elektronik dengan IC LM324 yang mampu menghasilkan operasi seperti voltan ikutan; pengayun gelombang; dan pembanding. Ia juga mampu melakukan operasi pengiraan seperi penambahan dan penolakan.
- Menghasil dan mengawal gelombang PWM dalam sistem kawalan motor.
- Memahami dan mengaplikasikan konsep analong seperti pembandingan voltan; pensuisan; dan pengaruhan, dalam membina keseluruhan litar.
- Membina dan membandingkan keupayaan kawalan kelajuan dan arah putaran diantara litar convensional dengan litar kawalan analog.

operasi seperti voltan ikutan; pengayun gelombang; dan pembanding. Ia juga mampu melakukan operasi pengiraan seperi penambahan dan penolakan.

- Menghasil dan mengawal gelombang PWM dalam sistem kawalan motor.
- Memahami dan mengaplikasikan konsep analong seperti pembandingan voltan; pensuisan; dan pengaruhan, dalam membina keseluruhan litar.
- Membina dan membandingkan keupayaan kawalan kelajuan dan arah putaran diantara litar convensional dengan litar kawalan analog.

1.5 Jangkaan Hasil Akhir

Jangkaan hasil diakhir kajian ini ialah; terhasilnya sebuah litar operasi kawalan kelajuan bagi motor AT berjenis magnet kekal yang dapat beputar pada dua arah. Rajah 1.2 dibawah menunjukan pengawal kelajuan yang mampu mengawal kelajuan motor disamping mengawal arah putaran motor. Ia mempunyai 11 sengatan penunjuk aras (0 hingga 10). Pada aras paling tengah iaitu aras 5, motor akan berhenti. Manakala motor akan berputar ke hadapan (cw) sekiranya pengawal kelajuan diputarkan ke aras 0. Putaran motor semakin meningkat dari aras 4 hingga aras 0. Motor akan berputar mengundur (ccw) sekiranya pengawal kelajuan diputarkan ke aras 10. Putaran motor ini juga akan menjadi semakin meningkat dari aras 6 hingga 10. Pada aras 0 dan 10 masing-masing menghasilkan putaran paling laju pada arah berlawanan.

Rajah 1.2: Pelaras kelajuan motor.

C Universiti Teknikal Malaysia Melaka

Rajah dibawah menunjukan jangkaan hasil graf keluaran bagi arah putaran dan kelajuan motor yang bergantung kepada penetapan aras pengawal kelajuan. Pada kedudukan aras 5, nilai kelajuan motor adalah 0. Ini bermakna motor tidak akan berputar. Pada kedudukan aras 4 hingga aras 0, nilai kelajuan adalah positif. Manakala nilai kelajuan menjadi negatif pada aras 6 hingga 10. Nilai kelajuan motor berada pada puncak apabila pengawal kelajuan ditetapkan pada aras 0 dan 10.

Rajah 1.3: Graf jangkaan hasil kelajuan dikawal pelaras kelajuan.

6