

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MANUAL CONTROL TOBOT FOR PICK AND PLACE APPLICATION

Thesis submitted in accordance with the partial requirements of the Universiti Teknikal Malaysia Melaka for the Bachelor of Manufacturing Engineering (Robotic And Automation) with Honours

By

MAHASAN MAT ALI

Faculty of Manufacturing Engineering MAY 2008

DECLARATION

I hereby, declare this thesis entitled "Manual Control Robot For Pick And Place Application " is the result of my own research except as cited in the references.

Signature	:
Author's Name	:
Date	:

APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic And Automation) with Honours. The members of the supervisory committee are as follow:

Main Supervisor

(En. Khairol Anuar B. Rakiman) Faculty of Manufacturing Engineering (Official Stamp & Date)

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENTS

Alhamdulillah, I'm grateful that by the power of Allah, Most Gracious, Most Merciful, I managed to complete this project. I also want to thank my parents, who taught me the value of hard work by their own example. Both of them are my source of inspiration that lead me to working hard in gaining knowledge. I also would like to share this moment of happiness with all my friends that had help me in completing this project in one way or another.

I also would like to thanks my supervisor, En. Muhamad Arfauz B. A.Rahman, from Manufacturing Engineering Faculty, UTeM for all his guidance and help throughout the entire time of this project being carried out. Without this guidance this project might not go as well as it is. The encouragement and motivation that was given to me to carry out my project work are greatly appreciated.

I also would like to express my gratitude to the Central Electronics store for helping me to obtain necessary parts that I need to complete my project. Without their help, the electrical and electronic part of the robot will not be completed because certain part that being used in the robot circuit are hard to find and had to be preordered.

Finally, I would also like to thanks all my housemates and whose directly and indirectly helped me and gave their help and support towards my project. Without their supports this project might not be as well as it is upon it's completion.

i

ABSTRACT

Pick and place robot is a very common robot that being used in the industries for the purpose of palletizing. However the pick and place robot that being used is stationary and only capable of performing palletizing job within it's limited working area. The manual control robot for pick and place application is designed in order to overcome this situation. The robot will be able to move around as being wish by it's operator. As the name implies, the robot will need human handling in order to perform it's task. This is however this is not a bad thing. By doing so, the robot will be able to perform much better because the decision is made by the most powerful computer on earth which is human brain. The construction of this robot can be divided into two different areas which is mechanical parts and also electrical and electronic parts. In the mechanical parts, the rigidity of the whole robot structure, the effectiveness of the gripper and also the lifting mechanism. The design and development of the mechanical structure had being done using Solid Works software which had enable the design to be prototype first before actual fabrication can be carried out. This method had save lots of time in the fabrication process because all the parts for the robot had been predetermined. The electrical and electronic areas consist of the driver circuit, PIC circuit, hand hold controller, programming and also the whole robot wiring. The most important part in this section is how to suppress the electrical noise. Electrical noise can be a big problem in electrical and electronic because it can cause the whole system to malfunctions. This particular robot however had managed to overcome that by using a few methods that had being researched and practice such as by using an opto-isolator in the driver circuit. Besides that the whole robot wiring is also being done with noise suppression in mind. By combining the mechanical and also the electrical and electronic parts together, the robot had managed to function remarkable well were able to do it's task with flying colours.

TABLE OF CONTENTS

Acknowledgement	i
Abstract	ii
Table of content	iii
List Of Figure	vii
List Of Table	Х
List Of Abbreviation	xi
1. INTRODUCTION	1
1.1. Problem Statements	2
1.2. Objectives	3
1.3. Scope	3
1.4. Benefits Of The Project	4
2. LITERATURE RIVIEWS	5
2.1 Introduction To Robot	5
2.1.1 Autonomous Robot	8
2.1.2 Industrial Robot	9
2.2 Mechanical Structure	12
2.2.1 Frame	13
2.2.1.1 Abs (Acrylonitrile Butadiene Styrene)	13
2.2.1.2 Acrylic	14
2.2.1.3 Nylon	14
2.2.1.4 Polycarbonate	15
2.2.1.5 PVC	15
2.2.1.6 Plywood	16
2.2.1.7 Extruded Aluminum	17
2.2.2 Locomotion	17

		er Mechanism	18
	2.2.3.1	Vacuum Pad Gripper	19
	2.2.3.2	Pressure Pad Gripper	19
	2.2.3.3	Magnetic Pad Gripper	20
	2.2.3.4	Symmetrical Gripper	20
	2.2.3.5	Unsymmetrical Gripper	21
	2.2.3.6	Liquid Gripper	21
2.3	Motor		22
	2.3.1 Ac Mo	otor	22
	2.3.2 Dc Mo	otor	25
	2.3.2.1	Brushless Dc Motor	27
	2.3.2.2	Stepper Motor	28
	2.3.2.3	Servo Motor	28
	2.3.3 Motor	Controlling Method	30
	2.3.3.1	Unidirectional Motor Control	31
	2.3.3.2	Bidirectional Motor Control	33
2.4	Controller		34
	2.4.1 Progra	ammable Logic Controller (Plc)	34
	2.4.2 Micro	controller	38
	2.4.3 Progra	amming	39
	2.4.3.1	Flow Control	40
	2.4.3.2	Subroutine	40
	2.4.3.3	Variables	41
	2.4.3.4	Expressions	42
	2.4.3.5	Strings	42
	2.4.3.6	Numerical Values	43
	2.4.3.7	Conditional Statements	43
	2.4.3.8	Branching	44
	2.4.3.9	Looping	44
	2.4.3.10) Inputting Data	45
	2.4.3.1	1 Outputting Data	45

	2.5 Electric And Electronic Components	46
	2.5.1 Capacitor	46
	2.5.2 Diodes	48
	2.5.3 Resistor	49
	2.5.4 Transistor	52
	2.5.5 Electronic Relay	54
	2.5.6 Integrated Circuit (IC)	56
	2.6 Sensors	57
	2.6.1 Proximity Sensor	58
	2.6.2 Range Sensor	58
	2.6.3 Tactile Sensor	59
	2.6.4 Miscellaneous Sensor	59
	2.7 Power Supply	60
	2.7.1 Direct Supply	60
	2.7.2 Solar	61
	2.7.3 Battery	62
	2.7.3.1 Nickel Cadmium	63
	2.7.3.2 Nickel Metal Hydride	63
	2.7.3.3 Lithium-Ion	64
	2.7.3.4 Lead-Acid	65
	2.8 Conclusion Remark	66
3.	METHODOLOGY	68
	3.1 Planning Phase	68
	3.2 Literature Review Phase	69
	3.3 Design Phase	69
	3.4 Building And Testing Phase	69
	3.5 Analyzing Phase	71
4.	DESIGN AND DEVELOPTMENT	72
	4.1 Motor Driver Circuit	72

4.2 Hand Hold Controller74.2.1 Hand Hold Controller Development7	77 79
4.2.1 Hand Hold Controller Development	
-	
4.2.2 Hand Hold Controller Description	79
1	81
4.3 Mechanical Constriction 8	82
4.3.1 Base 8	82
4.3.2 Linear Slider 8	85
4.3.3 Lifting Mechanism 8	86
4.3.4 Gripping Mechanism 8	87
4.4 Electrical Wiring 8	89
4.5 Design Analysis9	90
4.5.1 Rotation Ratio And Output Rotation Of Drive Motor	91
4.5.2 Bearing radial load capacity 9	92
4.5.3 Shear and bending moment diagram of drive shaft	93
4.5.4 Deflection along the drive shaft	94
4.5.5 Value Of The Critical Speed Rotation Of The Drive Shaft	95
4.6 Concluding Remarks 9	96
	7 7
5. DISCUSSION, CONCLUSION AND SUGGESTIONS FOR FURTHER 9 WORKS	97
	97
	98
	99
5.5 Suggestions For Further Works	,,
REFFERENCES 1	01
APPENDIX 1	05
APPENDIX 2	06
APPENDIX 3	
APPENDIX 4	08

APPENDIX 5	109
APPENDIX 6	110
APPENDIX 7	111
APPENDIX 8	112
APPENDIX 9	113
APPENDIX 10	114
APPENDIX 11	115
APPENDIX 12	118
APPENDIX 13	119
APPENDIX 14	120
APPENDIX 15	121
APPENDIX 16	122

LIST OF FIGURES

2.1: Shakey the robot	5
2.2: Writing automaton	6
2.3: Spider robot	8
2.4: Cartesian robot	10
2.5: Cylinder robot	10
2.6: Polar robot	10
2.7: Jointed arm	11
2.8: Pick and place robots	11
2.9: Welding robots	12
2.10: ABS sheet	13
2.11: Acrylic sheet	14
2.12: Nylon sheet	14
2.13: Polycarbonate sheet	15
2.14: PVC pipe	15
2.15: Plywood	16
2.16: Aluminum profile	17
2.17: Vacuum pad gripper	19
2.18: Pressure pad gripper	19
2.19: Magnetic pad gripper	20
2.20: Symmetrical pad gripper	20
2.21: Unsymmetrical pad gripper	21
2.22: AC motor	22
2.23: Rotor	23
2.24: Stator	24
2.25: Motor enclosure	24
2.26: DC motor	25
2.27: DC motor operation	26

2.28: Brushless DC motor	27
2.29: Stepper motor	28
2.30: Servo motor	29
2.31: Servo motor movement	30
2.32: The simplest to control motor operation	31
2.33: Motor control circuit using transistor	32
2.34: MOSFET control circuit	32
2.35: Relay control circuit	33
2.36: Bidirectional motor control	34
2.37: PLC	35
2.38: Components of PLC	36
2.39: A PIC 18F8720	38
2.40: Flowchart map out	41
2.41: An example command using If	43
2.42: A program loop repeats one or more commands	45
2.43: Capacitor	47
2.44: Diode	48
2.45: Diode operation	48
2.46: Power diagram of a typical diode	49
2.47: Ohm law	50
2.48: Carbon film resistor	50
2.49: High power resistor	51
2.50: Variable resistor	52
2.51: Transistor	52
2.52: An electronic relay	54
2.53: Relay operation	55
2.54: Example of IC	56
2.55: Common symbol for IC	56
2.56: Proximity sensor	58
2.57: Range sensor	58
2.58: Limit switch	59

viii

2.59: Temperature sensor	59
2.60: AC current graph	60
2.61: Solar power cell	61
2.62: Nickel cadmium battery	63
2.63: Nickel metal hydride	63
2.64: Lithium-ion	64
2.65: Sealed lead acid battery	65
3.1 : Methodology flow chart	71
4.1: Motor driver board	72
4.2: Circuit layout on ohp plastic	74
4.3: Transferring process	74
4.4: Motor driver design layout on a PCB board	75
4.5: PCB board in acid solution	75
4.6: Finished PCB board	75
4.7: Drilling process	76
4.8: Finished motor driver board	76
4.9: Board layout	77
4.10: Hand hold controller	79
4.11: Controller PCB	79
4.12: Controller PCB with IC has been taken out	80
4.13: Finished soldered wire	80
4.14: Hand controller layout	81
4.15: Cutting process	82
4.16: Drilling process	83
4.17: Tire attachment	83
4.18: Motor and chain attachment	83
4.19: Marking process	84
4.20: Face mill process	84
4.21: Aluminum block after eng mill process	84

4.22: Drilling process	85
4.23: Tapping process	85
4.24: Motor and rack gear set attachment	86
4.25: Attached motor	87
4.26: cutting process	87
4.27: Laser cut	88
4.28: Gripper movement mechanism	88
4.29: Attached part	88
4.30: Location of driver board in the control box	89
4.31: Control box	89
4.32: Primary and secondary sprocket	91
4.33: Bearing	92
4.34: Illustration of drive shaft	93
4.35: Illustration of drive shaft	94
4.36: Illustration of drive shaft	95
5.1: Mecanum wheels	99
5.2: Mecanum drive system	99
5.4: Profile rail guide	100

LIST OF TABLES

2.1: Type of robot	10
2.2: Comparison table between BASIC Stamp & other type of controller	39
2.3: Resistor color code	51
2.4: Classification of transistor	53
2.5: Battery comparisons table	66
4.1: Motor driver components	73
4.2: Descriptions of board layout	77
4.3: Descriptions of hand controller layout	81
4.4: Description of control box	90

LIST OF ABBREVIATIONS

PIC	-	Programmable integrated circuit
MSD	-	Musculoskeletal disorder
ABS	-	Acrylonitrile butadiene styrene
PVC	-	Polyvinyl chloride
AC	-	Alternate current
DC	-	Direct current
DPDT	-	Double-pole double-throw
PLC	-	Programmable Logic Controller
CPU	-	Central processing unit
CNC	-	Computer numerical control
MCU	-	Microcontroller unit
LED	-	Light emitting diode
IC	-	Integrated Circuits
PSU	-	Power supply unit
PSV	-	Photovoltaics
Ni-Cad	-	Nickel cadmium
NiMH	-	Nickel metal hydride

CHAPTER 1 INTRODUCTION

In today's modern world, more and more robot has been developed. Regardless of it's purposes robot has become more popular in these past new years than it was before. Robot can be defined as a machine that resembles a human and does mechanical, routine tasks on command [1].

As the name applied, manual control robot for pick and place application are being used to pick an object from one location and placed it somewhere else. This robot is being design in order to eliminate the use of human strength in order to lift things for the manual sorting application. Operator's will no longer have to face an awkward working posture and repetition of works with these robot thus it will eliminate the work injury that being associated with these jobs.

This robot will be controlled via a hand hold controller. The hand hold controller will act as a link between the robot operator and the robot controller circuit which determined the robot movements. The robot controller circuit used simple switching method combined with the driver circuit for the motor. This robot also being developed with a steady base support and well function of gripping & lifting mechanism in order to enhance the performance of the robot.

1.1 Problem Statements

In small company, there are still some of the sorting processes that still being conducted manually. Manual sorting process can take a long time because human will usually be tired doing the same task over and over again. This will result to inefficient work condition. The repetition of these works over long period of time can cause the workers to experiencing lower back pain and in some cases of musculoskeletal disorder (MSD). In some serious cases, this type of injury can cause the operator to be paralyzes.

Automated sorting system which being used in big company does not suit the application of the smaller company. These systems usually required a very high cost to be implemented. These systems also required an amount of space if the systems want to be installed depending on the size of the system. The space of the system can't be used for other purposes.

With this project of manual robot for pick and place application, all problems that being mentioned earlier can be eliminated. With this robot the sorting process can be done faster than before. This is because the robot will be doing all the lifting process while the operator will only control the movement of the robot. This will result in higher material handling efficiency. Although the sorting process is being done by a robot, the cost of this unit is lower than the automated sorting system. The robot can be considered as semi automating sorting equipment. It is considered as semi auto because the robot still need an operator in order to control it's movement.

1.2 Objectives

The main objective of this project is to develop a manual robot that can be used in sorting process which is pick and place application. Additional objective of this projects are:-

- a) To eliminate the needs of relying on human strength in lifting process.
- b) To develop a fully functional controller that can be used to control the robot movement.
- c) To develop smooth movement of lifting and gripping mechanism.

1.3 Scope

In order to develop a working robot that can be used to conduct the sorting process, scopes are required to assist and guide the development of the project. The scope should be identified and planned to achieve the objective of the project successfully on the time. The scopes for this project are:-

- a) To design and develop an electrical circuit to control the robot movement using hand hold controller.
- b) To design and develop motor driver circuit that will not have any electrical noise effect.
- c) To design and fabricate a solid base structure of the robot.
- d) To design and fabricate a smooth lifting and gripping mechanism.

1.4 Benefits Of The Project

This manual control robot for pick and placed application are being developed in order to assist the sorting process that usually being done by using human power. The benefits of this project are:-

- a) Eliminating the usage of human power to pick up things.
- b) Preventing back pain/back injuries due to picking up heavy loads by the operator.
- c) Increasing productivity and efficiency.

CHAPTER 2 LITERATURE REVIEWS

2.1 Introduction To Robot

There are lots of definition that being used to describe what robot really is. Some of them are [2]:-

- a) A mechanical device that sometimes resembles a human and is capable of performing a variety of often complex human tasks on command or by being programmed in advance
- b) A machine or device that operates automatically or by remote control
- c) A person who works mechanically without original thought, especially one who responds automatically to the commands of others

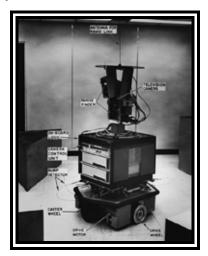


Figure 2.1: Shakey the robot [2]

Figure 2.1 shows an example of an intelligent robot that being develop for the purpose of research. While there is still discussion about which machines qualify as robots, a typical robot will have several, though not necessarily all of the following properties [3]:-

- a) Is not natural
- b) Can sense its environment
- c) Can manipulate things in its environment
- d) Has some degree of intelligence, or ability to make choices based on the environment or automatic control / preprogrammed sequence
- e) Is programmable
- f) Can move with one or more axes of rotation or translation
- g) Can make dexterous coordinated movements
- h) Appears to have intent or agency

There is more than one spectrum of robot intelligence. Fully remote control or fully autonomous is not the only option. The level of intelligence of the robot can be predetermined according to the application that it supposed to perform before any construction can be carried out. Generally, the more intelligent of the robot had, the more difficult it is to build. The main categories of robot intelligence are [4]:-

- a) Automaton 'Intelligence'
- b) Remote Control 'Intelligence'
- c) Teleoperation

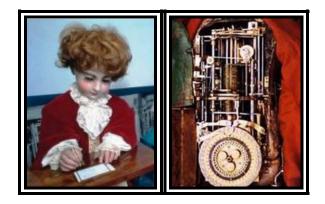


Figure 2.2: Writing automaton [5]

6

Automaton intelligence is the lowest level of robot intelligence. As shown in Figure 2.2 an automaton robot usually consists of a simple automaton device. An automaton is a device where there are absolutely zero decisions made no matter the given environment. They are simple devices where the action it does is repetitive and automatic [5]. A simple circuit with a motor or a combination of gears and a spring could easily be an automaton. The automaton device simply has no fault tolerance, and will continue attempting the action it is supposed to do. They did not even have a method to sense the environment - a requirement of decision making. BEAM robots basically fall into the same category, except they are made from very well designed electronics instead of gears.

Remote control is the next level of robot intelligence. Although our current technology has enable us to design various machine that capable to do various things such as flying more than the speed of sound, went to the deepest of the ocean bed, but our current super computer still cannot even match a roach brain in term of autonomy. To solve these problems, we can integrate human brain to the application. It's like putting human brain in the driving seat of the machine. This allows for the best of both worlds. Strength and expendability of a machine, brain of a human [4].

According to the society of robotic, teleoperation is one step above remote control. The advantage a computer has over the human brain is speed. A typical home computer today can crunch more numbers in a few seconds than a human can in an entire lifetime. But despite that speed, the computer does not have a good understanding of the situation. Added to that, the most advanced electronic sensors cannot match our human eyes and ears for observing the situation. The solution for this is to let the human make the decisions, but have the computer carry them out. A perfect use for this would be a robot spider as shown in Figure 2.3. A human operator in no way can control 8 legs with 3 joints each. Instead, the human would give commands like go forward or rotate and the computer will handle the rest. This method is also very common with space robots because of the long transmission delay [4].

Figure 2.3: Spider robot [6]

Like human, robot also has it's anatomy which is essential in order to enable it to be build. The anatomies of the robot are:-

- a) Mechanical structure
- b) Motor
- c) Controller
- d) Electrical and electronic components
- e) Sensor
- f) Power supply

In real world application the robot, the robot can be divided into two big categories which are:-

- a) Autonomous robot
- b) Industrial robot

2.1.1 Autonomous Robot

Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots have some degree of autonomy. Different robots can be autonomous in different ways. Fully autonomous robots are still a dream. It is a huge area in current state-of-the-art robotics research. It concerns artificial intelligence, consciousness, advanced sensory perceptions and the list goes on. Autonomous robots are robots which can perform desired tasks in